交直交变频器论文设计

交直交变频器论文设计
交直交变频器论文设计

交直交变频器原理

交直交变频器

一变频器开发基础

三相交流异步电动机发明于1881年,一经问世,便以起结构简单,坚固,价格低廉二迅速的在电力拖动领域成为拖动系统中"骄子"。但正式由于其结构,在调速性能上使其失去欢颜。从异步电动机的转速公式n=60f/p(1-s) ,可知。除变频{f}调速以外,异步电机调速基本途径有:1改变极对数{p}。2改变转差率{s}。显然其调速缺点为调速范围低,工作效率下降,负载能力不一致,消耗电能多,机械特性较软,控制电路较复杂。科技的进步,社会的发展,要求生产机械对电动机进行无级调速满足工艺要求是多么的迫切。

随着20世纪60年代功率晶闸管{SCR},70年代功率晶体管{GTR},可关断晶闸管{GTO},80年代绝缘栅双极晶体管{IGBT}的相继开发,把变频器由希望,推广,发展到今天的普及阶段。

二变频器基本结构

目前应用的最广泛的是交直交变频器,其基本结构如图所示:

其工作过程是先将三相{或单相}不可调工频电源经过整流桥整流成直流电,再经过逆变桥把直流电逆变成频率任意可调的交流电,以实现无级调速。

逆变器的原理框图

三功率部分

交直交变频器的主电路如图所示,变频器调速过程中出现的许多现象都应通过主电路来进行分析,因此,熟悉主电路的结构,透彻了解各部分的原理,具有十分重要的意义。

1 交-直变换电路

⑴图I(VD1-VD6)为交直变换全波整流电路,在中小容量变频器中,整流器件采用不可控整流二极管或二极管模块。(2)图中(CF1 CF2)为滤波电容器,由于交流电被整流出的直流电中会有交流含量,为了获取平稳的直流电而设置滤波电容。(3)因为电解电容器的电容量有较大的离散性,故电容器组CF1 和CF2的电容量常不能完全相等,这将导致各自压降不相等。为了使其压降相等,在CF1 CF2旁各并联一个阻值相等的均压电阻RC1和RC2。(4)(RH HL)为电源指示电路,除此之外HL也具有提示保护的作用,当变频器切断电源后,

交-直变换能耗电路直-交变换

由于CF的容量较大,导致CF的电压高,如不放完电,对人身安全会构成威胁。(5)(RL SL)为限流电路。当变频器刚接入电源的瞬间,将有一个很大的冲击电流经整流桥到滤波

电容,使整流桥可能因此受到损坏,限流电阻RL就是为了削弱该冲击电流而串联在整流桥和滤波电容之间。限流电阻常接在电路中会影响到直流电压U,也增大了电路的损耗,所以当U增大到一定程度时,令短路开关SL接通切除RL。

2 能耗电路(RB VB)为能耗电路。电动机的降速和停机通过逐渐减少频率来实现,但由于机械惯性的原因,导致电机处于再生制动状态,它将引起直流U升高,过高的直流电压将使变频器件受到损害,因此当直流电压超过一定值时,就要求提供一条放电回路将再生的电能消耗掉,所以制动单元中VB RB起到和消耗电能的作用。

3 直-交变换电路

(1)三相逆变桥工作原理,以单相逆变为例,如图:

单相逆变原理图

a:前半周期,令V1 V4导通,V2 V3截止,则负载ZL上所得电压为a"-"b"+"

b:后半周期,令V1 V4截止,V2 V3导通,则负载ZL上所得电压为a"+"b"-"

上述两种状态不断交替进行,则负载ZL上所得到的便是交流电压了。这就是直流电变为交流电的逆变过程,三相逆变桥的工作过程与单相逆变桥相同,只要注意三相之间互隔T/3就行了,如图:

三相逆变原理图

(2)续流电路(VD7-VD12)其作用为电动机绕阻的无功电流返回提供通路。当频率下降时,为电动机的再生电能返回直流电路提供通路。

四变频变压调制办法

1﹑电动机的能量传递是靠磁通的,而当工频运行时,磁通的实际变化是不大的,而当频率下降时,会导致电机磁路饱和,这里就不将进行公式推到了。最终磁路饱和会导致励磁电流

的严重畸变,峰值也越大。所以,在进行变频调速时有一个十分重要的要求,就是磁通φ必须保持不变,而公式E=4.44kfNψ可知,保持φ=const,则需保持E/f=const,但反电动势E是绕组自身产生的,无法从外部控制,通常认为E大小与电源电压是近似相等的,而可用U/f=const代替。

2﹑变频变压(VVVF)脉宽调制。

脉宽调制方法常有脉幅调制(PAM),脉宽调制(PWM),正弦脉宽调制(SPWM)。由于SPWM有显著优点,即通入电机电流十分逼近于正弦波,所以这里只对SPWM做以介绍。脉冲系列中各脉冲的上升与下降是由正弦波和三角波的交点来决定的,为便以说明,以单极性调制为例。如图:

A:正弦波的频率随给定频率而变,三角波的频率原则也跟着一起变化。

B:正弦波的振幅比值U/F和给定频率F同时变化,三角波振幅不变,所得到的脉宽调制波如上图所示。只有在微机技术高度发达的条件下,才有可能在极短的时间内实时地计算出正弦波与三角波的交点,

单极性SPWM

并使逆变管按各交点所规定的时刻有序的导通截止。这里三角波决定了脉冲的频率,称为载波。正弦波决定了脉冲的占空比,称为调制波。

五控制部分

如果说功率部分为电机提供动力相当于人的力量,则控制部分相当于人的大脑,支配着力量。各厂家变频器的控制部分设置大体相同,以西门子(SIEMENS)公司装置为例,装置在功能控制板上有下列控制部分端子。

(1) 用于pc或op1串型接口(RS485)。

(2) 一个串型接口(用于网络通信USS总线)。

(3) 用于一个电机温度传感器和连接一个HTL单极脉冲编码器的控制端子排。

(4) 两个具有开关量和模拟量输入输出的控制端子排,如图:

A:X101 X102为开关量和模拟量输入输出端子排,通过变频器控制

接线简图

字设置成不同的功能,如速度给定,变频器启动条件,使能,斜波,变频器运行,故障和电流电压等故障显示。

B:X103是为变频器提供电机运行反馈信息端子排,其中包括转速反馈部分和温度反馈部分,转速反馈目的是为变频器闭环控制提供条件,以达到高精度转速控制。温度反馈目的是保护电机。

C:PMU控制板,变频器的所有功能都将通过PMU板进行设置,其功能主要包括变频器参数设定,电流电压等数值显示,故障显示等。

(5)变频器整套装置通过参数设置,实现装置功能,满足客户工艺要求,每个参数通过其参数名和它的参数号表明其含义。例如:

中间回路电压r006=541

参数名:中间回路电压

参数号:r006

参数值:541

(6)变频器运行简单设置示例

p060=3 简单应用的参数设置

p071=? 输入装置进线电压(v)

p095=? 输入电机类型10为异步/同步(国际标准)

p100=? 输入开/闭环控制1 v/f 开环控制

p101=? 输入电机额定电压(v)

p102=? 输入电机额定电流(A)

p104=? 输入电机额定功率(KW)

p107=? 输入电机额定频率(HZ)

p108=? 输入电机额定转速(n)

p109=? 输入电机极对数(p)

p382=? 确定电机冷却方式0 (自冷方式)

p368=? 选择设定和命令源1 ( 端子排上模拟/数字量输入)

p370=1 启动简单应用的参数设置

p060 返回用户菜单

六变频器的应用实例

异步电动机在额定频率和额定电压下直接启动时,由于转子绕足以同步转速切割旋转磁场,转子电动势和电流都很大,故其启动电流可达到额定电流的4-7倍。这将对电源形成冲击,引起电网电压的波动。此外,由于启动过程过于快捷,常常对机械负载形成冲击,缩短机械传动部分的使用寿命。

使用了变频器后,由于其输出频率可以从很低频率开始,频率上升的快慢可以任意设定,从而可以有效的将启动电流限制在一定的范围内,机械冲击等问题也可完全解决,这种启动特性是十分优越的。

以首钢中厚板厂加热炉鼓风机变频器应用为例说明变频器的部分功能应用和启动过程:

1 依据变频器参数设置将电机铭牌数据输入及完成基本参数设置。

2 通过变频其功能预置端子功能,其中包括启动,停止,加速,减速等。

3 升速时间:定义为变频器的工作频率从0HZ上升至最高电机允许频率所需的时间。各种变频器都为用户提供了可在一定范围内任意设定升速时间的功能。所规定的设定范围各不相同,最短者为0-120s,最长的可达0-160s。设定升速的基本原则为从减小电动机的启动电流的角度来说,升速时间应设定的长一些,但升速过程属于过渡过程,并非工作所需,因此升速时间过长会浪费时间,影响工作效率。所以,设定升速时间的基本原则时,在电动机的启动电流不超过允许值的前提下,尽可能的缩短升速时间。本例中,该变频器设定为最佳升速功能,设定了此功能后,变频器可以自动的在升速电流不超过允许值的情况下,得到最短的升速时间。

4 升速方式:对于鼓风机负载,低速时负载较轻,升速过程可以快一些,但随着转速的升高,其阻转矩迅速增加,应逐渐减缓加速过程而成半S形方式,如图:

升速方式

5 启动:按下启动按钮,变频器启动,但此时为零速,需要按下加速按钮后,变频器依据设定的加速时间,加速方式运行,直至达到满足工艺需要频率。生产过程中,根据炉温可随时通过加减速按钮调节变频器频率,并以此频率运行。

单相交直交变频电路

电力电子技术 课程设计(论文) 单相交-直-交变频实验装置 院(系)名称电子与信息工程学院 专业班级 学号 学生 指导教师 起止时间:2014.12.15—2014.12.26

课程设计(论文)任务及评语 院(系):电子与信息工程学院教研室:电子信息工程

摘要 随着科学技术的进步,电力电子技术取得了迅速的的发展,改变着我国工业的整体面貌,在现代化建设中发挥着越来越重要的作用。其中,单相交-直-交变频技术也得到了越来越多的重视。其在工业生产、生活娱乐和仪器应用等方面有着广泛的应用,其中目前应用最广泛的属于电网互联,将分布式发电技术发出的电变成负载可以使用的交流电或与大电网电压、频率相匹配的工频交流电。可见,研究交—直—交变频系统的基本工作原理和作用特性意义十分重大。 本次设计研究的单相交-直-交变频实验装置可分为主电路和控制电路两部分。其中,主电路包括整流电路、逆变电路和滤波电路三部分。整流电路采用不可控的二极管单相桥式整流电路;逆变电路采用IGBT组成的单相全桥逆变电路;滤波电路采用电容滤波,输出合适频率的正弦交流电。而控制电路由控制电路、驱动电路和保护电路组成。其中,控制电路以ICL8038为核心,生成两路PWM控制信号;驱动电路采用三菱公司生产的M57862L集成驱动器;用双D触发器CD4013构成保护电路。 根据以上电路组合设计,经过Multisim软件进行电路仿真,可以基本满足本次设计任务的要求,且电路比较可靠。 关键词:整流;逆变;IGBT;PWM控制

目录 第1章第1章绪论 (1) 1.1 电力电子技术发展概况 (1) 1.2 本文研究容 (1) 第2章单相交-直-交变频电路设计 (3) 2.1 单相交-直-交变频电路总体设计方案 (3) 2.1.1 方案论证与选择 (3) 2.1.2 整体方案框图 (3) 2.2 具体电路设计 (4) 2.2.1 整流电路设计 (4) 2.2.2 逆变电路设计 (6) 2.2.3 控制电路设计 (7) 2.2.4 驱动电路与保护电路设计 (10) 2.3 元器件型号选择 (11) 第3章课程设计总结 (13) 参考文献 (14) 附录 (15)

交直交变频器详细说明书

交直交变频器 一变频器开发基础 三相交流异步电动机发明于1881年,一经问世,便以起结构简单,坚固,价格低廉二迅速的在电力拖动领域成为拖动系统中"骄子"。但正式由于其结构,在调速性能上使其失去欢颜。从异步电动机的转速公式n=60f/p(1-s) ,可知。除变频{f}调速以外,异步电机调速基本途径有:1改变极对数{p}。2改变转差率{s}。显然其调速缺点为调速范围低,工作效率下降,负载能力不一致,消耗电能多,机械特性较软,控制电路较复杂。科技的进步,社会的发展,要求生产机械对电动机进行无级调速满足工艺要求是多么的迫切。 随着20世纪60年代功率晶闸管{SCR},70年代功率晶体管{GTR},可关断晶闸管{GTO},80年代绝缘栅双极晶体管{IGBT}的相继开发,把变频器由希望,推广,发展到今天的普及阶段。 二变频器基本结构 目前应用的最广泛的是交直交变频器,其基本结构如图所示: 其工作过程是先将三相{或单相}不可调工频电源经过整流桥整流成直流电,再经过逆变桥把直流电逆变成频率任意可调的交流电,以实现无级调速。 逆变器的原理框图 三功率部分 交直交变频器的主电路如图所示,变频器调速过程中出现的许多现象都应通过主电路来进行分析,因此,熟悉主电路的结构,透彻了解各部分的原理,具有十分重要的意义。 1 交-直变换电路 ⑴图I(VD1-VD6)为交直变换全波整流电路,在中小容量变频器中,整流器件采用不可控整流二极管或二极管模块。(2)图中(CF1 CF2)为滤波电容器,由于交流电被整流出的直流电中会有交流含量,为了获取平稳的直流电而设置滤波电容。(3)因为电解电容器的电容量有较大的离散性,故电容器组CF1 和CF2的电容量常不能完全相等,这将导致各自压降不相等。为了使其压降相等,在CF1 CF2旁各并联一个阻值相等的均压电阻RC1和RC2。(4)(RH HL)为电源指示电路,除此之外HL也具有提示保护的作用,当变频器

电力电子 单相交—直—交变频装置设计

《电力电子》课程设计说明书单相交—直—交变频装置设计 学院:电气与信息工程学院 学生姓名: 指导教师:职称/学位 专业: 班级: 学号: 完成时间:2015年6月

湖南工学院电力电子课程设计课题任务书 学院:电气与信息工程学院专业:电气工程及其自动化专业\自动化专业

随着电力电子技术、计算机技术、自动控制技术的迅速发展,单相交直交变频系统得到了迅速发展,其显著的变频能力,宽泛的应用范围,完善的保护功能,以及易于实现的变频功能,得到了广大用户的认可,在运行的安全可靠、安装使用、维修维护等方面,也给使用者带来了极大的便利。近年来以燃料电池发电技术发展迅速。但是分布式发电技术发出发出的电都不是与电网供电系统相同的交流电,无法与大电网联网或者直接供给普通负载使用,都需要变频装置将其变换成负载可以使用的交流电或者与大电网电压、频率相匹配的公频交流电。因此,研究交—直—交变频系统的基本工作原理和作用特性意义十分重大。 本文研究了变频调速系统的基本组成部分,主回路主要有三部分组成:将工频电源变换为直流电源的“整流器”;吸收由整流器和逆变器回路产生的电压脉动的“滤波回路”,也是储能回路;将直流功率变换为交流功率的“逆变器”。使用Matlab搭建交—直—交变频系统的仿真模型,通过试验对该交—直—交变频系统的基本工作原理、工作特性及作用有更深的认识,也对谐波对于交—直—交变频系统的影响有了一定的了解。 关键词:电网;变频;整流;逆变;谐波;仿真

1 绪论 (1) 1.1电力电子技术概况........................ 错误!未定义书签。 1.2课程设计任务 (1) 1.3课程设计内容 (1) 2 单相交—直—交变频装置设计 (2) 2.1单相交—直—交变频电路总体设计方案 (2) 2.2具体电路设计 (2) 2.2.1 主电路设计 (2) 2.2.2 驱动电路设计 (4) 2.2.3 4013芯片原理 (5) 2.2.4 控制电路设计 (5) 2.3元器件型号选择 (6) 3 仿真结果 (8) 3.1 仿真环境 (8) 3.2 仿真模型使用模块提取的路径及其单数设置 (8) 3.3 具体仿真结果 (11) 3.3.1 仿真电路图 (11) 3.3.2 整流滤波输出电压计算域仿真 (11) 3.3.3 逆变输出电压计算与仿真 (12) 总结 (15) 参考文献 (16) 致谢 (17)

100W单相交-直-交变频电路

辽宁工业大学电力电子技术课程设计(论文)题目:100W单相交-直-交变频实验装置 院(系):电气工程学院 专业班级:电气105班 学号:100303145 学生姓名:王林 指导教师:(签字) 起止时间:2012-12-31至2013-1-11

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气Array 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 单相交-直-交变频电路在工业生产,生活娱乐,仪器运行等很多方面都有着广泛的应用,其中目前应用最广泛的应属于电网互联。单相交-直-交变频电路可分为主电路和控制电路,其主电路包括整流电路、滤波电路和逆变电路,而控制电路包括控制电路、驱动电路和保护电路。本设计对于整流部分采用不可控制整流电路;滤波部分采用LC低通滤波器,得到高频率的正弦波交流输出;逆变部分由四只IGBT管组成单相桥式逆变电路。控制电路选用以单片集成函数发生器ICL8038为核心组成,生成两路PWM信号,分别用于控制两对IGBT;驱动电路采用了具有电气隔离集成驱动芯片M57962L;保护电路采用双D触发器CD4013。 关键词:整流;滤波;逆变;PWM;IGBT

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计内容 (1) 第2章 100W单相交-直-交变频电路设计 (2) 2.1100W单相交-直-交变频电路总体设计方案 (2) 2.2具体电路设计 (3) 2.2.1 主电路设计 (3) 2.2.2 控制电路设计 (5) 2.3元器件型号选择 (9) 2.4系统调试或仿真、数据分析 (10) 第3章课程设计总结 (13) 参考文献 (14) 附录Ⅰ控制电路原理图 (15) 附录Ⅱ驱动和辅助电源原理图 (16)

单相交直交变频电路设计

附件1: 基础强化训练 题目单相交直交变频电路性能研究 学院自动化学院 专业 班级 姓名 指导教师 2012 年7 月10 日

1 总体原理图 (4) 1.1方框图 (4) 1.2电路原理图 (4) 1.2.1 主回路电路原理图 (4) 1.2.2 整流电路 (4) 1.2.3 滤波电路 (5) 1.2.4 逆变电路 (6) 2 电路组成 (8) 2.1控制电路 (8) 2.2驱动电路 (9) 2.3主电路 (10) 3 仿真结果 (11) 3.1仿真环境 (11) 3.2仿真模型使用模块提取的路径及其单数设置 (11) 3.3具体仿真结果 (14) 3.3.1仿真电路图 (14) 3.3.2整流滤波输出电压计算与仿真 (15) 3.3.3逆变输出电压计算与仿真 (16) 4 小结心得 (18) 5 参考文献 (19)

基础强化训练任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 单相交直交变频电路性能研究 初始条件: 输入为单相交流电源,有效值220V。 要求完成的主要任务: (1)掌握单相交直交变频电路的原理; (2)设计出系统结构图,并采用matlab对单相交流调压电路进行仿真; (3)采用protel设计出单相交直交变频电路主电路、驱动电路、控制电路 时间安排: 2012年7月9日至2012年7月13日,历时一周,具体进度安排见下表 参考文献: [1]王兆安,刘进军.《电力电子技术》第5版.北京:机械工业 出版社,2011 指导教师签名:年月日 系主任(或责任教师)签名:年月日

1 总体原理图 1.1 方框图 图1 总体方框图 1.2 电路原理图 1.2.1 主回路电路原理图 图2 主回路原理图 如图所示,交直流变换电路为不可控整流电路,输入的交流电通过变压器和桥式整流电路转化为直流电,滤波电路用电感和电容滤波,逆变部分采用四只IGBT 管组成单项桥式逆变电路,采用双极性调制方式,输出经LC 低通滤波器滤波,滤除高次谐波,得到频率可调的交流电输出。 1.2.2 整流电路 整流电路的功能是把交流电源转换成直流电源。整流电路一般都是单独的一块整流模块。大多数整流电路由变压器、整流主电路和滤波器等组成,主电路多用硅整流二极管和晶闸管组成,滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分,变压器设置与否视具体情况而定。 变压器的作用是实现交

电力电子技术 课程设计 单位功率因数低成本交一直一交变频电路的研

电力电子技术课程设计 题目:单位功率因数低成本交一直一交变频电路的研究 姓名: 班级: 学号: 指导教师:仲伟堂 李国华 张继华 完成日期:2011年1月10日

辽宁工程技术大学 课程设计成绩评定表 学期2009-2010第一学期姓名宫家宝 专业自动化班级自动化08-3 课程名称电力电子技术 论文题目单位功率因数低成本交一直一交变频电路的研究 评定标准 评定指标分值得分 知识创新性20 理论正确性20 内容难易性15 结合实际性10 知识掌握程度15 书写规范性10 工作量10 总成绩100 评语: 任课教师张继华时间2011年1月10日备注

课程设计任务书 一、设计题目 单位功率因数低成本交一直一交变频电路的研究 二、设计任务 基于低成本四开关逆变桥与PFC有源功率因数校正技术的交—直一交变频改进电路。 三、设计计划 1、四开关逆变桥的实现 2、升降压PFC有源功率因数校正电路的实现 3、通过实现以上两种设计计划,从而改进交-直-交变频电路 四、设计要求 改进交——直——交变频电路 指导教师:张继华 教研室主任:仲伟堂 时间:2011年1月10日

摘要 交-交变频电路应用不广,交-直-交电路应用较广,本设计根据一般的交-直-交变换电路进行了改进,功率更高。本设计逆变电路比较普通,整流电路用了PFC 控制电路提高了功率较低了电流的畸变程度。但由于我的水平有限学习的不够也有不足之处,如对整流侧的驱动不是很清楚只是构思了触发脉冲,但没有涉及到具体电路。 关键词:交交变频电路、PFC控制电路、触发脉冲。

目录 1、交-直-交变频电路 (6) 2、交-直-交变频电路分析 (7) 3、基于低成本四开关逆变桥与PFC有源功率因数校正技术的交—直一交变频改进电路 (9) 4、四开关逆变桥的实现 (10) 5、升降压PFC有源功率因数校正电路的实现 (12) 6、结论 (14) 7、心得体会 (15) 8、感谢 (16) 9、参考文献 (17)

实验四-单相交直交变频电路的性能研究

实验四-单相交直交变频电路的性能研究

————————————————————————————————作者:————————————————————————————————日期:

北京信息科技大学 电力电子技术实验报告 实验项目:单相交直交变频电路的性能研究 学院:自动化 专业:自动化(信息与控制系统) 姓名/学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期:2014-2015学年第一学期 实验四单相交直交变频电路的性能研究

一.实验目的 熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM 逆变电路中元器件的作用,工作原理,对单相交直交变频电路在电阻负载、电阻电感负载时的工作情况及其波形作全面分析,并研究工作频率对电路工作波形的影响。 二.实验内容 1.测量SPWM 波形产生过程中的各点波形。 2.观察变频电路输出在不同的负载下的波形。 三.实验设备及仪器 1.电力电子及电气传动主控制屏。 2.NMCL-16组件。 3.电阻、电感元件(NMEL-03、700mH 电感)。 4.双踪示波器。 5.万用表。 四.实验原理 单相交直交变频电路的主电路如图2—8所示。 本实验中主电路中间直流电压u d 由交流电整流而得,而逆变部分别采用单相桥式PWM 逆变电路。逆变电路中功率器件采用600V8A 的IGBT 单管(含反向二极管,型号为ITH08C06),IGBT 的驱动电路采用美国国际整流器公司生产的大规模MOSFET 和 IGBT 专用驱动集成电路1R2110,控制电路如图2—9所示,以单片集成函数发生器ICL8038为核心组成,生成两路PWM 信号,分别用于控制VT 1、VT 4和VT 2、VT 3两对IGBT 。ICL8038仅需很小的外部元件就可以正常工作,用于发生正弦波、三角波、方波等,频率范围0.001到500kHz 。 五.实验方法 4 5 L1 G3VT3 3 E3 VT4 C G4 E2 图2—8 单相交直交变频电路 G11 E1 G2 2 VT1 VT2

变频器课程设计

河南机电高等专科学校课程设计报告书 课程名称:《交流调速系统与变频器应用》 课题名称:起重机大、小车行走驱动系统设计系部名称:自动控制系 专业班级:自控104班 姓名:高建鹏 学号:101415439 2012年6月22日

1、设计思路和方案选择 1.1设计思路 起重机的电机驱动主要有起升机构,大车,小车行走机构电机主要采用绕线式异步电动机及鼠笼式异步电机。尤其是行走机构一般采用鼠笼式异步电机,起动时冲击电流大,设备冲击严重,影响设备使用寿命及定位精度。 近年来随着变频器技术的发展,其可靠性大大提高,生产成本降低,以及优越的启动制动控制特性,在各种行业得到了广泛的应用。在起重机的升起机构中采用变频器驱动后,就可以用鼠笼式异步电动机取代绕线式异步电动机。鼠笼式异步电动机结构简单,防护等级高,维护动作量小,可控性高适合在较恶劣环境下工作。 由于变频器在驱动时,频率和电压都是按一定比例一定频率逐步上升或下降,因此使电机起动冲击电流小,速度变化非常平稳,操作人员操作非常舒适。起升,行走定位也较准确,提高了生产效率。 1.2方案选择 根据起重机驱动的特性和技术要求,采用带测速反馈接口的MM440系列变频器作为起升机构的电机驱动,MM440系列变频器作为大,小车行走机构的电机驱动,MM440系列是一种通用性矢量控制变频器,功能强,价格低,完全满足行走机构的要求,因此强烈推荐用户选用该系列变频器。

起重机大车运行方向有前后,小车方向有左右要求,根据运行速度要求又分为1—3挡,加减速时间为3—6秒,通常小车采用一台电机,而大车行走机构采用2台电机,大小车本身惯性也比较大,为防止电机被倒拖处于发电状态产生过电压,因此大小车变频器都配备了制动单元和制动电阻来释放能量。起重机整个电气系统由S7—200系列PLC进行控制,变频器通过开关量端子接受PLC控制信号。 2、硬件电路设计 2.1系统原理图 详细图件见附录 3、参数设置及I/O地址分配 3.1变频器主要参数及设置 首先将所有电机铭牌数据输入P0304—P0311,大车变频器应输入几个电机的总电流及总功率,并且大车变频器带有几个电机时应运行于线性频率/电压特性,1—3档速度变化采用固定频率设定,1挡==30Hz,2档==30Hz,3档==50Hz,根据档位的不同输出频率是各个固定频率的迭加,同时利用变频器的制动器接通,断开功能由RL2输出继电器触点控制机械制动器,使行走机构在停止时不会由于外力而随意移动。主要参数机器设置如下:

交-直-交PWM变频电源课程设计

目录 第1章变频电源方案论证及设计 (1) 1.1设计要求及内容 (1) 1.2交流-直流部分设计方案 (1) 1.3直流-交流部分设计方案 (2) 1.4驱动电路设计方案 (2) 第2章主回路元件选择 (4) 2.1电容滤波的三相不可控整流电路 (4) 2.2双极性调制控制方式的三相桥式PWM电压型逆变电路 (5) 第3章保护电路、缓冲电路设计 (7) 3.1 短路保护 (7) 3.2过电压保护 (7) 3.3缓冲电路具体设计 (8) 总结 (9) 参考文献 (10) 附录1 元件清单 (11) 附录2 电路图 (12)

第1章变频电源方案论证及设计 1.1 设计要求及内容 输出交流额定相电压220V,额定相电流240A,频率变化范围2-50Hz,其交流输入线电压为380V,电压波动率为±10%。 (1)变频电源方案论证及设计; (2)主回路元件选择; (3)驱动电路设计; (4)保护电路设计; (5)缓冲电路设计; (6)PWM控制策略; (7)滤波电路设计; (8)逆变变压器设计; 1.2 交流-直流部分设计方案 图1 交-直-交PWM变频电源设计方案 对于AC-DC部分,由于三相交流输入线电压为380V,电压波动率为±10%,故此采用电容滤波的三相不可控整流电路,电路图如下:

图2 主电路AC-DC部分 加入电容C,滤平全波整流后的电压纹波,另外当负载变化时,使直流电压保持平稳,即滤波作用。 1.3直流-交流部分设计方案 对于DC-AC部分,由于指定用PWM控制技术进行逆变,故此采用三相桥式PWM电压型逆变电路,电路图如下: 图3 主电路DC-AC部分 电路中的两个电容即为总体框图中的C a 和C b 。 1.4 驱动电路设计方案

单相交直交变频电路设计_电力电子技术课程设计报告书

课程设计名称:电力电子技术课程设计题目:单相交直交变频电路设计 学期:2015-2016学年第1学期 专业:自中职 班级:13-2班 姓名:赵鸿伟 学号:1326560223 指导教师:王巍

辽宁工程技术大学课程设计成绩评定表

课程设计任务书 一、设计题目 单相交直交变频电路设计 二、设计任务 1、掌握单相交直交变频电路的原理; 2、采用protel设计出单相交直交变频电路主电路、驱动电路、控制电路; 三、设计计划 电力电子技术课程设计共1周。 第1天:选题,查资料; 第2天:方案分析比较,确定设计方案; 第3~4天:电路原理设计与电路仿真; 第5天:编写整理设计报告书。

四、设计要求 1. 画出整体电路图。 2. 对所设计的电路全部或部分进行仿真,使之达到设计任务要求。 3. 写出符合设计格式要求的设计报告书。 指导教师:王巍 时间:2015年12月30日

摘要 随着电力电子技术、计算机技术以及自动控制技术的快速发展,单相交-直-交变频系统也得到了迅速发展,它显著的变频能力,广泛的应用范围,完善的保护效力,和易于实现的变频功能,获到了广大使用者的认可,在运行的安全 可靠、安装使用以及维修维护等方面,也给使用者带来了极大的益处。 课题研究的单相交-直-交变频电路设计主要分为主电路和控制电路两部分,其中主电路还分为整流电路、滤波电路和单相桥式PWM逆变电路,而逆变部 分则需要用到控制电路,控制电路分为控制电路、驱动电路和保护电路。课题 的整流部分选用不可控的桥式整流电路;滤波部分则选用LC低通滤波,活的高频率的交流正弦波输出;逆变部分选用四个IGBT管组成的单相桥式逆变电路。控制电路主要以单片集成函数发生器ICL8038为核心设计的,生成两路PWM信号用来分别控制两队IGBT管。用MATLAB软件仿真出设计的电路,其中对纯电阻负载以及电阻电感负载分别进行数据和波形的分析,并采取相关措施使最后 输出的波形接近正弦波。 关键词:整波;滤波;逆变;IGBT;PWM;MATLAB

电力电子课程设计交直交变频器的设计

电力电子技术课程设计 - 1 - 综述 交-直-交变频器由主要由AC-DC、DC-AC两类基本电路组成,先通过AC-DC整流电路将交流电转换为直流电,经过滤波等处理后,再通过DC-AC逆变电路,将直流电转换为交流电。整流电路采用三相全控桥整流,输出的整流电压脉动小、易于滤波;经过滤波处理后的直流电进入逆变电路,逆变电路采用PWM控制电压式逆变电路,通过PWM技术控制逆变电路中IGBT的通断时间,实现对输出交流电的控制,以更好的满足电机对供电电源的要求。 主电路的驱动与控制,主要是对各部分开关器件的控制,即对晶闸管和IGBT的驱动与控制。晶闸管是半控型器件,门极收到脉冲触发才能够导通,IGBT是全控型器件,门极电压触发导通,由芯片控制生成的PWM信号给IGBT触发信号,控制IGBT的通断,从而实现对主电路的精确控制。 交-直-交变频器的设计 - 2 - 1 主回路单元电路分析与设计 1.1 变频器概述 交-直-交变频器是由AC-DC、DC-AC两种基本变流电路组成,先将交流电整流为直流电,再将直流电逆变为交流电,因此,此类电路又称为间接交流变流电路。 交-直-交变频器与普通交-交变频器相比,最主要的优点是输出频率不再受输入电源频率的制约。国内应用的低压变频器几乎全是电压源型,中间直流是用电容平波,整流后面可加电容滤波,再经过逆变输出理想交流电压,可以做交流电机的电压源。 1.2 整流部分 整流电路AD-DC的作用是将交流电变为直流电。按组成器件可以分为不可控、半控、全控三种;按电路结构可以分为桥式电路和零式电路;按交流输入相数可以分为单相电路和三相电路。三相整流电路输出直流电压脉动较小,易于滤波处理,故采用三相整流电路。常用的三相整流电路有三相半波可控整流电路与三相桥式全控整流电路。 1.2.1 三相半波可控整流电路

单相交直交变频电路设计

附件1: 学号:012101135032 7 基础强化训练 题目单相交直交变频电路性能研究学院自动化学院 专业 班级 姓名 指导教师 2012 年7 月10 日

1 总体原理图 (4) 1.1方框图 (4) 1.2电路原理图 (4) 1.2.1 主回路电路原理图 (4) 1.2.2 整流电路 (5) 1.2.3 滤波电路 (6) 1.2.4 逆变电路 (7) 2 电路组成 (9) 2.1控制电路 (9) 2.2驱动电路 (10) 2.3主电路 (11) 3 仿真结果 (12) 3.1仿真环境 (12) 3.2仿真模型使用模块提取的路径及其单数设置 (12) 3.3具体仿真结果 (16)

3.3.1仿真电路图 (16) 3.3.2整流滤波输出电压计算与仿真 (17) 3.3.3逆变输出电压计算与仿真 (18) 4 小结心得 (20) 5 参考文献 (21) 基础强化训练任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 单相交直交变频电路性能研究 初始条件: 输入为单相交流电源,有效值220V。 要求完成的主要任务: (1)掌握单相交直交变频电路的原理; (2)设计出系统结构图,并采用matlab对单相交流调压电路进行仿真; (3)采用protel设计出单相交直交变频电路主电路、驱动电路、控制电路 时间安排: 2012年7月9日至2012年7月13日,历时一周,具体进度安排见下表

参考文献: [1]王兆安,刘进军.《电力电子技术》第5版.北京:机械工业出 版社,2011 指导教师签名:年月日 系主任(或责任教师)签名: 年 月 日 1 总体原理图 1.1 方框图 图1 总体方框图 1.2 电路原理图 1.2.1 主回路电路原理图

单相交直交变频电路设计

附件1: 学号:0121011350327 基础强化训练 题目单相交直交变频电路性能研究 学院自动化学院 专业 班级 姓名 指导教师 2012年7月10日

1 总体原理图 (4) 1.1方框图 (4) 1.2电路原理图 (4) 1.2.1 主回路电路原理图 (4) 1.2.2 整流电路 (4) 1.2.3 滤波电路 (5) 1.2.4 逆变电路 (6) 2 电路组成 (8) 2.1控制电路 (8) 2.2驱动电路 (9) 2.3主电路 (10) 3 仿真结果 (11) 3.1仿真环境 (11) 3.2仿真模型使用模块提取的路径及其单数设置 (11) 3.3具体仿真结果 (14) 3.3.1仿真电路图 (14) 3.3.2整流滤波输出电压计算与仿真 (15) 3.3.3逆变输出电压计算与仿真 (16) 4 小结心得 (18) 5 参考文献 (19)

基础强化训练任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 单相交直交变频电路性能研究 初始条件: 输入为单相交流电源,有效值220V。 要求完成的主要任务: (1)掌握单相交直交变频电路的原理; (2)设计出系统结构图,并采用matlab对单相交流调压电路进行仿真; (3)采用protel设计出单相交直交变频电路主电路、驱动电路、控制电路 时间安排: 2012年7月9日至2012年7月13日,历时一周,具体进度安排见下表 参考文献: [1]王兆安,刘进军.《电力电子技术》第5版.北京:机械工业 出版社,2011 指导教师签名:年月日 系主任(或责任教师)签名:年月日

1 总体原理图 1.1 方框图 图1 总体方框图 1.2 电路原理图 1.2.1 主回路电路原理图 图2 主回路原理图 如图所示,交直流变换电路为不可控整流电路,输入的交流电通过变压器和桥式整流电路转化为直流电,滤波电路用电感和电容滤波,逆变部分采用四只IGBT 管组成单项桥式逆变电路,采用双极性调制方式,输出经LC 低通滤波器滤波,滤除高次谐波,得到频率可调的交流电输出。 1.2.2 整流电路 整流电路的功能是把交流电源转换成直流电源。整流电路一般都是单独的一块整流模块。大多数整流电路由变压器、整流主电路和滤波器等组成,主电路多用硅整流二极管和晶闸管组成,滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分,变压器设置与否视具体情况而定。 变压器的作用是实现交

交直交变频调速设计及仿真

摘要 近些年来,随着现代电力电子技术、计算机技术和自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。变频调速技术的迅速发展被越来越多的应用于电机控制领域中,是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,以及广泛的适用范围和调速时因转差功率不变而无附加能量损失等优点而被国内外公认为是最有发展前途的高效调速方式。所以,对交—直—交变频调速系统的基本工作原理和特性的研究是十分有积极意义的。 本文研究了变频调速系统的基本组成部分,主回路主要有三部分组成:将工频电源变换为直流电源的“整流器”;吸收由整流器和逆变器回路产生的电压脉动的“滤波回路”,也是储能回路;将直流功率变换为交流功率的“逆变器”。以Matlab/Simulink为仿真工具,搭建交—直—交变频调速系统的仿真模型,并对仿真结果进行分析研究。通过仿真试验对该交—直—交变频调速系统的基本工作原理、工作特性及作用有更深的认识,也对谐波对于交—直—交变频调速系统的影响有了一定的了解。 第一章绪论 1.1 交流调速技术发展概况 在很长的一个历史时期内,直流调速系统以其所具有优良的静、动态性能指标垄断调速传动应用领域。但是随着生产技术的不断发展,直流电机的缺点逐步显示出来,由于机械式换向器的存在使直流电机的维护工作量增加并限制了电机容量、电压、电流和转速的上限值,加之故障率高、效率低、成本高、使用环境受限等缺点,使其在一些大容量的调速领域中无法应用。 而异步电动机特别是鼠笼异步电动机,容量、电压、电流和转速的上限,不像直流电动机那样受限制。而且异步电动机的转子绕组不需与其他电源相连,其

单相交直交变频电路的性能研究

单相交直交变频电路的性能研究 一、交直交变频器发展概况 变频器是运动控制系统中的功率变换器。当今的运动控制系统是包含多种学科的技术领域,总的发展趋势是:驱动的交流化,功率变换器的高频化,控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件,提供可控的高性能变压变频的交流电源而得到迅猛发展。交—直—交变频器的中间直流环节采用大电感作储能元件,无功功率将由大电感来缓冲,它的一个突出优点是当电动机处于制动 (发电)状态时,只需改变网侧可控整流器的输出电压极性即可使回馈到直流侧的再生电能方便地回馈到交流电网,构成的调速系统具有四象限运行能力,可用于频繁加减速等对动态性能有要求的单机应用场合,在大容量风机、泵类节能调速中也有应用。近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。深入了解交流传动与控制技术的走向,具有十分积极的意义。 二、实验目的和要求 熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM逆变电路中元器件的作用、工作原理,对单相交直交变频电路在电阻负载、阻感负载时的工作情况及其波形作全面,并研究工作频率对电路工作波形的影响。 三、实验原理及波形 如下图所示,总体设计方案由整流电路、滤波、逆变电路等组成。市电经整流电路变直流电,直流电经滤波电路进行平滑滤波,再输入逆变电路,变为频率和电压均可调的交流电。 单相交直交变频电路由两部分组成,交流电源转化为直流是整流环节,选用了不可控的整流二极管电路,直流电源侧则选用电容和电感来滤波,能够获得比较平直的直流电压。这个环节结构相对简单、运行可靠,性能也符合设计的需求。直流转化为交流即是逆变部分,选用了单相桥式逆变电路,PWM控制,输出电压的大小及频率均可通过PWM控制进行调节。由于中间直流环节为电容滤波,因此选用电压型逆变电路。

交--交变频器与交--直--交变频器有什么区别

1交直交电压型变频器,此类变频器价格比较贵,另外技术上存在二大问题,一是存在中间整流滤波环节,故效率比较低,二是当电动机处于发电状态能量返回电网困难,通常是接通电阻回路把能量消耗掉,这样一方面增大设备的体积,另一方面能量未得到利用,是极大的浪费,为了使能量能得到利用,可增加有源逆变电路,但这又增加成本和电路的复杂性。 交交变频器其工作原理是将三相工频电源经过几组相控开关控制直接产生所需要变压变频电源,其优点是效率高,能量可以方便返回电网,其最大的缺点输出的最高频率必须小于输入电源频率1/3或1/2,否则输出波形太差,电机产生抖动,不能工作。故交交变频器至今局限低转速调速场合,因而大大限制了它的使用范围。 2交- 交变频技术 交-交变频器采用晶闸管自然换流方式,工作稳定,可靠,适合作为双馈电机转子绕组的变频器电源,交交变频的最高输出频率是电网频率的1/3-1/2,在大功率低频范围有很大的优势。交交变频没有直流环节,变频效率高,主回路简单,不含直流电路及滤波部分,与电源之间无功功率处理以及有功功率回馈容易。虽然交交变频双馈系统得到了普遍的应用,但因其功率因数低,高次谐波多,输出频率低,变化范围窄,使用元件数量多使之应用受到了一定的限制。 矩阵式变频器是一种交交直接变频器,由九个直接接于三相输入和输出之间的开关阵组成。矩阵变换器没有中间直流环节,输出由三个电平组成,谐波含量比较小;其功率电路简单、紧凑,并可输出频率、幅值及相位可控的正弦负载电压;矩阵变换器的输入功率因数可控,可在四象限工作。虽然矩阵变换器有很多优点,但是在其换流过程中不允许存在两个开关同时导通的或者关断的现象,实现起来比较困难。矩阵变换器最大输出电压能力低,器件承受电压高也是此类变换器一个很大缺点。应用在风力发电中,由于矩阵变换器的输入输出不解耦,即无论是负载还是电源侧的不对称都会影响到另一侧。另外,矩阵变换器的输入端必须接滤波电容,虽然其电容的容量比交直交的中间储能电容小,但由于它们是交流电容,要承受开关频率的交流电流,其体积并不小。

电力电子课设交-直-交PWM变频电源

目录 一、课程设计任务 (2) 1.1设计目的 (2) 1.2设计要求 (2) 1.3设计内容 (2) 二、方案论证 (3) 2.1整流电路方案 (3) 2.2中间滤波电路方案 (4) 2.3逆变电路方案 (4) 三、主回路系统组成 (7) 四、元件参数计算及选择 (8) 五、单元电路设计 (10) 5.1驱动电路设计 (10) 5.2保护电路设计 (11) 5.3缓冲电路设计 (13) 5.4输出滤波设计 (15) 5.5逆变变压器选择 (15) 六、PWM控制策略 (18) 七、总结 (20) 八、参考文献 (20) 附录 (21) 附录一元件清单................................................................. 错误!未定义书签。 附录二原理图 (21)

一、课程设计任务 1.1设计目的 电力电子技术课程设计是电气自动化工程专业学生在整个学习过程中一项综合性实践环节,复习和巩固本课程及其他课程的有关内容,对学生的实践能力的培养和实践技能分训练具有相当重要的意义。通过设计使得获得电力电子技术必要的基本理论、基本分析方法以及基本技能的培养和训练,为学习后续课程以及从事与电气工程及其自动化专业有关的技术工作和科学研究打下一定的基础,也便于学生加深理解和灵活运用所学的理论,提高学生独立分析问题、解决问题的能力,为毕业后的工程实践打下良好的基础。 1.2设计要求 要求交流输出额定相电压220V,额定相电流为240A,频率变化范围2~50Hz,其交流输入相电压为380V,电压波动频率为为±10%。 1.3设计内容 (1)变频电源方案论证及设计 (2)主回路元件选择 (3)驱动电路设计 (4)保护电路设计 (5)缓冲电路设计 (6)PWM控制策略 (7)滤波电路设计 (8)逆变变压器设计

基于Matlab的交交变频电路仿真研究

摘要:本文首先以三相输入单相输出的交交变频电路为例介绍了交交变频电路的工作原理,接着以余弦交点法为例详细分析了交交变频电路的触发控制方法,最后用Matlab7.0 仿真软件对交交变频电路进行了建模和仿真研究。 关键词:交交变频;余弦交点法;Matlab仿真 Abstract: The principium of the AC-AC frequency converter with three phases input and one phase output is introduced in the first place.The control method of the AC-AC frequency converter is particularly analysed through discussing cosine-cross method in the second place. The AC-AC frequency converter’s simulation model is builded by the Matlab7.0 at last. Key words:AC-AC frequency converter; cosine-cross method; Matlab simulation 1、引言[1] 20世纪30年代交交变频电路就已经出现,当时采用的是水银整流器,曾经有装置用在电力机车上,由于原件性能的限制,没能得到推广。到20世纪70年代,随着晶闸管的问世交交变频电路曾经广泛应用于电机的变频调速。20世纪80年代随着全控器件的广泛应用,交交变频电路逐渐被交直交变频电路取代。近年来随着现代工业生产及社会发展的需要推动了交交变频技术的飞速发展,现代电力电子器件的发展和应用、现代控制理论和控制器件的发展和应用、微机控制技术及大规模集成电路的发展和应用为交流变频技术的发展和应用创造了新的物质和技术条件,交交变频电路又逐渐成为研究的热点。 2、交-交变频电路的工作原理[2][3] 交交变频电路的工作原理与相控整流器的工作原理基本相同,现在以三相输入单相输出的交交变频电路为例详细分析其工作原理。

交交变频电路课程设计教学文稿

《电力电子技术》课程设计说明书 单相交交变频电路 系、部:电气与信息工程系 学生姓名: 指导教师:职称 专业:自动化 班级: 完成时间:2012年5月1日

目录 摘要 0 1 设计要求与原理分析与方案设计 (1) 1.1 要求分析 (1) 1.2 原理说明 (1) 1.2.1原理图 (1) 1.2.2整流与逆变工作状态 (2) 1.2.3输出正弦波电压的调制方法 (5) 1.3 方案设计 (6) 2 电路仿真与仿真结果分析 (7) 2.1 电路的仿真 (7) 2.2仿真结果与分析 (9) 3 心得体会 (12) 参考文献 (13)

摘要 20世纪30年代交交变频电路就已经出现,当时采用的是水银整流器,曾经有装置用在电力机车上,由于原件性能的限制,没能得到推广。到20世纪70年代,随着晶闸管的问世交交变频电路曾经广泛应用于电机的变频调速。20世纪80年代随着全控器件的广泛应用,交交变频电路逐渐被交直交变频电路取代。近年来随着现代工业生产及社会发展的需要推动了交交变频技术的飞速发展,现代电力电子器件的发展和应用、现代控制理论和控制器件的发展和应用、微机控制技术及大规模集成电路的发展和应用为交流变频技术的发展和应用创造了新的物质和技术条件,交交变频电路又逐渐成为研究的热点。 本文首先以三相输入单相输出的交交变频电路为例介绍了交交变频电路的工作原理,接着以余弦交点法为例详细分析了交交变频电路的触发控制方法,最后用Matlab仿真软件对交交变频电路进行了建模和仿真研究。 关键词:交交变频余弦交点法Matlab仿真

单相交交变频电路仿真 1 设计要求与原理分析与方案设计 1.1 要求分析 根据设计任务书要求,采用交交变频器设计,在负载电阻R 1=Ω、负载电感L 0.001H =;控制变频器输出频率为f 10Hz /25Hz =。控制信号的正弦波参数设置:幅值为1、角频率为f *2(rad /s)π,初相位为0。 首先明确交交变频电路是直接由工频交流经过晶闸管控制变为可变频的交流电压。它与交直交变频或者直流变交流有很大的区别。下面简单介绍交交变频电路的工作原理。 1.2 原理说明 交交变频电路是把电网频率的交流电直接变换成可调频率的交流电的变流电路。因为没有中间直流环节,因此属于直接变频电路。 交交变频电路广泛用于大功率交流电动机调速传动系统,实际使用的主要是三相输出交交变频电路。单相输出交交变频电路是三相输出交交变频电路的基础。因此本节介绍的是单相输出交交变频电路的构成、工作原理及控制方法。 1.2.1原理图 交变频电路的工作原理与相控整流器的工作原理基本相同,现在以三相输入单相输出的交交变频电路为例详细分析其工作原理。 图1是单相交交变频电路的原理图和输出电压波形。电路有P 组和N 组反并联的晶闸管变流电路构成。变流器P 和N 都是相控整流电路,P 组工作时,负载电流0i 为正,N 组工作时,0i 为负。让两组变流器按一定的频率交替工作,负载就得到该频

三相交流电动机变频调速系统的设计

3学校代码:11517 学号:200807111158 HENAN INSTITUTE OF ENGINEERING 毕业论文 题目三相交流电动机变频调速系统的设计学生姓名徐全县 专业班级电气工程及其自动化一班 学号200807111158 系(部)电气信息工程系 指导教师(职称)梅杨(教授) 完成时间 2012 年 5 月 29 日

河南工程学院论文版权使用授权书 本人完全了解河南工程学院关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交论文的印刷本和电子版本;学校有权保存论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存论文;学校有权提供目录检索以及提供本论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版;在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名: 年月日

河南工程学院毕业设计(论文)原创性声明 本人郑重声明:所呈交的论文,是本人在指导教师指导下,进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文的研究成果不包含任何他人创作的、已公开发表或者没有公开发表的作品的内容。对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确方式标明。本学位论文原创性声明的法律责任由本人承担。 论文作者签名: 年月日

毕业设计(论文)任务书 题目三相交流电动机变频调速系统的设计 专业电气工程及其自动化学号200807111158姓名徐全县 主要内容、基本资料、主要参考资料等: 主要内容: 在设计时充分考虑变频器输出电压和电流中所包含一系列的高次谐波给电机性能带来的不利影响,这包括对电机的额定电流、功率因数、损耗及效率的影响。变频器在三相异步电动机变频调速中的应用及调速原理,其中包括转速调节,电流调节和系统保护。同时主要介绍单片机在三相交流异步电动机变频调速系统方面的应用,而且用单片机设计出控制三相交流异步电动机变频调速SPWM波发生器的硬件电路和汇编语言软件应用程序。 基本要求: 三相交流电动机结构简单、运行可靠、重量轻、价格便宜,的道理广泛的应用,其主要缺点是调速空难。正由于此,通过此课程设计,实现三相异步电动机的变频调速控制与应用。 参考资料: [1] 刘仲如,《变频调速三相异步电动机的设计特点》[M]机电技术2003年 [2] 刘震,《PLC在三相交流异步电动机变频调速中的应用》[M]工矿自动化 [3] 陈炎,《变频器在交流电动机调速系统中的应用》[J]工矿自动化2003完成期限: 指导教师签名: 专业负责人签名: 2012年 2 月 22 日

相关文档
最新文档