塑件开裂原因及内应力分析

塑件开裂原因及内应力分析
塑件开裂原因及内应力分析

塑件开裂原因分析

1引言

开裂,包括制件表面丝状裂纹、微裂、顶白、开裂及因制件粘模、流道粘模而造成或创伤危机,按开裂时间分脱模开裂和应用开裂。注塑制品一个普遍存在的缺点是有内应力,内应力的存在不仅是制件在储存和使用中出现翘曲变形和开裂的重要原因。主要有以下几个方面的原因造成:

1.加工方面:

(1)加工压力过大、速度过快、充料愈多、注射、保压时间过长,都会造成内应力过大而开裂。

大力神云石胶

(2)调节开模速度与压力防止快速强拉制件造成脱模开裂。

(3)适当调高模具温度,使制件易于脱模,适当调低料温防止分解。

(4)预防由于熔接痕,塑料降解造成机械强度变低而出现开裂。

(5)适当使用脱模剂,注意经常消除模面附着的气雾等物质。

(6)制件残余应力,可通过在成型后立即进行退火热处理来消除内应力而减少裂纹的生成。

2.模具方面:

(1)顶出要平衡,如顶杆数量、截面积要足够,脱模斜度要足够,型腔面要有足够光滑,这样才防止由于外力导致顶出残余应力集中而开裂。

(2)制件结构不能太薄,过渡部份应尽量采用圆弧过渡,避免尖角、倒角造成应力集中。(3)尽量少用金属嵌件,以防止嵌件与制件收缩率不同造成内应力加大。

(4)对深底制件应设置适当的脱模进气孔道,防止形成真空负压。

(5)主流道足够大使浇口料未来得及固化时脱模,这样易于脱模。

(6)主流道衬套与喷嘴接合应当防止冷硬料的拖拉而使制件粘在定模上。

3.材料方面:

(1)再生料含量太高,造成制件强度过低。

(2)湿度过大,造成一些塑料与水汽发生化学反应,降低强度而出现顶出开裂。

(3)材料本身不适宜正在加工的环境或质量欠佳,受到污染都会造成开裂。

4.机台方面:注塑机塑化容量要适当,过小塑化不充分未能完全混合而变脆,过大时会降解。

塑件内应力分析

2内应力的种类

高分子材料在成型过程中形成的不平衡构象,在成型之后不能立即恢复到与环境条件相适应的平衡构象,是注塑制品存在内应力的主要原因。另外,外力使制件产生强迫高弹形变也会在其中形成内应力。根据起因不同,通常认为热塑性塑料注塑制件中主要存在着四种不同形式的内应力。对注塑制件力学性能影响最大的是取向应力和体积温度应力。

2.1取向应力

高分子取向使制件内存在着未松弛的高弹形变,主要集中在表层和浇口的附近,使这些地方存在着较大的取向应力,用退火的方法可以消除制件的取向应力。试验表明,提高加工温度和模具温度、降低注射压力和注射速度、缩短注射时间和保压时间都能在不同程度上使制件的取向应力减小。

2.2体积温度应力

体积温度应力是制件冷却时不均匀收缩引起的。因内外收缩不均而产生的体积温度应力

主要靠减少制件内外层冷却降温速率的差别来降低。这可以通过提高模具温度、降低加工温度来达到。

加工结晶塑料制件时,常常因各部分结晶结构和结晶度不等而出现结晶应力。模具温度是影响结晶过程的最主要的工艺因素,降低模具温度可以降低结晶应力。

带金属嵌件的塑件成型时,嵌件周围的料层由于两种材料线膨胀系数不等而出现收缩应力,可通过预热嵌件降低应力。

这两种内应力主要是由于收缩不均而产生的,也属于体积温度应力。

2.3与制件体积不平衡有关的应力

高分子在模腔内凝固时,甚至在极其缓慢的条件下要使制件在脱模后立即达到其平衡体积,在实际上是不可能的。实验测定表明,注塑制件中这种形式的内应力一般很小。

2.4 与制件顶出变形有关的内应力

这种内应力主要与开模条件和模具顶出机构的设计有关。正确选择开模条件使开模前的模腔压力接近于零,根据制件的结构和形状设计合理的顶出机构,使制件顶出时不致变形,是可以将这种形式的内应力减少到不会影响制件力学性能的限度以内的。

3影响注塑制品内应力的因素分析

注塑制品的造型设计不合理、模具设计不合理、成型工艺条件不正确、注射机选用不当等都会使制品内存在比较大的内应力。影响制品内应力的因素很多,也很复杂。主要影响因素见下图所示。

3.1造型设计

3.1.1圆角

塑料制品除了使用上要求采用尖角外,各表面相交处应尽可能采用圆弧过渡。由于制品形状和截面的变化,使注塑过程中熔料在尖角处的流态发生急剧变化而产生大的应力,而且残留在尖角处。在有载荷或受冲击振动时会发生破裂,甚至在脱模过程中即由于模塑内应力而开裂,特别是制品的内圆角。一般,即使采用R为0.5mm的圆角就能使塑件强度大为增加。

一般情况下,理想的内圆角半径应有壁厚的1/4以上。外圆角半径可取壁厚的1.5倍。

采用圆弧过渡既可以减少应力集中,还可大大改善塑料的充模特性,避免在转角处产生冲击形成波纹或充不满模腔。

塑件设计成圆角,使模具型腔对应部位也呈圆角,这样增加了模具的坚固性,塑件的外圆角对应着型腔的内圆角,它使模具在淬火或使用时不至于因应力集中而开裂,提高了模具的使用寿命。但是在塑件的某些部位如分型面、型芯与型腔配合处等不便做成圆角而只能采用尖角。

除相交表面的尖角外,尖锐的螺纹牙也是严重的应力集中源,采用倒圆角的螺纹可减少应力集中,提高螺纹强度。

3.1.2制品壁厚

制品壁厚是结构设计时所需要考虑的重要因素。不合理的壁厚会给制品带来很多缺陷。增加壁厚既可改善树脂的充模特性,又可降低取向应力,减少变形,提高制品强度。但同时收缩加大,保压和冷却时间加长,生产效率降低,消耗材料多。较大的收缩应力还将造成制品表面产生凹陷或内部出现缩孔与气泡,既影响外观又降低了强度。增加壁厚的同时也增加了制品的表面积,表面积与体积之比越大,表面冷却越快,取向应力和体积温度应力都随之增大。如果制品壁太薄,会降低强度,脱模时易破裂,还有碍于树脂的充模流动,造成填充不足或出现明显的熔合纹,严重影响制品质量。每种塑料根据充模能力都有一个最小壁厚。确定壁厚时在满足强度要求的前提下,壁厚尽量取薄些,可节省材料,减轻制品重量,降低成本,但不能小于最小壁厚。ABS常用的标准壁厚为1.2~3.5mm。壁厚设计还应注意均匀一致,否则将会由于收缩应力引起制品的翘曲变形。同一制品中,若必须存在壁厚相差较大的情况时,连接处应逐渐过渡,避免截面的突变。

3.1.3金属嵌件

由于金属嵌件冷却时尺寸变化与塑料的热收缩值相差很大,使嵌件周围产生很大的内应力,而造成塑件的开裂。对某些高刚性的工程塑料更甚,如聚碳酸酯;但对于弹性和冷流动性大的塑料则应力值较低。当有金属嵌件存在时,应尽量避免制件开裂:

(1)如能选用与塑料线膨胀系数相近的金属作嵌件,内应力值可以降低;

(2)嵌件周围的塑料应有足够的厚度,否则会由于存在收缩应力而开裂;

(3)嵌件的顶部也应有足够厚的塑料层,否则嵌件顶部塑件表面会出现鼓包或裂纹;(4)嵌件不应带尖角、锐边,以减少应力集中;

(5)热塑性塑料注射成型时,将金属嵌件预热到接近物料温度,可减少由于金属与塑料热膨胀系数不同而产生的收缩应力;

(6)对于内应力难以自消的塑料,可先在嵌件周围被覆一层高分子弹性体或在成型后进行退火处理来降低内应力;

(7)在塑件成型后再装配或压入嵌件,可调节因嵌入嵌件而造成的内应力值,使制件不致破裂。

3.2 注塑机选用

注射机选用不当,也会产生内应力。那种认为大容量注射机注射小模具中的制品会减少内应力的说法不正确。有时会因为压力过高、喷嘴结构不合适或混料造成较大的内应力。3.3 模具设计

模具浇注系统和顶出机构设计不当都会使制件产生内应力。

3.3.1浇注系统

模具浇注系统设计不合理如浇口大小不合适、浇道太窄、主流动太长、浇口位置不合理都会造成内应力:

(1)浇口尺寸太大,补料时间就会延长,会增大大分子的冻结取向和冻结应变,造成很大

的补料内应力,特别在浇口附近内应力更大。小浇口的适时封闭,能适当地控制补料时间。但浇口尺寸也不宜太小,过小的浇口会造成太大的流动阻力,产生取向应力。

(2)主流道太长、流道太窄、流道的急剧转折都会使流动阻力加大,延长进料时间或需增大注射压力和保压压力,会使制品产生更高的取向应力。

(3)浇口位置的选取除考虑制品外观和熔接缝外,还应尽量减少在流动方向上由于充模和补料而造成的定向作用。

3.3.2顶出机构

顶出机构设计不当,使脱模力不均衡或型芯表面在脱模过程中形成真空或施加过大的脱模力,都会造成塑件产生强迫高弹形变形成内应力,甚至龟裂,严重时发生开裂。龟裂和开裂看上去相似,本质上有区别。龟裂不是空隙状的缺陷,是高分子本身同所加应力成平行方向排列,经过加热又能恢复到无龟裂的状态,所以能用热处理方法解决。注塑成型后立即热处理效果较好。防止顶出产生内应力需改善脱模条件,如仔细磨光型芯侧面;增加脱模斜度;平衡顶出力;顶杆应布置在脱模阻力最大的部位如型芯凸台附近及能承受较大顶出力的部位,如加强筋、凸缘、塑件端面等部位。

3.4机械加工

注塑制品除为切除大浇口冷凝料而进行机械加工外,当制件尺寸精度和形位公差要求很高而无法通过模具设计与调整工艺条件得到保证,或零件上有难以一次成型出的形状(如小而深的孔或螺纹等)时,成型之后就需要进行机械加工。常用的机械加工工艺有车、铣、刨、钻、锯、铰孔和拱螺纹等。但机械加工会使塑件内部产生内应力,因此加工时应用专用刀具、宜采用较低的切削速度、小切削量和低速度,还应保证充分冷却。对于易产生内应力的制品应进行多次热处理。

3.5注塑成型工艺条件

注塑制品由于成型工艺特点不可避免的存在内应力,但工艺条件控制得当就会使塑件内应力降低到最小程度,能够保证制件的正常使用。相反,如果工艺控制不当,制件就会存在很大的内应力,不仅使制件强度下降,而且在储存和使用过程中出现翘曲变形甚至开裂。需要控制的工艺条件如嵌件预热、模具温度、加工温度、注射速度、注射压力、保压压力、注射时间、保压时间、冷却时间等。温度、压力、时间是塑料成型工艺的主要因素。

3.5.1金属嵌件预热

注射成型时,应将金属嵌件预热到接近物料温度,预热嵌件的目的是减少金属与塑料冷却时收缩值的差距,从而降低由于二者热膨胀系数的不同而在嵌件周围产生的收缩应力。收缩应力是注塑制品内容易形成的内应力的一种,这种内应力的存在,是带金属嵌件的注塑制品出现裂纹和强度下降的重要原因。

3.5.2模具温度

提高模具温度,可以降低因内外收缩不均而产生的体积温度应力和高分子取向应力,也可以降低结晶塑料制品的结晶应力。但模温也不能过高,模温升高使冷却时间延长,降低了生产效率。

3.5.3加工温度

提高加工温度可降低取向应力,但同时会使因收缩不均而产生的体积温度应力增加,同时也使封口压力升高,延长冷却时间才能顺利脱模。

3.5.4注射压力、注射速度和注射时间

增大注射压力使取向应力和结晶塑料的结晶应力增加,同时使封口压力增大,必须延长冷却时间才能顺利脱模,否则会造成脱模应力;注射速度增加也会使取向应力和结晶应力增加,但对冷凝快的塑料还是用高的注射速度充模较为有利,因为冷凝快的塑料慢速注射需要更高的注射压力来维持熔体的流动;注射时间不宜太长,模腔充满以后就相当于在注射压力

下保压了,也会使制件的取向应力增加。

3.5.5保压压力和保压时间

冷却中的熔体在外压作用下产生的总形变中,有相当大一部分是弹性的,故使熔体在高压下冷凝会在制件中产生较大的内应力和高分子取向。压实后立即降压或补料过程中分步降压有利于高分子解取向,所以降低保压压力和缩短保压时间有利于取向应力的降低;延长保压时间仅在一定范围内取向度增大,浇口封闭之后再延长保压时间对取向度的变化就不再影响。

3.5.6冷却时间

当注射压力、保压压力、熔体温度升高,浇口尺寸较大时都会使封口压力升高,这时必须延长冷却时间才能使开模前模腔内的残余压力降到很低或接近于零,否则要将制件顺利地从模具内顶出是很困难的。若强制脱模,制件在顶出时会产生很大的应力,以至制件可能被划伤,严重时会出现破裂。但冷却时间也不宜过长,否则不但生产效率低,而且制件内部压力降到零以后进一步冷却可能在制件内部形成负压,即由于冷却收缩使制件内外层之间产生拉应力。

3.5.7注塑制品内应力的消除方法

在注塑成型或机械加工之后及时对制件进行热处理是降低或消除其内应力,使其内部结构加速达到稳定状态的一个有效措施。对于要求强度高、尺寸稳定性好的制件,往往在加工过程中进行不只一次的热处理。

热处理的方法是:在加热介质中先将温度从室温升到一定温度(这个温度常称为热处理温度或退火温度),使制件在此温度下保持一定的时间,然后缓慢地冷却到室温。影响热处理效果最重要的工艺因素是热处理温度和热处理时间。在理论上热处理温度越高,热处理时间越长,制件的内应力就能在更大程度上被消除,其内部结构就越趋于稳定。但实际使用的温度却不能太高,温度过高容易引起制件在热处理过程中发生翘曲变形。一般认为,热塑性塑料注塑件的热处理温度以稍低于热变形温度(约低5℃~10℃)为宜。热处理时间则主要与塑料的性质与制件壁厚有关,高分子链的刚性越大,制件的壁越厚,需要进行热处理的时间就越长。

正确选用加热介质对热处理效果也很重要。用空气作为加热介质,有操作简便和处理后不需要清洗等优点。ABS塑料在65~75℃空气中处理2~4小时效果良好。但空气热传导效率低,容易引起尼龙类和聚甲醛等塑料氧化变色。高沸点油作为热处理介质有传热快、制件加热均匀等优点,但操作比较麻烦,而且处理后的制件上存留的油斑有时很难除去。吸水性强的尼龙类塑料制件用水或乙酸钾的水溶液(沸点121℃)作热处理介质比较好。用这种介质既有利于防止制件在热处理过程中氧化变色,又能使其加速达到吸湿平衡。

热处理有时不一定能达到理想的效果,只能作为一种辅助工序,完全依靠热处理防止应力开裂的做法不可靠。必须从影响注塑制品内应力的几个主要因素方面采取有效措施,结合热处理方法才能取得满意效果。

4.应力的危害

4.1开裂:因为应力的存在,在受到外界作用后(如移印時接触到化学溶剂或者烤漆后端時高温烘烤),会诱使应力释放而在应力残留位置开裂。开裂主要集中在浇口处或过度填充处。

4.2翘曲及变形:因为残留应力的存在,因此产品在室温时会有较长时间的內应力释放或者高温时出现短时间內残留应力释放的过程,同時产品局部存在位置强度差,产品就会在应力残留位置产生翘曲或者变形问题。

4.3产品尺寸变化:因为应力的存在,在产品放置或后处理的过程中,如果环境达到一定的温度,产品就会因应力释放而发生变化。

5.内应力检测方法

通常是把零件防在溶剂中,15s~ 2min等,在那出来看是否有开裂来判断是否有应力常用塑胶件有于检验溶液对照表:

ABS 煤油、冰醋酸

PC 四氯化碳

PS 煤油、冰醋酸

PA 正庚烷

PSF 四氯化碳

PPO 四氯化碳

楼板开裂原因和处理方案(汇总)

钢筋混凝土结构破坏倒塌的工程质量事故,绝大多数是从裂缝的扩展开始的;其实,只要仔细 观察不难发现,普通的钢筋混凝土结构又一般都是带裂缝受力工作的,假如借助仪器,甚至还 可以发现裂缝是时刻发生变化的,随着裂缝的发展变化,结构构件的耐久性和适用性会不同程 度的降低,严重的甚至会导致结构构件的破坏;所以研究裂缝的形态、分析裂缝产生的原因和 裂缝对结构功能的影响并加以控制是一个十分重要的。 一、混凝土裂缝种类: 外荷载引起的裂缝:外荷载作用下产生的结构裂缝一般具有很强的规律性,通过计算分析就 可以读岀正确的结论。女口:矩形楼板板面裂缝成环状,沿框架梁分布,板底裂缝成十字或米字集中于跨中;转角阳台或挑檐板裂缝位于板面起始于墙板交界以角点为中心成米字形向外延伸受力裂缝,其裂缝与荷载有关,预示结构承载力可能不足或存在严重问题。 温度收缩裂缝:温度收缩裂缝是一种建筑最常见的裂缝,主要是由于结构的温度变形及材料的 收缩变形受阻及应力超标所致。现浇板收缩裂缝主要集中在房屋的中部和房屋四周阳角处,裂缝成枣核状止于梁边。房屋四周阳角处的房间在离开阳角1米左右,即在楼板的分离式配筋的 负弯矩筋以及角部放射筋未端或外侧发生 4 5度左右的楼地面斜角裂缝。其原因主要是砼的收 缩特性和温差双重作用所引起的,并且愈靠近屋面处的楼层裂缝往往愈大。从设计角度看,现 行设计规范侧重于按强度考虑,未充分按温差和混凝土收缩特性等多种因素作综合考虑,配筋量因而达不到要求。而房屋的四周阳角由于受到纵、横二个方向剪力墙或刚度相对较大的楼面 梁约束,限制了楼面板砼的自由变形,因此在温差和砼收缩变化时,板面在配筋薄弱处(即在 分离式配筋的负弯矩筋和放射筋的未端结束处)首先开裂,产生4 5度左右的斜角裂缝。虽然 楼地面斜角裂缝对结构安全使用没有影响,但在有水的情况下会发生渗漏,影响正常使用。

应力腐蚀

1.应力腐蚀的机理:阳极溶解和氢致开裂机理 阳极溶解机理应力腐蚀断裂必须首先发生选择性腐蚀,而金属的腐蚀又受图4所示的阳极极化曲线的影响。以不锈钢为例,增加介质中Cl-含量,降低介质中O2含量及pH值,都会使图4a中阳极极化曲线从左向右移动,这四根曲线分别对应于蚀坑或裂纹区(图4b)的不同位置。应力的主要作用在于使金属发生滑移或使裂纹扩展,这两种力学效应都可破坏钝化膜,从而使阳极过程得以恢复,促进局部腐蚀。钝化膜破坏以后,可以再钝化。若再钝化速度低于钝化膜破坏速度,则应力与腐蚀协同作用,便发生应力腐蚀断裂。 氢致开裂机理或称氢脆机理,是应力腐蚀断裂的第二种机理。这种机理承认SCC必须首先有腐蚀,但是,纯粹的电化学溶解,在很多情况下,既不易说明SCC速度,也难于解释SCC的脆性断口形貌。氢脆机理认为,蚀坑或裂纹内形成闭塞电池,局部平衡使裂纹根部或蚀坑底部具备低的pH值,这是满足阴极反应放氢的必要条件。这种氢进入金属所引起的氢脆,是SCC的主要原因。这种机理取决于氢能否进入金属以及金属是否有高度的氢脆敏感性。高强度钢在水溶液中的SCC以及钛合金在海水中的SCC是氢脆引起的。

2.应力腐蚀开裂的断口形貌:穿晶断口开裂图

3.氢鼓泡产生机理,文字图 通过实验和理论分析研究了氢鼓泡形核、长大和开裂的过程. 在充氢试样中发现直径小于100 nm未开裂的孔洞, 它们是正在长大的氢鼓泡, 也发现已开裂的鼓泡以及裂纹多次扩展导致破裂的鼓泡.分析表明, 氢和空位复合能降低空位形成能, 从而使空位浓度大幅度升高, 这些带氢的过饱和空位很容易聚集成空位团.H在空位团形成的空腔中复合成H2就使空位团稳定, 成为氢鼓泡核.随着H 和过饱和空位的不断进入, 鼓泡核不断长大, 内部氢压也不断升高.当氢压产生的应力等于被氢降低了的原子键合力时, 原子键断开, 裂纹从鼓泡壁上形核. 图5 氢鼓泡形核、长大示意图 (a) 空位V和原子氢H聚集成为空位-原子氢集团; (b) 原子氢在空位 团中复合成分子氢H2, 使其稳定, 鼓泡核形成; (c) 空位和氢不断进 入鼓泡核使其长大; (d) 当鼓泡核内氢压产生的应力等于原子键合力时, 在鼓泡壁形成裂纹 首先, 氢(H)进入金属和空位(V)复合, 使空位形成能大大降低, 从而大幅度升高空位浓度, 这些过饱和空位容易聚集成空位团. 当4个或以上的空位或空位-氢复合体(V-H)聚集成空位四面体或空位团时, 内部形成空腔, 如图5(a). 空位所带的氢在空腔中就会复合成H2, 形成氢压. 由于室温时H2不能分解成H, 故含H2的空位团在室温是稳定的, 它就是鼓泡核, 如图5(b). 随着H和空位不断进入鼓泡核, 就导致鼓泡在充氢过程中不断长大, 同时氢压不断升高, 如图5(c). 当鼓泡中的氢压在内壁上产生的应力等于被氢降低了的原子键合力时, 原子键断裂, 裂纹沿鼓泡壁形核, 如图5(d). 随着氢的不断进入, 裂纹扩展, 直至鼓泡破裂4.氢进入金属材料的途径P129 5.氢致脆断类型:可逆和不可逆,第一类和第二类

PC开裂原因分析

PC开裂原因分析与验证 一、不良描述: 不良产品:1200LED龙A日光灯管(T8 S3014冷白) 不良时间:2013.08.12 上午8:00 不良地点:六楼老化车间 不良现象:老化72H透光罩输入端15CM内(特点:端盖为6孔透气;此端安装有电源)有不同程度内部开裂 现象(非边缘开裂,非龟裂,非松纹裂,非单向 开裂,开裂处内外表面手摸无触感) 不良率:全检总数:500PCS,不良数:33PCS,不良率: 6.6%

二、不良原因分析: PC灯罩开裂的主要原因是PC分子链结构受到破坏,分子链断开,导致产品开裂或者说表面有裂纹。 影响分子链结构的因素有以下三种: 1、反复使用。(反复使用是最常见的问题。很多老板为了节约成本,使用回收料、水口料、废料,以次充好、坑蒙客户、扰乱市场)反复使用时,产品在不断的高温作用下,产品的分子就会发生裂变。分子链就会发生断裂、裂解。由高分子物质变成低分子物质,材料变脆。 该实验数据由深圳某塑胶科技有限公司提供,主要说明杂料对产品内应力开裂时间的影响。 2、应力过大,分为两种:应力过大是设计和使用问题。首先,产品本身形状以及模具本身设计的尺寸及脱模所产生的应力。(1.材料的结构决定材料的性能,材料的性能反映材料的结构。内应力开裂原理:在成型聚碳酸酯PC时,分子链被迫取向,但是由于聚碳酸酯分子链上具有苯环,所以取向比较困难,而在成型后,被取向的链有恢复自然状态的趋势,但是由于整个分子链已经被冻结和大分子链之间的相互作用,从而造成制品存在残留应力,而残余应力的存在,就造成产品可能出现应力开裂,注意,这里说的是可能,为什么是可能呢?这是因为聚碳酸酯内部还存在很多力,而其中比较重要的是:抗开裂力,这个力的大小取决分子链的长短,链间的缠结数目,分子之间的作用力。当抗开裂能力和内应力平衡时,产品不会出现开裂现象,而当抗开裂能力小于内应力时,就会出现。简单来说就是:分子链上苯环——成型取向——制品成型后出现内应力——当内应力和抗开裂能力平衡——好制品——当内应力大于抗开裂能力——产品开裂。可以通过改性,加入抗应力开裂剂,其作用是:在成型PC或PC/ABS合金时,快速恢复被迫取向分子链回复自然状态,消除残留应力,防止应力开裂现象的发生。 2.模具温度。内应力是因为成型时候分子链被冻结引起的,模具的温度对冻结和分子链的解取向有很大影响,很明显,模具温度越高,分子链肯定容易运动,所以,提高模具温度,不仅对充模有利,并且可以调整制品冷却速度,使其变得更均匀,从而有利于聚碳酸酯中取向分子的松弛,也就是解取向。模具温度假如能控制,在100—120度是成型聚碳酸酯的最佳温度了。2.成型条件。在成型时:成型温度、成型压力、成型速度、保压时间、保压压力五点很重要。聚碳酸酯的加

现浇混凝土楼板开裂的原因和处理方法

现浇混凝土楼板开裂的原因 随着建筑业的发展,现浇钢筋混凝土楼板(盖)非常普遍,但在实际施工中又出现了一个质量通病问题——那就是裂缝问题,我现就对现浇钢筋混凝土楼板(盖)开裂的原因、预防及处理措施与大家分享、交流。 一、现浇混凝土楼板(盖)开裂的原因: 先来看看现浇混凝土楼板(盖)开裂的几种情况: 1)裂缝在现浇板角部,并与现浇板边缘约成45°,斜向发展; 2)裂缝在现浇板的跨中,近似直线型发展; 3)裂缝在现浇板的边缘,近似直线发展; 4)纯粹是不规则的裂缝再来分析现浇混凝土楼板(盖)开裂的原因: (1)混凝土方面:目前一般都采用商品混凝土,正规厂家的商品混凝土一般不应该有问题,但也不是没有一点可能,还是要加强检查。影响开裂的因素有配合比、水灰比、水泥品种、强度等级、水泥用量、粗骨料用量与粒径、粉状掺合料、外加剂。 (2)设计方面: 1)建筑平面收缩裂缝往往出现在收缩应力集中的薄弱截面上,在建筑设计中,一般只注重建筑功能而忽视建筑结构问题。如建筑平面不规则,而结构设计时又没有采取加强措施,在凹凸角处容易产生温度应力和收缩应力集中,从而造成板开裂。

2)楼板配筋板配筋间距偏大,特别是板面抵抗负弯矩的钢筋未通长设臵,致使在靠近板边缘处沿负弯矩筋端部出现裂缝。而在房屋角部的板角处,双向板由于收缩是双向的,由于没有配臵足够的构造钢筋,因此产生450斜裂缝。 3)楼板厚度钢筋混凝土构件的受力是由钢筋与混凝土共同承担的,现浇混凝土楼板过薄,板的刚度势必降低,受拉钢筋和受压混凝土应力增大,板因此开裂。 4)楼板中暗埋PVC管由于楼板较薄,因此在埋有PVC管线处楼板截面削弱很大,而楼板跨中部位一般只有一层下部钢筋,容易出现顺着PVC管线走向的裂缝,如我们发现板中部的通长裂缝经常从灯头处穿过。 (3)施工方面: 1)混凝土强度的影响混凝土强度未达到设计要求,同时混凝土的抗拉强度降低,从而引起楼板开裂。如某住宅楼楼板,设计要求混凝土强度等级为C25,而实测混凝土强度仅达到16.7MPa,强度远远达不到设计要求。 2)配筋和楼板厚度达不到设计要求施工中,由于钢筋配臵不符合要求、钢筋间距偏大和楼板厚度不符合设计要求,均会导致楼板开裂。严重时,由于施工中擅自减小配筋量,则会引起构件的安全问题。 3)钢筋保护层偏大施工浇注混凝土时为铺设架板,施工人员在钢筋上踩踏,致使上层钢筋的保护层厚度偏大,引起板面开裂。特别是负弯矩钢筋没有通长配臵时,裂缝往往会出现在负弯矩钢筋的端部,沿板边缘近似成直线发展。

PC开裂知识

PC/ABS或PC内应力开裂测试方法 PC/ABS或PC内应力开裂测试方法 概述:PC, PC加纤,PC/ABS应用的领域非常广泛,比如 LED大小框架,手机外科,电脑外壳,国网电表外壳,产品有可能有打螺丝或涂抹胶水,这样都可能诱发PC及PC合金材料内应力开裂,致使次品率很高。为此我们对 PC应力开裂问题从下面几点进行一个简单的阐述。(铨盛化工原创,转载请注明出处)一. PC内应力开裂测试:在室温下用冰醋酸或四氯化碳溶剂浸泡未经退火处理的带螺丝部件的注塑制品,从放入溶剂中到出现裂纹的时间,记为应力开裂时间。 内应力开裂测试方法举例: 醋酸浸泡法: 将做好带有螺丝槽或柱的PC制品完全浸泡于25OC的冰醋酸中3 0 S, 取出后晾干后检查表面, 仔细检查外观,如有细小致密的裂纹,说明此处有内应力存在,裂纹越多,内应力越大。 因为各种产品要求规格不一,具体浸泡时间长短、要求冰醋酸浓度大小、有细小裂纹可不可接受(该类产品算不算合格),还是要看客户对具体某产品要求而定。这里不作一概而论的应力开裂具体标准阐述。 二?内应力开裂原因分析: 前一篇我们简单介绍了内应力开裂测试的一些方法,现在我们分析一下应力开裂的各种原因,首先进行一下基本知识铺垫: 1)PC基本结构介绍: 聚碳酸酯PC是分子主链中含有[O-R-O-C=O]链节的热塑性树脂,按分子结构中酯基不同可分为脂肪族、脂环族、脂肪芳香族型,其中最具有价值是芳香族型聚碳酸酯PC,且以双酚A型聚碳酸酯PC为最重要。 2)结构决定性质,性质决定外在现象 A. PC微观结构导致PC内应力开裂 PC材料容易内应力开裂是它本身分子结构决定,那就是聚碳酸酯分子结构中有苯环,所以取向比较困难,在成型后,被取向的链节有恢复自然状态的趋势,但是由于分子链节已被冻结和分子链之间作用力,从而可能造成制品存在应力,这就是大家常说的应力开裂现象,尤其是回收的PC,由于回收PC 的相对分子质量下降,相对分子质量分布变宽,少量存在的水分、颜料、杂质、溶剂等极易引发开裂现象。(铨盛化工原创,转载请保留出处) B.应力分类 剪切应力:指塑料加工过程中由于剪切流动造成应力,它受塑料熔融态下流动速率与

楼板裂缝成因及防治措施

一、常见原因 1、顶板支撑体系刚度不足,立杆顶部自由端过长;(结构性裂缝) 2、赶工造成楼板上料过早,冲击荷载会产生结构性裂缝;(结构性裂缝) 3、沿楼板预留洞口的劈裂裂缝;(结构性裂缝) 4、冬施期间混凝土保温措施不到位,楼板受冻后堆载;(结构性裂缝) 5、顶板木模采用废机油作脱模剂,容易污染顶板钢筋,减小混凝土对钢筋的握裹力;(非结构性裂缝) 6、机电管线预埋在顶板集中平行布置;(非结构性裂缝) 7、混凝土养护不到位,塑料布覆盖过早揭开且浇水时间不足,导致表面水分快速蒸发产生干缩裂缝;(非结构性裂缝) 8、混凝土浇筑过程中有加水现象;(非结构性裂缝) 9、终凝前未进行二次抹面或不到位;(非结构性裂缝) 10、混凝土浇筑过程中未铺设临时性活动跳板。(非结构性裂缝) 二、其它可能原因 1、预拌混凝土中原材料不合格,如水泥安定性不符合要求; 2、水灰比过大; 3、混凝土浇筑前发生离析现象; 4、混凝土保护层控制不当;

5、后浇带处未设置独立支撑体系,先拆后回顶,造成局部贯通裂缝。 预防措施 一、模板支撑系统必须经过计算,除满足强度要求外,还必须有足够的刚度和稳定性。将顶板支撑立杆上部自由端长度控制在400mm以内;对于层高超过5米的模板支撑体系必须按照规范要求增加水平及竖向剪刀撑,增加架体整体稳定性。 二、现浇板养护期间,当混凝土强度小于1.2Mpa时,不得进行后续施工。当混凝土强度小于10Mpa时,不宜在现浇板上吊运、堆放重物。吊运、堆放重物时,应采取有效措施,减轻冲击; 三、楼板预留洞口四周考虑洞口加筋; 四、冬季施工加强混凝土保温养护措施,根据现场抗冻临界试块确定撤除保温时间,同时避免上料过早; 五、顶板木模应采用水性脱模剂; 六、楼板内埋置管线时,管线必须布置在上下钢筋网片之间,且不宜立体交叉穿越,确需立体交叉的,不应超过二层管线。线管在敷设时交叉布线处可采用线盒,同时在多根线管的集散处宜采用放射形分布,尽量避免紧密平行排列,以确保线管底部的混凝土浇筑顺利且振捣密实。当两根以上管并行时,沿管方向应增加φ4@150宽500mm的钢筋网片,做到在应力集中部位有双层布筋; 七、现浇板浇筑时,应振捣充分,在混凝土终凝前应进行二次压抹,压抹后应及时覆盖和浇水养护; 八、预拌混凝土在运输、浇筑过程中,严禁随意加水;

关注碱性应力腐蚀开裂

关注碱性应力腐蚀开裂 碱溶液中的腐蚀 在室温下,对于各种金属和合金,包括碳钢在内,在任意浓度的碱溶液(如氢氧化钠或者氢氧化钾)中的腐蚀,是较为容易控制的。随着温度和浓度的增加,腐蚀也将随之增强。考虑腐蚀的影响,碳钢的有效安全使用限制温度大约是150℉/65℃。读者从图1的曲线中可以看到碳钢的安全温度限制。相比于碳钢,不锈钢抵抗一般性腐蚀的能力更强;在大约接近250℉/121℃的温度下才发生碱性应力腐蚀开裂。 一般而言,随着含镍量的增加,金属抵抗碱溶液腐蚀的能力增强。碱性应力腐蚀开裂的敏感性主要取决于合金成分、碱浓度、温度和应力水平。对于一般开裂机理,都存在一个裂纹发生的临界应力值。不幸的是,现在还没有精确的获得在高温碱性环境下的高含镍量合金的临界应力值。由于600合金在压水反应堆蒸汽发生器传热管中的大量使用,已经获得了许多600合金在碱性环境下的数据。200合金(纯镍)除了在极其恶劣的碱性环境,包括熔盐的情况下,一般是不会发生腐蚀的。 合金抗碱溶液腐蚀的能力 碳钢和低合金钢 任意浓度的氢氧化钠和氢氧化钾(作为以下的碱)可用碳钢容器在室温下进行保存。当温度高于周围环境时,碳钢的腐蚀速率增大并且伴随着发生碱性应力腐蚀开裂的风险。碳钢容器可以在温度达到180℉/82℃的情况下安全的贮存低浓度的碱溶液;而对于浓度为50%的溶液,在温度接近120℉/48℃的情况下就会有发生碱性应力腐蚀开裂的风险。氢氧化钠环境下的使用图(图1)被广泛用于确定碳钢在不同碱浓度下的安全使用温度。图2所示的是碳钢在碱性环境下的裂纹显微照片。 铁素体不锈钢 高纯度的铁素体不锈钢,例如E-Brite 26-1(UNS S44627),显示出了很好的对高浓度碱性溶液的腐蚀抵抗力,其抗碱腐蚀性能远好于奥氏体不锈钢。根据报道,它抗碱性腐蚀的性能不低于镍。由于这种很好的对碱性环境的抗腐蚀性,使其能使用在会对镍合金造成腐蚀的次氯酸盐和氯酸盐杂质的环境中。据一则报道表明,26-1铁素体不锈钢可以在300℉/148℃到350℉/177℃的高温环境下使用。据另一则报道显示,其在350℉/177℃到400℉/204℃温度下,氢氧化钠的浓度为45%时,仍有很好的抗腐蚀能力。基于其对碱性环境,特别在含有氧化的污染物情况下,的良好抗腐蚀性,因此,在碱的蒸发器管中得到广泛应用。然而,铁素体不锈钢的致命缺陷是其固有的低的焊 接韧性和在高温下的低强度。因此,它们不能正常的应用 于压力容器。 奥氏体不锈钢 研究者根据商用纯碱溶液开发了用于描述影响碱脆的浓度 和温度参数图,也即为300系列奥氏体不锈钢的应力腐蚀 开裂。图3显示了所开发的图。1mpy的等蚀线在大约100° C使,对具有20%-60%浓度的碱为常数,应力腐蚀开裂的轮 廓线在40%-50%浓度范围内则稍高。 300系列不锈钢在热的浓度为40%-50%范围内的碱中很可能 会发生快速的一般性腐蚀,事实上,这种现象已经被观察 到了。因此,可能的安全限值将低于图上所示数值,例如: 50%浓度所对应的70°C和40%浓度所对应的80°C。 对于304/316类型的不锈钢,一般服役最大温度限值是100°C。在更高的温度下将会产生碱性开裂。300系列不 锈钢的应力腐蚀开裂是一种典型的穿晶裂纹。 双相不锈钢 双相不锈钢具有类似于316不锈钢那样的抗一般性腐蚀的 能力,并且对氯化物应力腐蚀开裂的敏感性性也较低。具 有较高合金含量的显著添加了钼和氮成分的双相钢合金, 抗碱性环境腐蚀的能力要优于316不锈钢。据报道,2205 不锈钢和2906不锈钢能很好的抵抗碱性应力腐蚀开裂。 高含镍量的奥氏体不锈钢 高含镍量的不锈钢中约含25-35 wt%的镍,包含有非专利 和有专利的合金,如:904L、Sanicro28、20Cb-3合金、800合金、AL6- XN等。与300系列不锈钢相比较,这些合 金对侵蚀性(高温)溶液的抵抗力有了极大的提高。 镍合金 在抗碱性环境下的腐蚀和应力腐蚀开裂方面,商业纯镍,200合金(N02200)和201合金(N02201)是最好的材料。400合金(N04400)和600合金(N06600)也具有优异的抗应力腐蚀能力。当碱浓度在70%以上,温度高于290°C(550°F)时,这些合金也会出现腐蚀应力开裂。镍铬钼合金,如C- 276(N10276),具有很好的抗碱性开裂的能力,但,在高浓度和高

ABS注塑件应力开裂原因及解决措施

ABS注塑件应力开裂原因及解决措施 (丙烯腈/丁二烯/苯乙烯)共聚物(ABS)树脂经共混改性后,形成了多种不同的牌号,其成型方法有注射、挤出、吸塑等,其中注射成型是主要的成型加工方法。注射成型主要有可成型复杂、尺寸精密的制件,易于实现自动化,操作简单等优点,但也存在注塑件会出现各种各样质量问题的缺点。ABS注塑件质量分为内部质量和外部质量两方面的内容。内部质量包括制件内部的材料组织结构形态,制件的密度、强度、应力等;外部质量即为制件表面质量,常见的有欠注(未注满)、分型线明显(跑料)、凹陷(塌坑或缩痕)、变色(分解纹)、暗纹(黑印)、熔接痕(合料纹)、银丝(水纹)、剥层(起皮)、流动痕(水波纹)、喷射流(蛇行纹)、变形(翘曲、扭曲)、光洁程度差(划伤、划痕)、龟裂(裂纹)、无光泽(不亮)、气泡(空洞或中空)、白化(有白印)等。影响ABS注塑件质量问题的因素很多,其中应力开裂是常见的致命缺陷之一,严重阻碍了ABS注塑件的应用 1 ABS注塑件应力开裂原因分析 1.1 应力分类及产生过程 聚合物受力后,内部会产生与外力相平衡的内力,单位面积上的内力即称为应力。根据形成的原因应力可分为内应力和外应力。内应力包括主动应力和诱发应力两种类型。主动应力是与外力(注塑压力、保压压力等)相平衡的内力,故也称为成型应力。成型应力的大小取决于聚合物的大分子结构、链段的刚性、熔体的流变学性质及制件形状的复杂程度和壁厚大小等许多因素。成型应力值过大,很容易使制件发生应力开裂和熔体破裂等成型缺陷。诱发应力的形成原因很多,诸如塑料熔体或注塑件内部温差或收缩不均匀引起的内力;制件脱模时因为模腔压力和外界压力的差值所引起的内力;塑料熔体因为流动取向引起的内力等。显然,诱发应力一般都无法与外力平衡,并且很容易保留在冷却后的制件内部,成为残余应力,从而对制件质量产生影响。外应力主要指注塑件使用中因受到外力的作用而产生的应变力。对于塑料结构件,使用中往往与金属固定件连接,为达到紧固、牢靠,从而使制件受到较大的剪切、挤压,制件内部必然产生与外力相平衡的内力。 应力在注射过程中对制件质量的影响从理论上讲,当聚合物注射充模后,如能在保压压力作用下以极其缓慢的冷却速率固化,则聚合物大分子在模腔内就有充分的时间进行变形和重排,从而可使变形量逐渐与注塑压力和保压压力的作用达到平衡,脱模后制件中无残余应力,尺寸和形状稳定。然而,在实际生产中,出于对生产率的要求,上述方法几乎是不可能的。即使生产中采用缓冷措施,所得到的冷却速率对于大分子的变形和重排来讲,仍然非常剧烈。故充模后的聚合物在保压压力作用下冷却固化时,大分子只能简单地按照模腔形状堆积在一起,而没有时间进行趋向于稳定状态的排列。所以,变形量与注塑压力和保压压力的作用不相适应,脱模后制件内仍将存在较大的残余应力。大分子还将随时间的延长继续进行变形和重排,以便和成型时的应力作用结果相适应(消除残余应力)。带有较大残余应力的制件经常会在不大的外力或溶剂作用下脆化开裂,即应力开裂。应力开裂是注塑件常出现的质量问题之一,尤其是在气候温差变化较大的北方地区,应力开裂现象更为突出。裂纹多出现在制件的浇口、棱边、熔接痕等应力较集中的部位。另外,由于应力的作用,制

楼板产生裂缝的原因以及防治措施

楼板产生裂缝的原因以及防治措施 “原因分析一、常见原因 1、顶板支撑体系刚度不足,立杆顶部自由端过长; 2、赶工造成楼板上料过早,冲击荷载会产生结构性裂缝; 3、沿楼板预留洞口的劈裂裂缝; 4、冬施期间混凝土保温措施不到位,楼板受冻后堆载; 5、顶板木模采用废机油作脱模剂,容易污染顶板钢筋,减小混凝土对钢筋的握裹力; 6、机电管线预埋在顶板集中平行布置; 7、混凝土养护不到位,塑料布覆盖过早揭开且浇水时间不足,导致表面水分快速蒸发产生干缩裂缝;8、混凝土浇筑过程中有加水现象; 9、终凝前未进行二次抹面或不到位; 10、混凝土浇筑过程中未铺设临时性活动跳板。 二、其他可能原因 1、预拌混凝土中原材料不合格,如水泥安定性不符合要求; 2、水灰比过大; 3、混凝土浇筑前发生离析现象; 4、混凝土保护层控制不当; 5、后浇带处未设置独立支

撑体系,先拆后回顶,造成局部贯通裂缝。 “预防措施” 1、模板支撑系统必须经过计算,除满足强度要求外,还必须有足够的刚度和稳定性。将顶板支撑立杆上部自由端长度控制在400mm以内;对于层高超过5米的模板支撑体系必须按照规范要求增加水平及竖向剪刀撑,增加架体整体稳定性。 2、现浇板养护期间,当混凝土强度小于时,不得进行后续施工。当混凝土强度小于10Mpa时,不宜在现浇板上吊运、堆放重物。吊运、堆放重物时,应采取有效措施,减轻冲击; 3、楼板预留洞口四周考虑洞口加筋; 4、冬季施工加强混凝土保温养护措施,根据现场抗冻临界试块确定撤除保温时间,同时避免上料过早; 5、顶板木模应采用水性脱模剂; 6、楼板内埋置管线时,管线必须布置在上下钢筋网片之间,且不宜立体交叉穿越,确需立体交叉的,不应超过二层管线。线管在敷设时交叉布线处可采用线盒,同时在多根线管的集散处宜采用放射形分布,尽量避免紧密平行排列,以确保线管底部的混凝土浇筑顺利且振捣密实。当两根以上管并行时,沿管方向应增加φ4@150宽500mm的钢筋网片,做到在应力集中部位有双层布筋; 7、现浇板浇筑时,应振捣充分,在混凝土终凝前应进

恒泰艾普软件培训系列教材-应力场模拟和裂缝预测

恒泰艾普软件培训系列教材 Stress Field Modeling 应力场模拟和裂缝预测 恒泰艾普石油勘探开发技术有限公司https://www.360docs.net/doc/c811244054.html,

目录 一、 模块功能 二、 原理和方法 三、 参数和使用说明 四、 应用关键和应用技巧

一、模块功能 利用地质、钻井和测井资料,计算拉梅常数和剪切模量等参数,建立地质模型、力学模型及数学模型,运用三维有限差分数值模拟方法对应力场进行模拟,研究构造、断层、地层厚度、区域应力场等地质因素与裂缝分布的关系,预测与构造有关的裂缝分布及发育程度。

二、原理和方法 (一)应力场的概念 地壳中或地球体内,应力状态随空间点的变化,称为应力场,或构造应力场。应力场一般随时间变化,但在一定地质阶段相对比较稳定。研究应力场,就是研究应力分布的规律性,确定地壳上某一点或某一地区,在特定地质时代和条件下,受力作用所引起的应力方向、性质、大小以及发展演化等特征。随着地质演化,一个地区常常经受多次不同方式的地壳运动,导致同一地区内,呈现出受不同时期不同形式地应力场作用所形成的各种构造极其叠加或改造的复杂景观。因此,只有最近一期地质构造事件,未经破坏或改造,才能确切地反映这个时期的应力场。 应力场可按空间区分为全球、区域和局部地应力场;按时间区分为古地应力场和今地应力场;按主应力作用方式区分为挤压、拉张和剪切地应力场。 (二)地质模型和应力场关系 地支模型的建立是做好应力场模拟的先决条件,首先将储层的目的层连同上下盖层和覆盖层作为一个岩石块体的隔离体来计算,然后从地质的角度提出构造成因,构造裂缝的特征,构造应力场的宏观特征及断层发育史。我们现在研究的构造应力场主要在早白垩世构造伸展期与晚白垩世构造反转期形成,因此研究的地质体应为相应时期的古构造图。对于挤压构造,应取受挤压之前的古构造作为地质体;而对于伸展构造,考虑到伸展作用的长期性及伸展对构造缝所形成的控制作用,应取伸展之后的古构造作为地质体。在此基础上,恢复古构造剖面图,推断地质隔离体的受力方向及大小,设定边界条件并提出反演应力场及裂缝的地质标准。但是,由于地质体是一个十分复杂的地下岩石块体,其地壳中各种地质构造形态,类型,成因是在漫长历史时期的地质演化过程中形成的,这种复杂的地质演化过程不可能恢复,只能用相对静止的观点和相对简化的方法去处理构造与古应力场的问题。考虑到储油构造中主要的一种类型是背斜构造,它是由地壳受到挤压发生弯曲,或由于基底隆起使沉积地层上拱而形成。在从历史时期的连续的接受应力而形成现代的构造体系,我们可以近似的以现在的构造应力场来作为古构造应力场的一个发展模型,来模拟在这样的应力场的条件下会导致怎样的构造裂缝体系 (三)基本原理 本软件以弯曲薄板作为油层构造模拟的力学模型,用二维的方法来处理油层构造,这种方法计算方便,人工干预少,对于应力场模拟可以将边界作为自由边界处理,不需要另外考虑边界条件。该方法主要以背斜构造作为模型进行分析,得出可以用构造面上一点的最大曲率值作为该点裂缝发育程度的判据,而以最小主曲率方向指示可能出现的张裂缝走向,这样就将构造裂缝的分布问题化为构造面的主曲率计算问题。 设以薄板中面为z=0的坐标面,规定按右手规则,以平行于大地坐标为X,Y坐标,以

混凝土地坪裂缝的成因及预防控制

混凝土地坪裂缝的成因及预防控制 一、裂缝的成因: 造成裂缝的5种主要原因: 1、结构裂缝(结构沉降); 2、伸缩裂缝; 3、养护裂缝; 4、应力裂缝; 5、徐变裂缝 二、裂缝的产生及预防: 1.结构裂缝: a. 主要是由于地基未压实或因受力不均匀导致发生不均匀沉降; b. 表现:通常发生在受力后的相邻板块间、墙边、柱脚等处,开裂处有明显凹凸感; 开口较宽,上宽下窄,贯穿整个板块。 c. 预控措施:按设计要求及施工规范,地基需分层回填、碾压密实(密实度大于0.93); 相邻板块之间添加传力杆;柱脚预设隔离物与地坪脱开等。 2.伸缩裂缝: a.由于混凝土伸缩或配筋不匹配、未合理设置伸缩缝、后切缝未达到设计深度造成为 最常见的裂缝问题; b.表现:在板块1/2 或1/3 处出现规律性裂缝; c.预控措施:合理配置钢筋及在混凝土内添加尼龙纤维、合理设计切割缝、切割深度 到位、严格控制混凝土的塌落度、水灰比即可解决。通常建议在混凝土中加入钢纤 维、尼龙纤维或面层绑扎钢筋或钢丝网片。在配筋量无法改变的情况下,应缩小混 凝土的开缝间距,推荐尺寸: 混凝土厚度5厘米开切不大于3M*3M 切缝深度4厘米以上; 厚度为8-10厘米开切不大于4M*4M;切缝深度5厘米以上; 厚度为15厘米开切不大于4.8M*4.8M;切缝深度6厘米以上 厚度为20厘米,开切不大于6M*6M,切缝深度7厘米以上 面层钢筋为非结构筋时应切断,钢丝网片需切断。 3.养护裂缝: a. 为及时进行水养护或养护不到位,或在尚未达到设计强度就过早使用;

b. 主要表现为龟裂现象,并伴随表面强度降低、起灰、翻砂等现象; c. 养护应根据混凝土反应、天气等情况而定,一般入模后20小时后洒水养护,如 果过早进行水养护会造成混凝土强度不高,过晚则表面出现如龟背般裂纹;合理的养护为前三天内,每两个小时洒水一次,7天后可以每天洒水两次。28天为零期。4.应力裂缝: a. 主要出现在边、角、有挠度等应力集中的区域 b. 表现:在边角等应力处、不同材料处出现有规律的裂缝 c. 预控措施:在裂缝产生之前沿应力发展方向切割引导,或与应力发展垂直方向切 割以横断; 5. 徐变: a. 主要由于地面在使用过程中受到来自叉车、铲车胶轮反复点重压、释放而造成; b. 表现:铲车胶轮反复经过区域产生的细小裂纹,几乎没有宽度,通常是表面裂缝; c.预控措施:设计时需充分考虑轮压(点荷载),适当舔加尼龙纤维。这种裂纹 不会影响地坪的正常使用。 (徐变为混凝土地坪国际一大难题,完全解决的相关方法专业人士尚在研究中)

现浇钢筋混凝土楼板裂缝的成因及防治

现浇钢筋混凝土楼板裂缝的成因及防治 发表时间:2008-12-17T15:42:48.543Z 来源:《中小企业管理与科技》供稿作者:刘磊王礼辉[导读] 摘要:最近,“住宅楼浇楼板裂缝问题”成为居民住宅质量投拆热点。在处理投诉中,我们发现大部分裂缝表现为:表面龟裂,纵向、横向裂缝以及斜向裂缝。虽然,这些裂缝一般被认为对使用无多大危害,但在实际施工中仍有必要对其进行有效控制。特别是避免有害裂缝的产生。本文主要从施工操作方面来剖析裂缝的成因,探讨施工中具体的防治措施。 摘要:最近,“住宅楼浇楼板裂缝问题”成为居民住宅质量投拆热点。在处理投诉中,我们发现大部分裂缝表现为:表面龟裂,纵向、横向裂缝以及斜向裂缝。虽然,这些裂缝一般被认为对使用无多大危害,但在实际施工中仍有必要对其进行有效控制。特别是避免有害裂缝的产生。本文主要从施工操作方面来剖析裂缝的成因,探讨施工中具体的防治措施。 关键词:楼板裂缝结构加固 一、裂缝产生的原因 混凝土水灰比、塌落度过大,或使用过量粉砂 混凝土强度值对水灰比的变化十分敏感,基本上是水和水泥计量变动对强度影响的叠加。因此,水、水泥、外掺混合材料、外加剂溶液的计量偏差,将直接影响混凝土的强度。而采用含泥量大的粉砂配制的混凝土收缩大,抗拉强度低,容易因塑性收缩而产生裂缝。泵送砼为了满足泵送条件:坍落度大,流动性好,易产生局部粗骨料少、砂浆多的现象,此时,砼脱水干缩时,就会产生表面裂缝。 混凝土施工中过分振捣,模板、垫层过于干燥 混凝土浇筑振捣后,粗骨料沉落挤出水分、空气,表面呈现泌水而形成竖向体积缩小沉落,造成表面砂浆层,它比下层混凝土有较大的干缩性能,待水分蒸发后,易形成凝缩裂缝。而模板、垫层在浇筑混凝土之间洒水不够,过于干燥,则模板吸水量大,引起混凝土的塑性收缩,产生裂缝。混凝土浇捣后过分抹干压光和养护不当 过度的抹平压光会使混凝土的细骨料过多地浮到表面,形成含水量很大的水泥浆层,水泥浆中的氢氧化钙与空气中二氧化碳作用生成碳酸钙,引起表面体积碳水化收缩,导致混凝土板表面龟裂。而养护不当也是造成现浇混凝土板裂缝的主要原因。过早养护会影响混凝土的胶结能力。过迟养护,由于受风吹日晒,混凝土板表面游离水分蒸发过快,水泥缺乏必要的水化水,而产生急剧的体积收缩,此时混凝土早期强度低,不能抵抗这种应力而产生开裂。特别是夏、冬两季,因昼夜温度大,养护不当最易产生温差裂缝。 楼板的弹性变形及支座处的负弯矩 施工中在混凝土未达到规定强度,过早拆模,或者在混凝土未达到终凝时间就上荷载等。这些因素都可直接造成混凝土楼板的弹性变形,致使砼早期强度低或无强度时,承受弯、压、拉应力,导致楼板产生内伤或断裂。施工中不注意钢筋的保护,把板面负筋踩弯等,将会造成支座的负弯矩,导致板面出现裂缝。此外,大梁两侧的楼板不均匀沉降也会使支座产生负弯矩造成横向裂缝。 后浇带施工不慎而造成的板面裂缝 为了解决钢筋混凝土收缩变形和温度应力,规范要求采用施工后浇带法,有些施工后浇带不完全按设计要求施工,例如施工未留企口缝;板的后浇带不支模板,造成斜坡搓;疏松混凝土未彻底凿除等都可能造成板面的裂缝。 二、裂缝的预防措施 1、严格控制混凝土施工配合比。根据混凝土强度等级和质量检验以及混凝土和易性的要求确配合比。严格控制水灰和水泥用量。选择级配良好的石子,减小空隙率和砂率以减少收缩量,提高混凝土抗裂强度。 值得注意的是近十几年来,我国一些城市为实现文明施工,提高设备利用率,节约能源,都采用商品混凝土。因此加强对商品混凝土进行塌落度的检查是保证施工质量的重要因素。 2、在混凝土浇捣前,应先将基层和模板浇水湿透,避免过多吸收水分,浇捣过程中应尽量做到既振捣充分又避免过度。3、混凝土楼板浇筑完毕后,表面刮抹应限制到最小程度,防止在混凝土表面撒干水泥刮抹。并加强混凝土早期养护。楼板浇筑后,对板面应及时用材料覆盖、保温,认真养护,防止强风和烈日曝晒。 4、严格施工操作程序,不盲目赶工。杜绝过早上砖、上荷载和过早拆模。在楼板浇捣过程中更要派专人护筋,避免踩弯面负筋的现象发生。通过在大梁两侧的面层内配置通长的钢筋网片,承受支座负弯矩,避免因不均匀沉降而产生的裂缝。 5、施工后浇带的施工应认真领会设计意图,制定施工方案,杜绝在后浇处出现混凝土不密实、不按图纸要求留企口缝,以及施工中钢筋被踩弯等现象。同时更要杜绝在未浇注混凝土前就将部分模板、支柱拆除而导致梁板形成悬臂,造成变形。 三、裂缝的处理方法 1、对于一般混凝土楼板表面的龟裂,可先将裂缝清洗干净,待干燥后用环氧浆液灌缝或用表面涂刷封闭。施工中若在终凝前发现龟裂时,可用抹压一遍处理。2、其它一般裂缝处理,其施工顺序为:清洗板缝后用1:2或1:1水泥砂浆抹缝,压平养护。 3、当裂缝较大时,应沿裂缝凿八字形凹槽,冲洗干净后,用1:2水泥砂浆抹平,也可以采用环氧胶泥嵌补。4、当楼板出现裂缝面积较大时,应对楼板进行静载试验,检验其结构安全性,必要时可在楼板上增做一层钢筋网片,以提高板的整体性。5、通长、贯通的危险结构裂缝,裂缝宽度大于0.3mm的,采用结构胶粘扁钢加固补强。板缝用灌缝胶高压灌胶。

塑料件应力开裂原因分析及检测方法简述

塑料件应力开裂原因分析及检测方法简述 几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。内应力的存在不仅使塑料制品在储存和使用过程中出现应力开裂和翘曲变形,也影响塑料制品的力学性能、光学性能、电学性能及外观质量等。 应力开裂的必要条件是试样或零件内存在应力,并存在某种应力集中因素如缺口、表面划伤等。那么塑件应力从何而来呢? 塑胶件内应力产生的原因 依引起内应力的原因不同,可将内应力分成如下几类: (1)取向内应力 取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构 象被冻结而产生的一种内应力。取向的大分子链冻结在塑料制品内也就意味着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力图过渡到无取向构象的内力。塑料制品的取向内应力分布为从制品的表层到内层越来越小,并呈抛物线变化。 (2)冷却内应力 冷却内应力是塑料制品在熔融加工过程中因冷却定型时收缩不均匀而产的一种内应力。 尤其 对厚壁塑料制品,塑料制品的外层首先冷却凝固收缩,其内层可能还是热熔体,这徉芯层就会限制表层的收缩,导致芯层处于压应力状态,而表层处于拉应力状态。塑料制品冷却内应力的分布为从制品的表层到内层越来越大,并也呈抛物线变化。另外,带金属嵌件的塑料制品,由于金属与塑料的热胀系数相差较大,容易形成收缩不一均匀的内应力。 (3)环境应力 环境应力开裂是聚烯烃类塑料的特有现象,它是指当制品存在应力时,与某些活性介质 接触,会出现脆性裂纹,最终可能导致制品破坏。这些活性物质可以是洗涤剂、皂类、水、油、酸、碱、盐及对材料并无显着溶胀作用的有机溶剂。原料混有其它杂质或掺杂不适当的或过量的溶剂或其它添加剂时,在某些应力集的位置就会导致裂纹。 有些塑料如ABS等,在受潮状况下加热会与水汽发生催化裂化反应,使制件发生大的 应变从而开裂。 (4)其它 对于结晶塑料制品而言,其制品部各部位的结晶结构和结晶度不同也会产生内应力。另外还 有构型内应,力及脱模内应力等,只是其内应力听占比重都很小。 PC/ABS内应力开裂微观分析

楼板裂缝原因分析及对策

楼板裂缝原因分析及对策 1、有规则裂缝 1)、楼板渗漏呈比较规则的网状结构,与结构楼板中钢筋网位置基本吻合; 施工原因:楼面浇捣完成后,钢筋、钢管等荷载上的太早,造成楼板震动,导致混凝土与钢筋之间握裹不严密; 主体阶段应严格控制施工进度,楼板浇捣完成后至少24小时后上荷载;且荷载堆放位置采用方木或者槽钢保护;(主楼抢进度,最快一次5天一层,应适当放慢进度;) 2)、沿安装管线走向渗漏 原因: 设计方面:板钢筋采用分离式配筋,板中部位无上皮钢筋,不利于裂缝控制 施工方面:PVC管与混凝土粘结力不强,施工中应采用扎丝与钢筋绑扎牢固,且在单层配筋的部位建议采用钢板网加强;最好采用KBG管,与混凝土结合紧密。 3)、支模方法不当,且拆模方式不对等原因造成渗漏 施工原因:几处渗漏位置是梁侧模,支模时候采用铁丝拉结,且拆模时直接用撬棍撬铁丝,造成铁丝处混凝土松动; 尽量不要采用铁丝直接穿楼板的方式来固定模板,实在难以避免的,应在拆模时用钳子剪,不能撬; 4)、楼板放线孔等预留孔洞位置裂缝 施工原因:原主体施工时楼板预留放线方孔,封堵时施工不细致导致新老混凝土之间裂缝,渗漏; 放线孔封闭时周边应凿毛,清理干净后套浆,掺微膨胀剂封堵,并浇水养护; 2、无规则裂缝 设计因素:楼板钢筋采用I级钢,施工中踩踏变形较多,且很难调整,造成局部楼板上部保护层偏厚,容易出现裂缝,建议采用II级钢;适当加密钢筋间距,小于150mm。板的四个阳角及结构不规则的位置增加放射筋。 材料因素:商品混凝土的配合比等也会影响裂缝的产生;供货前严格审查混凝土配合比;控制石子(粒径5-40mm)、砂(不得细砂)含泥量,适当采用粉煤灰、减水剂等外加剂,降低水泥用量,减少水化热,避免温度收缩裂缝。 施工原因:施工中的混凝土振捣、养护、抹面时间、上荷载的时间等等会影响裂缝产生。 混凝土浇捣完成,12小时内采用薄膜覆盖,确保水分不流失,不需在终凝前的二次抹面; 板上皮钢筋施工后,应做好荷载控制,避免梁、板钢筋重压下变形,导致保护层过厚。楼板内电线管应绑扎牢固,不得过于集中,管边至少2.5cm确保混凝土握裹。

法兰焊接后出现裂纹的原因及解决办法

法兰焊接后出现裂纹的原因及解决办法 太仓科翔整理 一.法兰焊接后出现裂纹的原因 经常碰到朋友咨询:他们公司在生产容器设备时,不锈钢法兰和筒体焊接时法兰颈部出现了裂纹,并不是在焊缝地方,是怎么回事?为什么会出现这样的情况?首先,我们先分析下会出现热裂纹的原因。 热裂纹是在焊缝冷却过程中,在高温阶段产生的裂纹,主要发生在焊缝金属内,少量在近缝区。 可以分为结晶(凝固)裂纹、液化裂纹和多边化裂纹。 结晶裂纹是最常见的一种,主要出现在含杂质元素较多的碳钢的焊缝中(S、P、Si和C)、单相奥氏体不锈钢、铝及其合金等焊接结构中。 主要影响因素是焊接拉应力、低熔点共晶(焊缝金属的化学成分)、焊接接头过热(工艺)的程度。

二.焊接中避免出现热裂纹的措施有哪些? 从这位朋友提供的照片上的情况看,我个人经验是其材质问题可能不符。304不锈钢材质塑性强,如果是锻打法兰,焊接工艺要求相对宽松,一般不会造成裂纹的。如果是铸件,就会容易出现这样的情形。 那么,在实际操作中,我们如何避免工件出现裂纹现象呢?减小热裂纹倾向的措施有: 1)降低材料中S、P等杂质元素的含量。 2)适当提高Mn/S比,可以置换Fe-FeS低熔点共晶物的Fe,形成熔点1620Co的MnS,从而提高焊缝的抗裂性能。 WC=0.10~0.12%,WMn=2.5%以前有作用 WC=0.13~0.20%,WMn=1.8%以下有作用 WC=0.21~0.23%,WMn有益影响范围更窄。 3)采用适当焊接方法和工艺,控制线能量输入,减少焊缝过热。4)在焊接材料中加入Ti、Mo、Nb或稀土元素,抑制柱状晶粒发展,细化晶粒,明显改善性能。

应力场分析与裂缝预测

《应力场分析与裂缝预测》教学大纲 (2004年制定,2012年第二次修改) 课程名称:应力场分析与裂缝预测 课程英文名称:Stress Field Analysis and Fracture Prediction 课内学时:32 课程学分:2 课程性质:学位课开课学期:每学年第一学期 教学方式:课堂讲授考核方式(考试/考查):考试 大纲执笔人:曾联波主讲教师:曾联波 师资队伍:曾联波、童亨茂、陈书平 一、课程内容简介 《应力场分析与裂缝预测》是地质学专业和资源勘探与地质工程专业硕士研究生的一门专门课程。讲授古、现应力场和储层裂缝的研究方法及其在油气勘探与开发中的应用,包括应力与应力场的基础概念、古构造应力场分析方法、现今地应力测量方法、裂缝的基础知识,裂缝定量预测方法、古应力场在油气勘探中的应用、现今地应力和裂缝在低渗透油气田开发中的应用。本门课程为32学时,2学分。 二、课程目的和基本要求 课程的目的是培养学生掌握古、今应力场分析与储层裂缝预测的基本理论和方法分析油田应力场分布及进行储层裂缝预测的基本能力。《应力场分析与裂缝预测》课程涉及构造地质学、地质力学、储层地质学、岩石力学、石油地质学和油气藏工程等多方面的基本知识,要求学生系统学习了大学本科地质类专业的构造地质学、固体力学、石油地质学和储层地质学等课程。 学完本课程后,应达到以下基本要求: 1.了解应力、应力场和裂缝的基本概念及基本分布特征; 2.掌握古应力场研究方法及进展,并能运用这些基本方法分析油田古应力场分布和指导油气勘探; 3.掌握现今地应力测量方法,并能运用这些方法分析低渗透油气田的地应力分布和指导油气田开发。 4. 掌握储层裂缝的研究和预测方法,并能运用这些方法研究和预测低渗透储层裂缝的分布规律。 三、课程主要内容 §1. 应力场分析和裂缝预测的基础知识(4学时) §1.1应力、应力场和裂缝的基本概念。 §1.2应力场和裂缝研究的基本内容与方法。 §1.3应力场分析和裂缝预测的研究现状与发展趋势。 §1.4应力场分析和裂缝预测的研究意义。 §2. 现今地应力测量方法(4学时) §2.1现场地应力测量方法。 §2.2岩心地应力测量方法。 §2.3测井地应力分析方法。 §2.4地应力的分布规律及影响因素 §3. 古构造应力场分析方法(6学时) §3.1古构造应力方向分析方法。

相关文档
最新文档