算法--解析法

算法--解析法
算法--解析法

算法与程序设计

完成后以自己的姓名+解析法为名存到“算法”中!

一、解析法(analysis algorithm)

用解析的方法,即找出表示问题的前提条件与结果之间关系的数学表达式,并通过表达式的计算来实现问题求解的方法。

举例:见上课笔记!

请你练习:

1、输入三角形边长a,b,c,求三角形面积s。(顺序结构)

要求:根据给出的流程图写出程序:

2、改进:判输入的a,b,c能否构成三角形,再输出(分支结构)!

要求:(1)根据给出的流程图写出程序:

(2)设法在VB中实现此算法并存到“算法”文件夹中

;

3、改进,若输入的a ,b ,c 不能构成三角形,则重新输入!代码?(循环结构)

要求:(1)根据给出的流程图写出程序: (2)设法在VB 中实现此算法并存到“算法”文件夹中;

4、输入一元二次方程a x2+b x+c=0(a≠0)的系数a、b、c,求方程的解。

要求:(1)根据给出的流程图写出程序;

(2)设法在VB中实现此算法(界面见下图)并存到“算法”文件夹中;

浅析蒙特卡洛方法原理及应用

浅析蒙特卡洛方法原理及应用 于希明 (英才学院1236103班测控技术与仪器专业6120110304) 摘要:本文概述了蒙特卡洛方法产生的历史及基本原理,介绍了蒙特卡洛方法的最初应用——蒲丰投针问题求圆周率,并介绍了蒙特卡洛方法在数学及生活中的一些简单应用,最后总结了蒙特卡洛方法的特点。 关键词:蒙特卡洛方法蒲丰投针生活应用 蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。它是以概率统计理论为基础, 依据大数定律( 样本均值代替总体均值) , 利用电子计算机数字模拟技术, 解决一些很难直接用数学运算求解或用其他方法不能解决的复杂问题的一种近似计算法。蒙特卡洛方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 一、蒙特卡洛方法的产生及原理 蒙特卡洛方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡洛方法就已经存在。1777年,法国数学家蒲丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡洛方法的起源。 其基本原理如下:由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡洛法正是基于此思路进行分析的。 设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。首先根据各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标。 二、蒲丰投针问题 作为蒙特卡洛方法的最初应用, 是解决蒲丰投针问题。1777 年, 法国数学家蒲丰提出利用投针实验求解圆周率的问题。设平面上等距离( 如为2a) 画有一些平行线, 将一根长度为2l( l< a) 的针任意投掷到平面上, 针与任一平行线相交的频率为p 。针的位置可以用针的中心坐标x 和针与平行线的夹角θ来决定。任意方向投针, 便意味着x与θ可以任意取一值, 只是0≤x ≤a, 0≤θ≤π。那么, 投针与任意平行线相交的条件为x ≤ l sinθ。相交频率p 便可用下式求

模糊控制详细讲解实例

一、速度控制算法: 首先定义速度偏差-50 km/h ≤e (k )≤50km/h ,-20≤ec (i )= e (k )- e (k-1)≤20,阀值e swith =10km/h 设计思想:油门控制采用增量式PID 控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e (k )<0 ① e (k )>- e swith and throttlr_1≠0 选择油门控制 ② 否则:先将油门控制量置0,再选择刹车控制 0

谈谈用枚举算法解决问题的编程思路与步骤方法

谈谈用枚举算法解决问题的编程思路与步骤方法 一.问题 上海市普通高中在信息科技学科中开展《算法与程序设计》教学,教材中有一章名为“算法实例”的内容,其中有一节介绍“枚举算法”。教材中关于枚举算法的描述:有一类问题可以采用一种盲目的搜索方法,在搜索结果的过程中,把各种可能的情况都考虑到,并对所得的结果逐一进行判断,过滤掉那些不合要求的,保留那些符合要求的。这种方法叫做枚举算法(enumerative algorithm)。 枚举法就是按问题本身的性质,一一列举出该问题所有可能的解,并在逐一列举的过程中,检验每个可能解是否是问题的真正解,若是,我们采纳这个解,否则抛弃它。在列举的过程中,既不能遗漏也不应重复。 生活和工作中,人们经常会不经意间运用“枚举算法”的基本原理,进行问题的解决。比如,让你用一串钥匙,去开一把锁,但是不知道具体是用哪一把钥匙,你就会一把一把地挨个地逐个尝试,最终打开锁为止。又如,要对1000个零件,进行合格检验,等等。 二.用枚举算法的思想编写程序的思路与步骤 枚举算法,归纳为八个字:一一列举,逐个检验。在实际使用中,一一列举;采用循环来实现,逐个检验:采用选择来实现。 下面,通过一个问题的解决来说明这一类问题的解决过程的方法与步骤; 例1:在1—2013这些自然数中,找出所有是37倍数的自然数。 这个问题就可以采用枚举算法来解决: 1).一一列举;采用循环来实现; 循环需要确定范围:本循环控制变量假设用i,起始值是1,终止值是2013。 2).逐个检验:采用选择来实现; 选择需要列出判断的关系表达式:i Mod 37 = 0 这样,就可以写出整个求解的VB代码: Dim i As Integer For i = 1 To 2013 If i Mod 37 = 0 Then Print i End If Next i 说白了,用枚举算法解决问题,其实是利用计算机的高速度这一个优势,就好比上题完全可以使用一张纸和一支笔,采用人工的方法完成问题的解,从1开始,一一试除以37,这样计算2013次,也可以找到问题的答案。 在教学中,问题的求解往往是针对数学上的问题,下面举一些相关的例子,来巩固与提高采用枚举算法进行程序设计的技能。 三.枚举算法举例: 1:一张单据上有一个5位数的编号,万位数是1,千位数是4,百位数是7,个位数、十位数已经模糊不清。该5位数是57或67的倍数,输出所有满足这些条件的5位数的个数。(147□□) 1).一一列举;采用循环来实现;

计算材料学之蒙特卡洛方法论述

计算材料学之蒙特卡洛方法 一、计算材料学要紧内容 计算材料学涉及材料的各个方面,如不同层次的结构、各种性能等等,因此,有专门多相应的计算方法。在进行材料计算时,首先要依照所要计算的对象、条件、要求等因素选择适当的方法。要想做好选择,必须了解材料计算方法的分类。目前,要紧有两种分类方法:一是按理论模型和方法分类,二是按材料计算的特征空间尺寸(Characteristic space scale)分类。材料的性能在专门大程度上取决于材料的微结构,材料的用途不同,决定其性能的微结构尺度会有专门大的差不。例如,对结构材料来讲,阻碍其力学性能的结构尺度在微米以上,而关于电、光、磁等功能材料来讲可能要小到纳米,甚至是电子结构。因此,计算材料学的研究对象的特征空间尺度从埃到米。时刻是计算材料学的另一个重要的参量。关于不同的研究对象或计算方法,材料计算的时刻尺度可从10-15秒(如分子动力学方法等)到年(如关

下面要紧介绍蒙特卡罗方法: 蒙特卡罗方法: 一、方法的简介 蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的进展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类特不重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决专门多计算问题的方法。与它对应的是确定性算法这种方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。蒙特卡罗方法是一种计算方法,但与一般数值计算方法有专门大区不。它是以概率统计理论为基础的一种方法。由于蒙特卡罗方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,因而该方法的应用领域日趋广泛。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。

模糊控制详细讲解实例之欧阳歌谷创作

一、速度控制算法: 欧阳歌谷(2021.02.01) 首先定义速度偏差-50 km/h≤e(k)≤50km/h,-20≤ec(i)=e(k)-e(k-1)≤20,阀值eswith=10km/h 设计思想:油门控制采用增量式PID控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e(k)<0 ①e(k)>-eswith and throttlr_1≠0 选择油门控制 ②否则:先将油门控制量置0,再选择刹车控制 0

E/EC和U取相同的隶属度函数即: 说明:边界选择钟形隶属度函数,中间选用三角形隶属度函数,图像略 实际EC和E输入值若超出论域范围,则取相应的端点值。 3.模糊控制规则 由隶属度函数可以得到语言值隶属度(通过图像直接可以看出)如下表: 表1:E/EC和U语言值隶属度向量表 设置模糊规则库如下表: 表2:模糊规则表 3.模糊推理 由模糊规则表3可以知道输入E与EC和输出U的模糊关系,这里我取两个例子做模糊推理如下: if (E is NB) and (EC is NM) then (U is PB) 那么他的模糊关系子矩阵为:

模糊控制的应用实例与分析

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师___________ 日期20门年9月20日 在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)

的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意头重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: ⑴模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点 是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 ⑵由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控 制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。

⑶基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同, 容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 ⑷模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人 工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。 ⑸模糊控制系统的鲁棒性強,干扰和参数变化对控制效果的影响被大大减 弱,尤其适合于非线性、时变及纯滞后系统的控制。 由于有着诸多优点,模糊理论在控制领域得到了广泛应用。下面我们就以下示例介绍模糊控制在实际中的应用: 电机调速控制系统见图1,模糊控制器的输入变量为实际转速与转速给定值之间的差值e及其变化率仝,输出变量为电机的电压变化量u。图2为电机调试输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 OOOr / s时,电机能很快稳定运行于2 OOOr / s;当设定转速下降到1 OOOr / s时,转速又很快下降到1 OOOr / s稳定运 行。

基于蒙特卡洛方法求数值积分与R

统计计算课程设计 题目基于蒙特卡洛方法求数值积分 中文摘要 蒙特卡洛方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在上世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。 1

利用随机投点法,平均值法,重要性采样法,分层抽样法,控制变量法,对偶变量法,运 用R软件求 1 d x e x θ- =?,42d x e x θ- =?和12 d 1 x e x x θ - = + ?数值积分。计算以上各种估计的方差, 给出精度与样本量的关系,比较各种方法的效率, 关键字蒙特卡洛随机投点法平均值法 R软件 2

1 绪论 蒙特卡洛的基本思想是,当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。 蒙特卡洛方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡洛方法模拟实验的基本手段,这也是蒙特卡洛方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡洛模拟的基本工具。 (3)建立各种估计量 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 1

枚举算法 练习题

1.用50元钱兑换面值为1元、2元、5元的纸币共25张。每种纸币不少于1张,求出有多少种兑换方案?每种兑换方案中1元、2元、5元的纸币各有多少张? 假设面值为1元、2元、5元的纸币分别是x、y、z张,兑换方案有k种,从题意可得出x、y、z满足的表达式为 x+y+z=25 x+2y+5z=50 解决此问题的Visual Basic程序如下,在(1)和(2)划线处,填入合适的语句或表达式,把程序补充完整。 Private Sub Command1_Click() Dim k As Integer Dim x As Integer, y As Integer, z As Integer k = 0 List1.Clear For y = 1 To 23 For z = 1 To 9 x = 25 - y - z If (1) Then List1.AddItem "1元" + Str(x) + "张 2元" + Str(y) + "张 5元" + Str(z) + "张" ____(2)___________ End If Next z Next y Label1.Caption = "共有" + Str(k) + "种兑换方案" End Sub 程序中划线处(1)应填入_____________ 程序中划线处(2)应填入_____________ 2.以下Visual Basic程序的功能是:计算表达式1+2+22+23+24+25+26+27+28+29+210的值,并在文本框Text1中输出结果。为了实现这一功能,程序中划线处的语句应更正为_____________。 Private Sub Command1_Click() Dim i As Integer,s As Long s = 0 k = 2 For i= 1 To 10 s = s + k k = k * 2 Next i Text1.Text=Str(s) End Sub

选取一个模糊控制的实例讲解

选取一个模糊控制的实例讲解,有文章,有仿真,有详细的推导过程。 一.实验题目:基于模糊控制系统的单级倒立摆 二.实验目的与要求: 倒立摆是联结在小车上的杆,通过小车的运动能保持竖立不倒的一种装置,它是一个典型的非线性、快速、多变量和自然不稳定系统,但是我们可以通过对它施加一定的控制使其稳定。对它的研究在理论上和方法上都有其重要意义。倒立摆的研究不仅要追求增加摆的级数,而且更重要的是如何发展现有的控制方法。同时, 它和火箭的姿态控制以及步行机器 人的稳定控制有很多相似之处,由此研究产生的理论和方法对一般工业过程也有广泛用途。 本文研究了倒立摆的控制机理,用Lagrange 方法推导了一级倒立摆的数学模型,这为研究多级和其它类型的倒立摆甚至更高层次的控制策略奠定了一个良好的基础。对系统进行了稳定性、可控性分析,得出倒立摆系统是一个开环不稳定但可控的系统的结论。 本文主要研究用极点配置、最优控制和模糊控制方法对倒立摆进行稳定控制。最优控制方法是基于状态反馈,但能实现输出指标最优的一种控制方法,方法和参数调节较简单,有着广泛的应用。模糊控制有不依赖于数学模型、适用于非线性系统等优点,所以本文尝试了用模糊控制对倒立摆进行控制,以将先进的控制方法用于实际中。 同时,对倒立摆系统的研究也将遵循从建模到仿真到实控,软硬件结合的系统的控制流程。在这过程中,借助数学工具Matlab7及仿真软件Simulink,作了大量的仿真研究工作,仿真结果表明系统能跟踪输入,并具有较好的抗干扰性。最后对实验室的倒立摆装置进行了软、硬件的调试,获得了较好的控制效果。 三.实验步骤: 1.一级倒立摆系统模型的建立 在忽略了空气阻力、各种摩擦之后(这也是为了保证Lagrange 方程的建立),可 将一级倒立摆系统抽象为由小车和匀质杆组成的系统,本系统设定如下: 小车质量M;摆杆质量m,长为l;小车在x 轴上移动;摆与竖直方向夹角为θ,规定正方向如图所示;加在小车x 轴上的力为F;

(完整版)小学奥数枚举法题及答案【三篇】

小学奥数枚举法题及答案【三篇】 导读:本文小学奥数枚举法题及答案【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。 【篇一】枚举法问题 在一个圆周上放了1个红球和1994个黄球。一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。你知道这时圆周上还剩下多少个黄球吗? 答案与解析: 根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。 在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+1)÷2=498个黄球。 他又要继续第三圈操作了,他隔过红球,又取走了这498个黄球中,排在第1、3、5、……495、497的位置上的黄球,这时圆周上除了一个红球外,还剩下498÷2=249个黄球。 因为在上一圈操作时,排在这498个黄球中最后一个位置上的黄球没有被取走,所以他再进行操作时,第一个被取走的就是那个红球,这时,他的操作停止,圆周上剩下249个黄球。【篇二】

在一个圆周上放了1个红球和1994个黄球。一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。你知道这时圆周上还剩下多少个黄球吗? 答案与解析: 根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。 在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+1)÷2=498个黄球。 他又要继续第三圈操作了,他隔过红球,又取走了这498个黄球中,排在第1、3、5、……495、497的位置上的黄球,这时圆周上除了一个红球外,还剩下498÷2=249个黄球。 因为在上一圈操作时,排在这498个黄球中最后一个位置上的黄球没有被取走,所以他再进行操作时,第一个被取走的就是那个红球,这时,他的操作停止,圆周上剩下249个黄球。【篇三】

初中信息技术 1.6 枚举算法教案

1.6 枚举算法 《枚举算法》一课的重点是让学生理解枚举算法思想,并用其解决生活中的问题。在前面的教学中,学生已理解了算法的特点,学习了算法的三种表示方式,对于顺序、选择、循环三种基本控制结构已经有了知识基础,也能阅读一些简单的程序段。对于学生来说,枚举算法思想比较容易掌握,难点在于如何将枚举算法思想转变成具体的流程图,又如何转变成具体的VB程序。教材中以“单据涂抹”和“包装问题”两个实例引入并展开利用枚举算法解决问题的一般过程。通过上一学年的教学实践,感觉学生对这两个实例的学习兴趣并不高,教学效果也不很理想。本课设计打破教材编写的顺序,将教材中第二章的算法与第五章的程序结合起来组织教学,通过理论结合实践,让学生更容易理解各种算法的基本设计思想,体验编写程序的成功感受。 一、教学目标 知识与技能:理解枚举算法的基本思想;学会用流程图形式表示枚举算法;理解由流程图翻译成的VB代码,能上机成功调试。 过程与方法:通过具体案例分析,理解如何用三步法来解决实际问题;学会使用枚举算法解决简单问题。 情感、态度与价值观:感受枚举算法在日常生活中的广泛应用,培养对算法的兴趣;通过小组合作增进学习交流,培养合作能力。 二、教学重点与难点 重点:让学生理解枚举算法;培养学生运用三步法来解决实际问题的能力。 难点:让学生理解多种控制结构的嵌套;让学生能够将枚举算法思想转化为流程图,再将流程图转化为代码并上机实践。 三、设计思想 算法课一般与枯燥、晦涩、难懂等字眼联系在一起,难以激发学生的兴趣。如何打破这种局面,让学生自主学习算法呢? 本课的设计除了遵循算法“自顶而下,逐步求精”的思想之外,新意之处在于,根据电影情节别出心裁地创设了一个“男女主角辨认模糊电话号码”的情境,在故事中不露痕迹地渗透了教学内容。让学生融入电影情节,体验角色的情感,不知不觉地学会枚举算法,完成教学任务。 四、课前准备 向左走向右走》电影片段、枚举算法的VB演示程序、多媒体网络机房 五、教学过程 1.创设情境认知主题 课前播放电影片段。 师:这是哪部电影中的画面?

(完整版)蒙特卡洛算法详讲

Monte Carlo 法 §8.1 概述 Monte Carlo 法不同于前面几章所介绍的确定性数值方法,它是用来解决数学和物理问题的非确定性的(概率统计的或随机的)数值方法。Monte Carlo 方法(MCM ),也称为统计试验方法,是理论物理学两大主要学科的合并:即随机过程的概率统计理论(用于处理布朗运动或随机游动实验)和位势理论,主要是研究均匀介质的稳定状态[1]。它是用一系列随机数来近似解决问题的一种方法,是通过寻找一个概率统计的相似体并用实验取样过程来获得该相似体的近似解的处理数学问题的一种手段。运用该近似方法所获得的问题的解in spirit 更接近于物理实验结果,而不是经典数值计算结果。 普遍认为我们当前所应用的MC 技术,其发展约可追溯至1944年,尽管在早些时候仍有许多未解决的实例。MCM 的发展归功于核武器早期工作期间Los Alamos (美国国家实验室中子散射研究中心)的一批科学家。Los Alamos 小组的基础工作刺激了一次巨大的学科文化的迸发,并鼓励了MCM 在各种问题中的应用[2]-[4]。“Monte Carlo ”的名称取自于Monaco (摩纳哥)内以赌博娱乐而闻名的一座城市。 Monte Carlo 方法的应用有两种途径:仿真和取样。仿真是指提供实际随机现象的数学上的模仿的方法。一个典型的例子就是对中子进入反应堆屏障的运动进行仿真,用随机游动来模仿中子的锯齿形路径。取样是指通过研究少量的随机的子集来演绎大量元素的特性的方法。例如,)(x f 在b x a <<上的平均值可以通过间歇性随机选取的有限个数的点的平均值来进行估计。这就是数值积分的Monte Carlo 方法。MCM 已被成功地用于求解微分方程和积分方程,求解本征值,矩阵转置,以及尤其用于计算多重积分。 任何本质上属随机组员的过程或系统的仿真都需要一种产生或获得随机数的方法。这种仿真的例子在中子随机碰撞,数值统计,队列模型,战略游戏,以及其它竞赛活动中都会出现。Monte Carlo 计算方法需要有可得的、服从特定概率分布的、随机选取的数值序列。 §8.2 随机数和随机变量的产生 [5]-[10]全面的论述了产生随机数的各类方法。其中较为普遍应用的产生随机数的方法是选取一个函数)(x g ,使其将整数变换为随机数。以某种方法选取 0x ,并按照)(1k k x g x =+产生下一个随机数。最一般的方程)(x g 具有如下形式: m c ax x g mod )()(+= (8.1) 其中 =0x 初始值或种子(00>x ) =a 乘法器(0≥a ) =c 增值(0≥c ) =m 模数

蒙特卡洛算法

引言 最近在和同学讨论研究Six Sigma(六西格玛)软件开发方法及CMMI相关问题时,遇到了需要使用Monte-Carlo算法模拟分布未知的多元一次概率密度分布问题。于是花了几天时间,通过查询相关文献资料,深入研究了一下Monte-Carl o算法,并以实际应用为背景进行了一些实验。 在研究和实验过程中,发现Monte-Carlo算法是一个非常有用的算法,在许多实际问题中,都有用武之地。目前,这个算法已经在金融学、经济学、工程学、物理学、计算科学及计算机科学等多个领域广泛应用。而且这个算法本身并不复杂,只要掌握概率论及数理统计的基本知识,就可以学会并加以应用。由于这种算法与传统的确定性算法在解决问题的思路方面截然不同,作为计算机科学与技术相关人员以及程序员,掌握此算法,可以开阔思维,为解决问题增加一条新的思路。 基于以上原因,我有了写这篇文章的打算,一是回顾总结这几天的研究和实验,加深印象,二是和朋友们分享此算法以及我的一些经验。 这篇文章将首先从直观的角度,介绍Monte-Carlo算法,然后介绍算法基本原理及数理基础,最后将会和大家分享几个基于Monte-Carlo方法的有意思的实验。所以程序将使用C#实现。 阅读本文需要有一些概率论、数理统计、微积分和计算复杂性的基本知识,不过不用太担心,我将尽量避免过多的数学描述,并在适当的地方对于用到的数学知识进行简要的说明。 Monte-Carlo算法引导 首先,我们来看一个有意思的问题:在一个1平方米的正方形木板上,随意画一个圈,求这个圈的面积。 我们知道,如果圆圈是标准的,我们可以通过测量半径r,然后用S = pi * r^2 来求出面积。可是,我们画的圈一般是不标准的,有时还特别不规则,如下图是我画的巨难看的圆圈。 图1、不规则圆圈

蒙特卡洛方法及其在风险评估中的应用(1)

蒙特卡洛方法及其应用 1风险评估及蒙特卡洛方法概述 1.1蒙特卡洛方法。 蒙特卡洛方法,又称随机模拟方法或统计模拟方法,是在20世纪40年代随着电子计算机的发明而提出的。它是以统计抽样理论为基础,利用随机数,经过对随机变量已有数据的统计进行抽样实验或随机模拟,以求得统计量的某个数字特征并将其作为待解决问题的数值 解。 蒙特卡洛模拟方法的基本原理是:假定随机变量X1、X2、X3……X n、Y,其中X1、X2、X3……X n 的概率分布已知,且X1、X2、X3……X n、Y有函数关系:Y=F(X1、X2、X3……X n),希望求得随机变量Y的近似分布情况及数字特征。通过抽取符合其概率分布的随机数列X1、X2、X3……X n带入其函数关系式计算获得Y的值。当模拟的次数足够多的时候,我们就可以得到与实际情况相近的函数Y的概率分布和数字特征。 蒙特卡洛法的特点是预测结果给出了预测值的最大值,最小值和最可能值,给出了预测 值的区间范围及分布规律。 1.2风险评估概述。 风险表现为损损益的不确定性,说明风险产生的结果可能带来损失、获利或是无损失也无获利,属于广义风险。正是因为未来的不确定性使得每一个项目都存在风险。对于一个公司而言,各种投资项目通常会具有不同程度的风险,这些风险对于一个公司的影响不可小视,小到一个项目投资资本的按时回收,大到公司的总风险、公司正常运营。因此,对于风险的 测量以及控制是非常重要的一个环节。 风险评估就是量化测评某一事件或事物带来的影响的可能程度。根据“经济人”假设,收益最大化是投资者的主要追求目标,面对不可避免的风险时,降低风险,防止或减少损失, 以实现预期最佳是投资的目标。 当评价风险大小时,常有两种评价方式:定性分析与定量分析法。定性分析一般是根据风险度或风险大小等指标对风险因素进行优先级排序,为进一步分析或处理风险提供参考。这种方法适用于对比不同项目的风险程度,但这种方法最大的缺陷是在于,在多个项目中风险最小者也有可能亏损。而定量分析法则是将一些风险指标量化得到一系列的量化指标。通过这些简单易懂的指标,才能使公司的经营者、投资者对于项目分风险有正确的评估与判断,

VB解析算法及程序实现

3.1解析算法及程序实现 1.计算长方体体积的算法描述如下: ①输入长方体的长(z)、宽(w)、高(h) ②计算长方形体积 v = z * w * h ③输出结果 ④结束 上述算法属于( ) A. 枚举算法 B. 排序算法 C. 解析算法 D. 递归算法 2.下列问题适合用解析算法求解的是( ) A.将十三张纸牌按从小到大进行排列 B.统计100内偶数的各位数字之和恰好为10的个数 C.计算一辆车行驶100公里的油耗 D.寻找本年级身高最高的同学 3.有如下问题: ①已知圆锥的半径r 和高度h ,使用公式V= 3 1πh r 2求出此圆锥体的体积。 ②已知班级每位同学的其中成绩总分s ,按照s 的值从大到小进行成绩排名。 ③已知圆的周长s ,利用公式r=s/(2*3.14)求出圆的半径。 ④已知“水仙花数”的定义,找出1~10000范围内所有的水仙花数。 用计算机解决上述问题时,适合用解析算法的是( ) A. ①② B. ①③ C. ③④ D. ②④ 4.出租车计价规则:3公里以内,10元;超出3公里每公里增加2元。假定公里数为x,金额为y.解决此问题的公式和流程图如下图所示: 流程图加框处部分的算法属于:( ) A.解析算法 B.排序算法 C.枚举算法 D.递归算法

5.现要求编写VB程序实现如下功能:分别 在文本框Text1、Text2、和Text3中输入 三条线段的长度,单击“判断”按钮Command1 后,在标签Label1中显示判断结果。程序 运行界面如图: 按此要求编写的程序如下: Private Sub Command1_Click() Dim a As Single ,b As Single Dim c As Single ,st As String a=Val(Text1.Text) b=Val(Text2.Text) c=Val(Text3.Text) If Not (a + b > c And b + c > a And c + a > b) Then st = “这三条线不能构成一个三角形” ElseIf a * a + b * b = c * c Or a * a + c * c = b * b Or b * b + c * c = a * a Then st = “可以构成一个直角三角形” ElseIf ① Then st = “可以构成一个等边三角形” Else st = “可以构成一个不等边的斜三角形” End If Label1.Caption = ② End Sub 划线处应填写正确的语句是: (1)划线处① (2)划线处② 6.下列VB程序段实现计算s=1+1/2+2/3+3/4+…+99/100的值。请将下面划线处代码补充完整。 Private Sub Command1_Click() Dim i As Integer Dim s As Double s=1 For i=2 To 100 s= Next i Text1.Text=Str(s) End Sub 程序划线处应填入的内容是

回溯算法实例一

【问题】填字游戏 问题描述:在3×3个方格的方阵中要填入数字1到N(N≥10)内的某9个数字,每个方格填一个整数,似的所有相邻两个方格内的两个整数之和为质数。试求出所有满足这个要求的各种数字填法。 可用试探发找到问题的解,即从第一个方格开始,为当前方格寻找一个合理的整数填入,并在当前位置正确填入后,为下一方格寻找可填入的合理整数。如不能为当前方格找到一个合理的可填证书,就要回退到前一方格,调整前一方格的填入数。当第九个方格也填入合理的整数后,就找到了一个解,将该解输出,并调整第九个的填入的整数,寻找下一个解。 为找到一个满足要求的9个数的填法,从还未填一个数开始,按某种顺序(如从小到大的顺序)每次在当前位置填入一个整数,然后检查当前填入的整数是否能满足要求。在满足要求的情况下,继续用同样的方法为下一方格填入整数。如果最近填入的整数不能满足要求,就改变填入的整数。如对当前方格试尽所有可能的整数,都不能满足要求,就得回退到前一方格,并调整前一方格填入的整数。如此重复执行扩展、检查或调整、检查,直到找到一个满足问题要求的解,将解输出。 回溯法找一个解的算法: { int m=0,ok=1; int n=8; do{ if (ok) 扩展; else 调整; ok=检查前m个整数填放的合理性; } while ((!ok||m!=n)&&(m!=0)) if (m!=0) 输出解; else 输出无解报告; } 如果程序要找全部解,则在将找到的解输出后,应继续调整最后位置上填放的整数,试图去找下一个解。相应的算法如下: 回溯法找全部解的算法: { int m=0,ok=1; int n=8; do{ if (ok) { if (m==n) { 输出解; 调整; } else 扩展; } else 调整; ok=检查前m个整数填放的合理性; } while (m!=0); }

蒙特卡洛算法简介

算法简介 蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特·卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·卡罗方法正是以概率为基础的方法。与它对应的是确定性算法。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 编辑本段背景知识 [1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.] 1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和Nick Metropolis共同发明,被称为蒙特卡洛方法。它的具体定义是:在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,现在要计算这个不规则图形的面积,怎么计算列?蒙特卡洛(Monte Carlo)方法告诉我们,均匀的向该正方形内撒N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看这两个实数是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和正方形面积之比为PI:1,PI为圆周率),当随机点取得越多(但即使取10的9次方个随机点时,其结果也仅在前4位与圆周率吻合)时,其结果越接近于圆周率。摘自《细数二十世纪最伟大的十种算法》CSDN JUL Y译 编辑本段算法描述 以概率和统计理论方法为基础的一种计算方法。将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。比如,给定x=a,和x=b,你要求某一曲线f和这两竖线,及x轴围成的面积,你可以起定y轴一横线y=c 其中c>=f(x)max,很简单的,你可以求出y=c,x=a,x=b及x轴围成的矩形面积,然后利用随机产生大量在这个矩形范围之内的点,统计出现在曲线上部点数和出现在曲线下部点的数目,记为:doteUpCount,nodeDownCount,然后所要求的面积可以近似为doteDownCounts所占比例*矩形面积。 编辑本段问题描述 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S中占的比例K=S1/S就立即能得到S1,从而得到Pi的值。怎样求出扇形面积在正方形面积中占的比例K呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m与所投点的总数n的比m/n作为k的近似值。P落在扇形内的充要条件是x^2+y^2<=1。

五年级思维专项训练7 枚举法(原卷+解析版)全国通用

五年级思维训练7 枚举法 1. 今年是2002年,把2002年这样的年份称为“对称年”(年份的个位数字和千位数字相同,百位数字和十位数字相同),从2000年~2999年之间共有个“对称年”。 2. 在所有的三位数中,满足其数字和等于12的共有个。 3. 下边的加法运算,答案824正好和上面的加数428数字顺序相反,如果选出另外一个三位数加上396后,答案也正好和所选的三位数的数字顺序相反的话,可以选出若干个这样的三位数,这样的三位数还有(除去428)个。 428 +396 824 4. 从1、2、3、4、5、6、7、8、9中选出7个数,使得它们的和是3的倍数,共有种不同选法。

5. 一次,齐王与大将田忌赛马。每人有四匹马,分为四等。田忌知道齐王这次比赛马的出场顺序依次为一等、二等、三等、四等,而且还知道这八匹马跑得最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等。田忌有种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛。 6. 小珊到邮局购买5张邮票,并要求这些邮票的式样都要相同且全部都要互相连接在一起(两张邮票之间只有顶点与顶点相连不算相连在一起)。现在邮局只存最后的9张邮票。如下图所示,为满足小珊的要求,请问邮局的职员有多少种不同的撕邮票的办法? 7. 给定三种重量的砝码(每种数量都有足够多个)3kg、11kg、17kg,将它们组合凑成100kg 有种不同的方案(每种砝码至少有一块)。 8. 将下图中20张扑克牌分成10对,每对红心和黑桃各一张。问:你能分出几对这样的牌,使两张牌上的数的乘积除以10的余数是1?(将A看成1) 9. 有五种价格分别为2元、5元、8元、11元、14元的礼品以及五种价格分别为1元、3元、

matlab算法和蒙特卡罗计算教程

第一章:Monte Carlo方法概述 一、Monte Carlo历史渊源 Monte Carlo方法的实质是通过大量随机试验,利用概率论解决问题的一种数值方法,基本思想是基于概率和体积间的相似性。它和Simulation有细微区别。单独的Simulation只是模拟一些随机的运动,其结果是不确定的;Monte Carlo在计算的中间过程中出现的数是随机的,但是它要解决的问题的结果却是确定的。 历史上有记载的Monte Carlo试验始于十八世纪末期(约1777年),当时布丰(Buffon)为了计算圆周率,设计了一个“投针试验”。(后文会给出一个更加简单的计算圆周率的例子)。虽然方法已经存在了200多年,此方法命名为Monte Carlo则是在二十世纪四十年,美国原子弹计划的一个子项目需要使用Monte Carlo方法模拟中子对某种特殊材料的穿透作用。出于保密缘故,每个项目都要一个代号,传闻命名代号时,项目负责人之一von Neumann灵犀一点选择摩洛哥著名赌城蒙特卡洛作为该项目名称,自此这种方法也就被命名为Monte Carlo 方法广为流传。 十一、Monte Carlo方法适用用途 (一)数值积分 计算一个定积分,如,如果我们能够得到f(x)的原函数F(x),那么直接由表达式: F(x1)-F(x0)可以得到该定积分的值。但是,很多情况下,由于f(x)太复杂,我们无法计算得到原函数F(x)的显示解,这时我们就只能用数值积分的办法。如下是一个简单的数值积分的例子。 数值积分简单示例 如图,数值积分的基本原理是在自变量x的区间上取多个离散的点,用单个点的值来代替该小段上函数f(x)值。 常规的数值积分方法是在分段之后,将所有的柱子(粉红色方块)的面积全部加起来,用这个面积来近似函数f(x)(蓝色曲线)与x轴围成的面积。这样做当然是不精确的,但是随着分段数量增加,误差将减小,近似面积将逐渐逼近真实的面积。 Monte Carlo数值积分方法和上述类似。差别在于,Monte Carlo方法中,我们不需要将所有方柱的面积相加,而只需要随机地抽取一些函数值,将他们的面积累加后计算平均值就够了。通过相关数学知识可以证明,随着抽取点增加,近似面积也将逼近真实面积。 在金融产品定价中,我们接触到的大多数求基于某个随机变量的函数的期望值。考虑一个欧式期权,假定我们已经知道在期权行权日的股票服从某种分布(理论模型中一般是正态分布),那么用期权收益在这种分布上做积分求期望即可。 (五)随机最优化

相关文档
最新文档