温度传感器工作原理

温度传感器工作原理
温度传感器工作原理

温度传感器工作原理

1.引脚★

●GND接地。

●DQ为数字信号输入\输出端。

●VDD为外接电源输入端(在寄生电源接线方式时接地)

2.与单片机的连接方式★

单线数字温度传感器DS18B20与单片机连接电路非常简单,引脚1接地(GND),引脚3(VCC)接电源+5V,引脚2(DQ)接单片机输入\输出一个端口,电压+5V和信号线(DQ)之间接有一个4.7k的电阻。

由于每片DS18B20含有唯一的串行数据口,所以在一条总线上可以挂接多个DS18B20芯片。

外部供电方式单点测温电路如图★

外部供电方式多点测温电路如图★

3.DS18B20的性能特点

DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器。与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下:

●独特的单线接口仅需要一个端口引脚进行通信。

●多个DS18B20可以并联在唯一的三线上,实现多点组网功能。

●不需要外部器件。

●在寄生电源方式下可由数据线供电,电压范围为3.0~5.5V。

●零待机功耗。

●温度以9~12位数字量读出

●用户可定义的非易失性温度报警设置。

●报警搜索命令识别并标识超过程序限定温度(温度报警条件)的器件。

●负电压特性,电源极性接反时,温度计不会因发热而烧毁,只是不能正常工作。

4.内部结构

.DS18B20采用3脚PR—35封装或8脚SOIC封装,其内部结构框图★

64位ROM的位结构如图★◆。开始8位是产品类型的编号;接着是每个器件的唯一序号,共有48位;最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用单线进行通信的原因。非易失性温度报警触发器TH和TL,可通过软件写入用户报警上

DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的E2PROM。

高速暂存RAM的结构为9字节的存储器,结构如图★。前2字节包含测得的温度信息。第3和4字节是TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5字节为配置寄存器,其内容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转化为相应精度的数值。该字节各位的定义如图★,其中,低5位一直为1;TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式,在DS18B20出厂时,该位被设置为0,用户不要去改动;R0和R1决定温度转化的精度位数,即用来设置分辨率,其定义方法见表★

高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节是前面所有8

字节的CRC码可用来检验数据,从而保证通信数据的正确性。

当DS18B20接收到转化命令后,开始启动转化。转化完成后的温度值就以16位的带符号扩展的二进制补码形式存储在高速暂存RAM的第1、2字节中。

单片机可以通过单线接口读出该数据。读数据时,低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。

温度值格式如图★

图中,S表示符号位。当S=0时,表示测得的温度值为正值,可以直接将二进制位转化为十进制;当S=0时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制值。

DS18B20完成温度转化后,就把测得的温度值与RAM中的TH、TL字节内容作比较,若T>TH或T<TL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。因此,可用多只DS18B20同时测量温度并进行报警搜索。

5 DS18B20通信协议

在对DS18B20进行读写编程时,必须严格保证读写时序,否则将无法读取温度结果。根据DS18B20通信协议,主机控制DS18B20完成温度转化必须经过3个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。

复位要求主CPU将数据线下拉500us,然后释放,DS18B20收到信号后等待16~60us,然后发出60~240us的存在低脉冲,主CPU收到此信号表示复位成功。

DS18B20的ROM指令如表★◆,RAM指令如表★◆

6.使用注意事项

●因为硬件开销小,需要复杂的软件进行补偿,由于DS18B20与微处理器间采用串行数据传送,因此,在对DS18B20进行读写编程时必须严格保证读写时序,否则将无法读取测温结果。

●当单总线上所挂DS18B20超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时需加以注意。

●连接DS18B20电缆的长度超过50m时,最好采用屏蔽4芯双绞线,其中一对为接地线与信号线,另一组接VCC和地线,屏蔽层在源端单点接地,正常通信距离可达150m。

●在DS18B20测温程序中,向DS18B20发出温度转换时总要等到DS18B20的返回信号,一旦某个DS18B20接触不好或断线当程序读该DS18B20时,将没有返回信号,程序进入死循环。

7.温度数据的计算处理方法

从DS18B20读取出的二进制值必须先转化成十进制值,才能用于字符的显示。DS18B20的转换精度为9~12位可选,为了提高精度采用12位。在采用12位转换精度时,温度寄存器里的值是以0.0625为步进的,即温度值为温度寄存器里的二进制值乘以0.0625,就是实际的十进制温度值。

通过列举观察可以发现,一个十进制值与二进制值间有很明显的关系,就是把二进制的高字节的低半字节和低字节的高半字节组成一个字节,这个字节的二进制值化为十进制值后,就是温度值的百、十、个位值,而剩下的低字节的低半字节化成十进制后,就是温度值的小数部分。因为小数部分是半字节,所以二进制值范围是0~F,转化成十进制小数值就是0.0625的倍数(0~15倍)。这样需要4位的数码管来显示小数部分。实际应用不必有这么高的精度,采用一位数码管来显示小数,可以精确到0.1℃。

表★◆就是二进制与十进制的近似对应关系表。

小数部分二进制与十进制的近似对应关系表

STR-36B的使用要点

1. STR-36B功能概述

STR-36B无线收发模块是微功率、ISM全波段的无线通信模块。该模块内置控制CPU;核心接收芯片外包金属屏蔽外壳,保证了数据的可靠收发。

2. STR-36B的实物照片、引脚及功能

STR-36型引脚接口方式,为标准10针DIP连接

性能参数:

3. STR-36B的无线唤醒功能

STR-36B无线发射模块在没有数据传输的情况下,若没有设置无线唤醒功能,则无线模块一直保持发射或接收数据状态;若设置无线唤醒功能,则无线模块进入休眠状态。

当模块的WKEN引脚接低电平时,模块工作在无线唤醒模式下。模块上电复位后,处于接收状态,在持续3S的时间内,如果没有接收到串口发来的数据,或没有收到有效数据,则模块进入休眠状态。在休眠过程中,如果收到串口发来的唤醒信号或无线唤醒信号,则被唤醒,同时WKUP引脚输出一个低电平脉冲信号。微处理器向该模块的串口发1字节的数据可实现串口唤醒。模块被唤醒后,若在3S的时间内没有收到串口发来的唤醒信号或无线唤醒信号,模块又进入休眠状态。

4. STR-36B无线模块硬件电路设计

●无线收发模块电路天线的选择

天线的长度应取发射的1\4波长,当发射信号频率为433MHZ时,天线的最佳长度为18cm。为匹配,这里选择SANT307天线。

●无线收发模块电路布局需要注意的问题

无线收发模块应该安装在电路板边缘,离开周围器件5mm以上,以免受分布参数影响而停震。

●无线收发模块电路的电源设置

在实际应用中,STR-36B可与其他设备共用电源,但必须选择纹波系数小的电源,不建议使用开关电源。另外,系统设备中若有其他设备,则需可靠接地。

液晶显示模块LCM1602

1.1602字符型LCM的特性

①内部具有字符发生器ROM(CGROM),即字符库。可显示192个5×7点阵字符,如图★,由该字符库可看出LCM显示的数字和字母部分的代码值,恰好与ASCII码表中的数字和字母相同。所以在显示数字和字母时,只需向LCM送人对应的ASCII码即可。

②模块内有64字节的自定义字符RAM(CGRAM)用户可自定义8个5×7点阵字符。

③模块内有80字节的数据显示存储器(DDRAM)

LCM引脚

15 E1 背光电源,通常为+5V,并串联一个电位器,调节背光亮度

16 E2 背光电源地

命令格式及功能说明

1.清屏指令

功能:<1> 清除液晶显示器,即将DDRAM的内容全部填入"空白"的ASCII码20H;

<2> 光标归位,即将光标撤回液晶显示屏的左上方;

<3> 将地址计数器(AC)的值设为0。

2.光标归位指令

功能:<1> 把光标撤回到显示器的左上方;

<2> 把地址计数器(AC)的值设置为0;

<3> 保持DDRAM的内容不变。

3.进入模式设置指令

功能:设定每次定入1位数据后光标的移位方向,并且设定每次写入的一个字符是否移动。

4.显示开关控制指令

功能:控制显示器开/关、光标显示/关闭以及光标是否闪烁。参数设定的情况如下:

位名设置

D 0=显示功能关 1=显示功能开

C 0=无光标 1=有光标

B 0=光标闪烁 1=光标不闪烁

5.设定显示屏或光标移动方向指令

功能:使光标移位或使整个显示屏幕移位。参数设定的情况如下:

S/C R/L

设定情况

0 0

光标左移1格,且AC值减1

0 1

光标右移1格,且AC值加1

1 0

显示器上字符全部左移一格,但光标不动

1 1

显示器上字符全部右移一格,但光标不动

6.功能设定指令

功能:设定数据总线位数、显示的行数及字型。参数设定的情况如下:

位名设置

DL 0=数据总线为4位 1=数据总线为8位

N 0=显示1行 1=显示2行

F 0=5×7点阵/每字符1=5×10点阵/每字符

7.设定CGRAM地址指令

功能:设定下一个要存入数据的CGRAM的地址。

8.设定DDRAM地址指令

功能:设定下一个要存入数据的CGRAM的地址。

9.读取忙信号或AC地址指令

功能:<1> 读取忙碌信号BF的内容,BF=1表示液晶显示器忙,暂时无法接收单片机送来的数据或指令; 当BF=0时,液晶显示器可以接收单片机送来的数据或指令;<2> 读取地址计数器(AC)的内容。

10.数据写入DDRAM或CGRAM指令一览

功能:<1> 将字符码写入DDRAM,以使液晶显示屏显示出相对应的字符;

<2> 将使用者自己设计的图形存入CGRAM。

11.从CGRAM或DDRAM读出数据的指令一览

AT89S51引脚图,AT89S51单片机引脚说明及管脚定义

AT89S51引脚图

1

AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes

ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS -51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。

AT89S51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。 AT89S51引脚图

此外,AT89S51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。

主要功能特性:

· 兼容MCS-51指令系统· 4k可反复擦写(>1000次)ISP Flash ROM

· 32个双向I/O口· 4.5-5.5V工作电压

· 2个16位可编程定时/计数器· 时钟频率0-33MHz

· 全双工UART串行中断口线· 128x8bit内部RAM

· 2个外部中断源· 低功耗空闲和省电模式· 中断唤醒省电模式· 3级加密位

· 看门狗(WDT)电路· 软件设置空闲和省电功能· 灵活的ISP字节和分页编程· 双数据寄存器指针

编辑本段主要性能特点

1、4k Bytes Flash片内程序存储器;

2、128 bytes的随机存取数据存储器(RAM);

3、32个外部双向输入/输出(I/O)口;

4、5个中断优先级、2层中断嵌套中断;

5、6个中断源;

6、2个16位可编程定时器/计数器;

7、2个全双工串行通信口;

8、看门狗(WDT)电路;

9、片内振荡器和时钟电路;

10、与MCS-51兼容;

11、全静态工作:0Hz-33MHz;

12、三级程序存储器保密锁定;

13、可编程串行通道;

14、低功耗的闲置和掉电模式。

因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口除了作为普通I/O口,还有第二功能:

P3.0 RXD(串行输入口)

P3.1 TXD(串行输出口)

P3.2 /INT0(外部中断0)

P3.3 /INT1(外部中断1)

P3.4 T0(T0定时器的外部计数输入)

P3.5 T1(T1定时器的外部计数输入)

P3.6 /WR(外部数据存储器的写选通)

P3.7 /RD(外部数据存储器的读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

I/O口作为输入口时有两种工作方式,即所谓的读端口与读引脚。读端口时实际上并不从外部读入数据,而是把端口锁存器的内容读入到内部总线,经过某种运算或变换后再写回到端口锁存器。只有读端口时才真正地把外部的数据读入到内部总线。89C51的P0、P1、P2、P3口作为输入时都是准双向口。除了P1口外P0、P2、P3口都还有其他的功能。

RST:复位输入端,高电平有效。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:地址锁存允许/编程脉冲信号端。当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的低位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

PSEN:外部程序存储器的选通信号,低电平有效。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN 信号将不出现。

EA/VPP:外部程序存储器访问允许。当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA 将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编

程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:片内振荡器反相放大器和时钟发生器的输入端。

XTAL2:片内振荡器反相放大器的输出端。

温度传感器实验

实验二(2)温度传感器实验 实验时间 2017.01.12 实验编号 无 同组同学 邓奡 一、实验目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、实验原理 1、热电偶测温原理 由两根不同质的导体熔接而成的,其形成的闭合回路叫做热电回路,当 两端处于不同温度时回路产生一定的电流,这表明电路中有电势产生,此电势即为热电势。 试验中使用两种热电偶:镍铬—镍硅(K 分度)、镍铬—铜镍(E 分度)。图2.3.5所示为热电偶的工作原理,图中:T 为热端,0T 为冷端,热电势为)()(0T E T E E AB AB t -=。 热电偶冷端温度不为0℃时(下式中的1T ),需对所测热电势进行修正,修正公式为:),(),(),(0110T T E T T E T T E +=,即: 实际电动势+测量所得电动势+温度修正电势 对热电偶进行标定时,以K 分度热电偶作为标准热电偶来校准E 分度热 电偶。 2、铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在C 650T C 0?≤≤?时,

)1(20BT AT R R T ++=, 式中:T R ——铂热电阻在T ℃时的电阻值 0R ——铂热电阻在0℃时的电阻值 A ——系数(=C ??/103.96847-31) B ——系数(= C ??/105.847--71) 3、PN 结温敏二极管 半导体PN 结具有良好的温度线性,PN 结特性表达公式为: γln be e kT U =?, 式中,γ为与PN 结结构相关的常数; k 为波尔兹曼常数,K J /1038.1k 23-?=; e 为电子电荷量,C 1910602.1e -?=; T 为被测物体的热力学温度(K )。 当一个PN 结制成后,当其正向电流保持不变时,PN 结正向压降随温度 的变化近似于线性,大约以2mV/℃的斜率随温度下降,利用PN 结的这一特性可以进行温度的测量。 4、热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的 热敏元件,灵敏度高,可以测量小于0.01℃的温差变化。 热敏电阻分为正温度系数热敏电阻PTC 、负温度系数热敏电阻NTC 和在 某一特定温度下电阻值发生突然变化的临界温度电阻器CTR 。 实验中使用NTC ,热敏电阻的阻值与温度的关系近似符合指数规律,为:)11(00e T T B t R R -=。式中: T 为被测温度(K),16.273t +=T 0T 为参考温度(K),16.27300+=t T T R 为温度T 时热敏电阻的阻值 0R 为温度0T 时热敏电阻的阻值 B 为热敏电阻的材料常数,由实验获得,一般为2000~6000K 5、集成温度传感器 用集成工艺制成的双端电流型温度传感器,在一定温度范围内按1uA/K 的恒定比值输出与温度成正比的电流,通过对电流的测量即可知道温度值(K 氏温度),经K 氏-摄氏转换电路直接得到摄氏温度值。

DS18B20温度传感器实验

DS18B20温度传感器实验 TEMP1 EQU 5AH ;符号位和百位公用的存放单元TEMP2 EQU 5BH ;十位存放单元 TEMP3 EQU 5CH ;个位存放单元 TEMP4 EQU 5DH ; TEMP5 EQU 5EH TEMP6 EQU 5FH ;数据临时存放单元 TEMP7 EQU 60H TEMP8 EQU 61H ORG 0000H AJMP MAIN ORG 0020H MAIN: MOV SP,#70H LCALL INT ;调用DS18B20初始化函数MAIN1: LCALL GET_TEMP ;调用温度转换函数 LCALL CHULI ;调用温度计算函数 LCALL DISP ;调用温度显示函数 AJMP MAIN1 ;循环 INT: L0:

SETB P3.7 ;先释放DQ总线 MOV R2,#250 ;给R2赋延时初值,同时可让DQ保持高电平2us L1: CLR P3.7 ;给DQ一个复位低电平 DJNZ R2,L1 ;保持低电平的时间至少为480us SETB P3.7 ;再次拉高DQ释放总线 MOV R2,#25 L2: DJNZ R2,L2 ;保持15us-60us CLR C ORL C,P3.7 ;判断是否收到低脉冲 JC L0 MOV R6,#100 L3: ORL C,P3.7 DJNZ R6,L3 ;存在低脉冲保持保持60us-240us ; JC L0 ;否则继续从头开始,继续判断 SETB P3.7 RET ;调用温度转换函数 GET_TEMP: CLR PSW.4 SETB PSW.3 ;设置工作寄存器当前所在的区域 CLR EA ;使用DS18B20前一定要禁止任何中断 LCALL INT ;初始化DS18B20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#44H ;送入温度转换命令 LCALL WRITE LCALL INT ;温度转换完成,再次初始化18b20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#0BEH ;送入读温度暂存器命令 LCALL WRITE LCALL READ MOV TEMP4,A ;读出温度的低字节存在TEMP4 LCALL READ MOV TEMP5,A ;读出温度的高字节存在TEMP5 SETB EA RET CHULI : MOV A,TEMP5 ;将温度的高字节取出 JNB ACC.7,ZHENG ;判断最高位是否为0,为0则表示温度为正,则转到ZHENG MOV A,TEMP4 ;否则温度为负,将温度的低字节取出

温度传感器工作原理

温度传感器工作原理 温度传感器temperature transducer,利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。 1.热电偶的工作原理当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回路中就有电流产生,如图2-1(a)所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致,如图2-1(b)所示。并规定在冷端,当电流由A流向B时,称A为正极,B为负极。实验表明,当△V 很小时,△V与△T成正比关系。定义△V对△T的微分热电势为热电势率,又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度

温度传感器实验设计概要

成都理工大学工程 技术学院 单片机课程设计报告 数字温度计设计

摘要 在这个信息化高速发展的时代,单片机作为一种最经典的微控制器,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,作为自动化专业的学生,我们学习了单片机,就应该把它熟练应用到生活之中来。本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。 关键词:单片机,数字控制,数码管显示,温度计,DS18B20,AT89S52。

目录 1概述 (4) 1.1设计目的 (4) 1.2设计原理 (4) 1.3设计难点 (4) 2 系统总体方案及硬件设计...................................................... 错误!未定义书签。 2.1数字温度计设计方案论证 (4) 2.2.1 主控制器 (5) 2.4 系统整体硬件电路设计 (7) 3系统软件设计 (8) 3.1初始化程序 (8) 3.2读出温度子程序 (9) 3.3读、写时序子程序 (10) 3.4 温度处理子程序 (11) 3.5 显示程序 (12) 4 Proteus软件仿真 (13) 5硬件实物 (14) 6课程设计体会 (15) 附录1: (14) 附录2: (21)

1概述 1.1设计目的 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,可广泛用于食品库、冷库、粮库、温室大棚等需要控制温度的地方。目前,该产品已在温控系统中得到广泛的应用。 1.2设计原理 本系统是一个基于单片机AT89S52的数字温度计的设计,用来测量环境温度,测量范围为-50℃—110℃度。整个设计系统分为4部分:单片机控制、温度传感器、数码显示以及键盘控制电路。整个设计是以AT89S52为核心,通过数字温度传感器DS18B20来实现环境温度的采集和A/D转换,同时因其输出为数字形式,且为串行输出,这就方便了单片机进行数据处理,但同时也对编程提出了更高的要求。单片机把采集到的温度进行相应的转换后,使之能够方便地在数码管上输出。LED采用三位一体共阳的数码管。 1.3设计难点此设计的重点在于编程,程序要实现温度的采集、转换、显示和上下限温度报警,其外围电路所用器件较少,相对简单,实现容易。 2 系统总体方案及硬件设计 2.1数字温度计设计方案论证 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 2.2总体设计框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,用3位共阴LED数码管以串口传送数据实现温度显示。

大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究 摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN节作为常用的测温元件,线性性质也较好。本实验还利用PN节测出了波 尔兹曼常量和禁带宽度,与标准值符合的较好。 关键词:定标转化拟合数学软件 EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR 1.引言 温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。 2.热电阻的特性 2.1实验原理 2.1.1Pt100铂电阻的测温原理 和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。 按IEC751国际标准,铂电阻温度系数TCR定义如下: TCR=(R100-R0)/(R0×100) (1.1) 其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。 Pt100铂电阻的阻值随温度变化的计算公式如下: Rt=R0[1+At+B t2+C(t-100)t3] (-200℃

温度传感器原理

一、温度传感器热电阻的应用原理 温度传感器热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 1.温度传感器热电阻测温原理及材料 温度传感器热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。温度传感器热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造温度传感器热电阻。 2.温度传感器热电阻的结构

(1)精通型温度传感器热电阻工业常用温度传感器热电阻感温元件(电阻体)的结构及特点见表2-1-11。从温度传感器热电阻的测温原理可知,被测温度的变化是直接通过温度传感器热电阻阻值的变化来测量的,因此,温度传感器热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制,有关具体内容参见本篇第三章第一节. (2)铠装温度传感器热电阻铠装温度传感器热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,如图2-1-7所示,它的外径一般为φ2~φ8mm,最小可达φmm。 与普通型温度传感器热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。

(3)端面温度传感器热电阻端面温度传感器热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。它与一般轴向温度传感器热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 (4)隔爆型温度传感器热电阻隔爆型温度传感器热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型温度传感器热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。 3.温度传感器热电阻测温系统的组成 温度传感器热电阻测温系统一般由温度传感器热电阻、连接导线和显示仪表等组成。必须注意以下两点: ①温度传感器热电阻和显示仪表的分度号必须一致

DS18B20温度传感器实验

DS18B20温度传感器实验Proteus仿真原理图: DS18B20内部结构:

/************************* 源程序 ****************************/ #include #include #define uint unsigned int #define uchar unsigned char #define delayNOP() {_nop_();_nop_();_nop_();_nop_();} sbit DQ = P3^3; sbit LCD_RS = P2^0; sbit LCD_RW = P2^1; sbit LCD_EN = P2^2; uchar code Temp_Disp_Title[]={"Current Temp : "}; uchar Current_Temp_Display_Buffer[]={" TEMP: "}; uchar code Temperature_Char[8] = { 0x0c,0x12,0x12,0x0c,0x00,0x00,0x00,0x0 0 }; uchar code df_Table[]= { 0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,9 }; uchar CurrentT = 0; uchar Temp_Value[]={0x00,0x00}; uchar Display_Digit[]={0,0,0,0}; bit DS18B20_IS_OK = 1; void DelayXus(uint x) { uchar i; while(x--) { for(i=0;i<200;i++); } } bit LCD_Busy_Check(){ bit result; LCD_RS = 0; LCD_RW = 1; LCD_EN = 1; delayNOP(); result = (bit)(P0&0x80); LCD_EN=0; return result; } void Write_LCD_Command(uchar cmd) { while(LCD_Busy_Check()); LCD_RS = 0; LCD_RW = 0; LCD_EN = 0; _nop_(); _nop_(); P0 = cmd; delayNOP(); LCD_EN = 1; delayNOP(); LCD_EN = 0; }

温度传感器工作原理

温度传感器工作原理 1.引脚★ ●GND接地。 ●DQ为数字信号输入\输出端。 ●VDD为外接电源输入端(在寄生电源接线方式时接地) 2.与单片机的连接方式★ 单线数字温度传感器DS18B20与单片机连接电路非常简单,引脚1接地(GND),引脚3(VCC)接电源+5V,引脚2(DQ)接单片机输入\输出一个端口,电压+5V和信号线(DQ)之间接有一个4.7k的电阻。 由于每片DS18B20含有唯一的串行数据口,所以在一条总线上可以挂接多个DS18B20芯片。 外部供电方式单点测温电路如图★ 外部供电方式多点测温电路如图★ 3.DS18B20的性能特点 DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器。与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下: ●独特的单线接口仅需要一个端口引脚进行通信。 ●多个DS18B20可以并联在唯一的三线上,实现多点组网功能。 ●不需要外部器件。 ●在寄生电源方式下可由数据线供电,电压围为3.0~5.5V。 ●零待机功耗。

●温度以9~12位数字量读出 ●用户可定义的非易失性温度报警设置。 ●报警搜索命令识别并标识超过程序限定温度(温度报警条件)的器件。 ●负电压特性,电源极性接反时,温度计不会因发热而烧毁,只是不能正常工作。 4.部结构 .DS18B20采用3脚PR—35封装或8脚SOIC封装,其部结构框图★ 64位ROM的位结构如图★◆。开始8位是产品类型的编号;接着是每个器件的唯一序号,共有48位;最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用单线进行通信的原因。非易失性温度报警触发器TH和TL,可通过软件写入用户报警上下限数据。 MSB LSB MSB LSB MSB LSB DS18B20温度传感器的部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的E2PROM。 高速暂存RAM的结构为9字节的存储器,结构如图★。前2字节包含测得的温度信息。第3和4字节是TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5字节为配置寄存器,其容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转化为相应精度的数值。该字节各位的定义如图★,其中,低5位一直为1;TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式,在DS18B20出厂时,该位被设置为0,用户不要去改动;R0和R1决定温度转化的精度位数,即用来设置分辨率,其定义方法见表★ 高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节是前面所有8

温度传感器实验

DH-SJ5温度传感器设计性实验装置 使 用 说 明 书 杭州大华科教仪器研究所 杭州大华仪器制造有限公司

一、温度传感器概述 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量。测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。 一、测温传感器的分类 1.1电阻式传感器 热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。它分为金属热电阻和半导体热电阻两大类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 R t =R t0[1+α (t-t 0)] 式中,R t 为温度t 时的阻值;R t0为温度t 0(通常t 0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 t B t Ae R = 式中R t 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。 常用的热电阻有铂热电阻、热敏电阻和铜热电阻。其中铂电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化而变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。用铂的此种物理特性制成的传感器称为铂电阻温度传感器,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃,TCR=(R 100-R 0)/(R 0×100) ,R 0为0℃的阻值,R 100为100℃的阻值,按IEC751国际标准,温度系数TCR=0.003851,Pt100(R 0=100Ω)、Pt1000(R 0=1000Ω)为统一设计型铂电阻。铂热电阻的特点是物理化学性能稳定。尤其是耐氧化能力强、测量精度高、应用温度范围广,有很好的重现性,是中低温区(-200℃~650℃)最常用的一种温度检测器。 热敏电阻(Thermally Sensitive Resistor,简称为Thermistor),是对温度敏感的电阻的总称,是一种电阻元件,即电阻值随温度变化的电阻。一般分为两种基本类型:负温度系数热敏电阻NTC (Negative Temperature Coefficient )和正温度系数热敏电阻PTC (Positive Temperature Coefficient )。NTC 热敏电阻表现为随温度的上升,其电阻值下降;而PTC 热敏电阻正好相反。 NTC 热敏热电阻大多数是由Mn(锰)、Ni(镍)、Co(钴)、Fe(铁)、Cu(铜)等金属的氧化物经过烧结而成的半导体材料制成。因此,不能在太高的温度场合下使用。不竟然,其使用范围有的也可以达到了-200℃~700℃,但一般的情况下,其通常的使用范围在-100℃~300℃。 NTC 热敏热电阻热响应时间一般跟封装形式、阻值、材料常数(热敏指数)、热时间常数有关。材料常数(热敏指数)B 值反映了两个温度之间的电阻变化,热敏电阻的特性就是由它的大小决定的,B 值(K )被定义为:2 12 1212111lg lg 3026.211ln ln T T R R T T R R B --?=--= ; R T1:温度 T 1(K )时的零功率电阻值;R T2 :温度 T 2(K )时的零功率电阻值;T 1,T 2 :

pt100温度传感器原理

pt100温度传感器原理 PT100是一个温度传感器,是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在-200℃至650℃的范围. 电阻式温度检测器(RTD,Resistance Temperature Detector)是一种物质材料作成的电阻,它会随温度的上升而改变电阻值,如果它随温度的上升而电阻值也跟著上升就称为正电阻係数,如果它随温度的上升而电阻值反而下降就称为负电阻系数。大部分电阻式温度检测器是以金属作成的,其中以白金(Pt)作成的电阻式温度检测器,最为稳定-耐酸碱、不会变质、相当线性...,最受工业界采用。 PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT)其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度
因此白金作成的电阻式温度检测器,又称为PT100。 1:V o=2.55mA ×100(1+0.00392T)=0.255+T/1000 。 2:量测V o时,不可分出任何电流,否则量测值会不準。电路分析由于一般电源供应较多零件之后,电源是带杂讯的,因此我们使用齐纳二极体作为稳压零件,由于7.2V齐纳二极体的作用,使得1K电阻和5K可变电阻之电压和为6.5V,靠5K可变电阻的调整可决定电晶体的射(集极)极电流,而我们须将集极电流调为 2.55mA,使得量测电压V如箭头所示为0.255+T/1000。其后的非反向放大器,输入电阻几乎无限大,同时又放大10倍,使得运算放大器输出为2.55+T/100。6V齐纳二极体的作用如7.2V 齐纳二极体的作用,我们利用它调出2.55V,因此电压追随器的输出电压V1亦为 2.55V。其后差动放大器之输出为

温度传感器实验

温度传感器实验 传感器是将非电信号转换为电信号的装置,因为电信号容易传递和处理。温度是物体冷热程度的标志,温度传感器就是将温度转换成电信号的传感器。 一.测温传感器的分类 电阻式传感器。常用的有铂热电阻、热敏电阻和铜热电阻。其中铂电阻(Pt100)精确度最高,重现性和稳定性很好,不仅应用广泛,而且被制成标准的基准仪。热敏电阻(Thermally Sensitive Resistor,简称Thermistor),是温度敏感的电阻的总称,是属于热电阻的一部分,一般分为负温度系数热敏电阻NTC(Negative Temperature Coefficient)和正温度系数热敏电阻PTC(Positive Temperature Coefficient)。NTC的电阻值随温度的上升而下降;PTC正好相反。 其它传感器。半导体PN结温度传感器,晶体温度传感器,非接触型温度传感器,热电偶温度传感器,光纤温度传感器,液压温度传感器,智能温度传感器。 二.DH-SJ5温度传感器实验装置 DH-SJ5型温度传感实验装置以九孔板为实验平台,包括铂电阻Pt100、热敏电阻(NTC 和PTC)、铜电阻Cu50、铜-康铜热电偶、PN结、AD590和LM35等分离的温度传感器探头,各种电子元件。能提供了多种测温电路和方法。 本装置采用Pt100铂电阻测温,智能温度控制器控温,控温精度高、范围广、可自由设定所需的温度,数字显示;用低电压恒流加热、安全可靠、无污染,加热电流连续可调;分离的温度传感器,形象直观,组合方便,可比较不同传感器的温度特性;降温实验可采用风扇快速降温;整体结构设计新颖,紧凑合理,外型美观大方。 主要技术指标:电源:AC220V±10%(50/60Hz),工作温度0~40℃,相对湿度<80%,无腐蚀性场合,控温范围:室温~120℃,控温精度:±0.2℃,分辨率:0.1℃。 温控仪与恒温炉的连线如图1,Pt100的插头与温控仪上的插座颜色应当对应连接。 图1DH-SJ5温度传感器实验装置 恒温炉上方有六个插孔,可以插一个测温的Pt100和五个待测量的温度传感器。 警告:在做实验中或做完实验后,禁止手触传感器的钢护套,防止烫伤!

温度传感器DS18B20工作原理

温度传感器: DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DS18B20非常适用于远距离多点温度检测系统。 2 DS18B20的内部结构 DS18B20内部结构如图1所示,主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如图2所示,DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地,见图4)。 ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码,每个DS18B20的64位序列号均不相同。64位ROM的排的循环冗余校验码(CRC=X8+X5+X4+1)。ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 图1 DS18B20的内部结构

图2DS18B20的管脚排列 DS18B20中的温度传感器完成对温度的测量,用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。 温度值高字节 高低温报警触发器TH和TL、配置寄存器均由一个字节的EEPROM组成,使用一个存储器功能命令可对TH、TL或配置寄存器写入。其中配置寄存器的格式如下: R1、R0决定温度转换的精度位数:R1R0=“00”,9位精度,最大转换时间为93.75ms;R1R0=“01”,10位精度,最大转换时间为187.5ms;R1R0=“10”,11位精度,最大转换时间为375ms;R1R0=“11”,12位精度,最大转换时间为750ms;未编程时默认为12位精度。 高速暂存器是一个9字节的存储器。开始两个字节包含被测温度的数字量信息;第3、4、5字节分别是TH、TL、配置寄存器的临时拷贝,每一次上电复位时被刷新;第6、7、8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。 3 DS18B20的工作时序 DS18B20的一线工作协议流程是:初始化→ROM操作指令→存储器操作指令→数据传输。其工作时序包括初始化时序、写时序和读时序,如图3(a)(b)(c)所示。

MSP430内部温度传感器测试程序

MSP430内部温度传感器测试程序 //MSP430基础实验开发组件 - ADC12内部模块演示程序之内部温度传感器 //时钟设置: ////ACLK = n/a, MCLK = SMCLK = default DCO ~ 800kHz, ADC12CLK = ADC12OSC //当前演示程序功能描述: ////利用MSP430F14X内部的温度传感器,通过ADC12的通道10进行AD转换 ////计算取得摄氏温度和华氏温度,通过断点在View->Watch中观察温度值 ////由于定标问题, 可能会存在温度的误差 #include unsigned int long temp; unsigned int long TemperF; //华氏温度 unsigned int long TemperC; //摄氏温度 void main(void) { WDTCTL = WDTPW + WDTHOLD; //关闭系统看门狗 ADC12CTL0 = SHT0_8 + REFON + ADC12ON; //内部1.5V参考电压,打开ADC12模块,设置采样保持定时器 ADC12CTL1 = SHP; //采使用采样定时器 ADC12MCTL0 = SREF_1 + INCH_10; //参考电压和通道选择 ADC12IE = BIT0; //ADC12MEM0 ADC12CTL0 |= ENC; //允许转换 _BIS_SR(GIE); //开启系统中断 while(1) { ADC12CTL0 |= ADC12SC; //开始采样并AD转换 //oF = ((x/4096)*1500mV)-923mV)*1/1.97mV = x*761/4096 - 468 //IntDegF = (ADC12MEM0 - 2519)* 761/4096 TemperF = (temp - 2519) * 761; TemperF = TemperF / 4096; //简化的华氏温度转换公式

温度传感器报告

温度传感器是指能感受温度并能转换成可用输出信号的传感器。温度是和人类生活环境有着密切关系的一个物理量,是工业过程三大参量(流量、压力、温度)之一,也是国际单位制(SI)中七个基本物理量之一。温度测量是一个经典而又古老的话题,很久以来,这方面己有多种测温元件和传感器得到普及,但是直到今天,为了适应各工业部门、科学研究、医疗、家用电器等方面的广泛要求,仍在不断研发新型测温元件和传感器、新的测温方法、新的测温材料、新的市场应用。要准确地测量温度也非易事,如测温元件选择不当、测量方法不宜,均不能得到满意结果。 据有关部门统计,2009年我国传感器的销售额为327亿元人民币,其中温度传感器占整个传感器市场的14%,主要应用于通信电子产品、家用电器、楼宇自动化、医疗设备、仪器仪表、汽车电子等领域。 温度传感器的特点 作为一个理想的温度传感器,应该具备以下要求:测量围广、精度高、可靠性好、时漂小、重量轻、响应快、价格低、能批量生产等。但同时满足上述条件的温度传感器是不存在的,应根据应用现场灵活使用各种温度传感器。这是因为不同的温度传感器具有不同的特点。 ● 不同的温度传感器测量围和特点是不同的。 几种重要类型的温度传感器的温度测量围和特点,如表1所示。 ● 测温的准确度与测量方法有关。 根据温度传感器的使用方法,通常分为接触测量和非接触测量两类,两种测量方法的特点如 ● 不同的测温元件应采用不同的测量电路。 通常采用的测量电路有三种。“电阻式测温元件测量电路”,该测量电路要考虑消除非线性误差和热电阻导线对测量准确度的影响。“电势型测温元件测量电路”,该电路需考虑线性化和冷端补偿,信号处理电路较热电阻的复杂。“电流型测温元件测量电路”,半导体集成温度传感器是最典型的电流型温度测量元件,当电源电压变化、外接导线变化时,该电路输出电流基本不受影响,非常适合远距离测温。 温度测量的最新进展 ● 研制适应各种工业应用的测温元件和温度传感器。 铂薄膜温度传感器膜厚1μm,可置于极小的测量空间,作温度场分布测量,响应时间不超过1ms,偶丝最小直径25μm,热偶体积小于1×10-4mm3,质量小于1μg。 多色比色温度传感器能实时求出被测物体发射率的近似值,提高辐射测温的精

温度传感器工作原理

空调温度传感器为负温度系数热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。25℃时的阻值为标称值。NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。空调常用的NTC有室内环温NTC、室内盘管NTC、室外盘管NTC等三个,较高档的空调还应用外环温NTC、压缩机吸气、排气NTC等。NTC在电路中主要有如图一所示两种用法,温度变化使NTC阻值变化,CPU端子的电压也随之变化,CPU根据电压的变化来决定空调的工作状态。本文附表为几种空调的NTC参数。室内环温NTC作用:室内环温NTC 根据设定的工作状态,检测室内环境的温度自动开停机或变频。定频空调使室内温度温差变化范围为设定值+1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。室内盘管NTC 室内盘管制冷过冷(低于+3℃)保护检测、制冷缺氟检测;制热防冷风吹出、过热保护检测。空调制冷30分钟自动检查室内盘管的温度,若降温达不到20℃则自动诊断为缺氟而保护。若因某些原因室内盘管温度降到+3℃以下为防结霜也停机(过冷)制热时室内盘管温度底于32℃内风机不吹风(防冷风),高于52℃外风机停转,高于58℃压缩机停转(过热);有的空调制热自动控制内风机风速;有的空调自动切换电辅热变频空调转速控制等。室外盘管NTC 制热化霜温度检测,制冷冷凝温度检测。制热化霜是热泵机一个重要的功能,第一次化霜为CPU定时(一般在50分钟),以后化霜则由室外盘管NTC控制(一般为—11℃要化霜,+9℃则制热)。制冷冷凝温度达68℃停压缩机,代替高压压力开关的作用;变频制冷则降频阻止盘管继续升温。外环温NTC 控制室外风机的转速、冬季预热压缩机等。排气NTC 使变频压缩机降频,避免外机过热,缺氟检测等。吸气NTC 控制制冷剂流量,有步进电机控制节流阀实现。故障分析室内外盘管NTC损坏率最高,故障现象也各种各样。室内外盘管NTC由于位处温度不断变化及结露或高温的环境,所以其损坏率较高。主要表现在电源正常而整机不工作、工作短时间停机、制热时外机正常内风机不运转、外风机不工作或异常停转,压缩机不启动,变频效果差,变频不工作,制热不化霜等。化霜故障可代换室外盘管NTC或室外化霜板。在电源正常而空调不工作时也要查室内环温NTC;空调工作不停机或达不到设定温度停机,也要先查室内环温NTC;变频空调工作不正常也会和它有关。因室内环温NTC若出现故障会使得CPU错误地判断室内环温而引起误动作。室内环温NTC损坏率不是很高。

DS1621温度传感器实验

/*************** writer:shopping.w ******************/ #include #include #define uint unsigned int #define uchar unsigned char bit I2C_Busy, NO_Ack,Bus_Fault,point; uchar bdata a; sbit LSB = a^0; sbit MSB = a^7; sbit SDA = P3^3; sbit SCL = P3^2; uchar Array[] = {'0','1','2','3','4','5','6','7','8','9'}; uchar command_data[]= { 0xac,0x00,0xee,0xa1,0x00,0x00,0xa2,0x00,0x00,0xaa }; uchar Prompt[]="Waiting for a while...\r"; uchar i; void DelayMS(uint ms) { uchar i; while(ms--) { for(i=0;i<120;i++); } } void SendStop() { SDA = 0; SCL = 1; _nop_(); SDA = 1; I2C_Busy = 0; } void SendByte(uchar wd) { uchar i; a = wd; for(i=0;i<8;i++) { SCL = 0; _nop_(); _nop_(); SDA = MSB;

温度传感器报告

温度传感器报告

温度传感器是指能感受温度并能转换成可用输出信号的传感器。温度是和人类生活环境有着密切关系的一个物理量,是工业过程三大参量(流量、压力、温度)之一,也是国际单位制(SI)中七个基本物理量之一。温度测量是一个经典而又古老的话题,很久以来,这方面己有多种测温元件和传感器得到普及,但是直到今天,为了适应各工业部门、科学研究、医疗、家用电器等方面的广泛要求,仍在不断研发新型测温元件和传感器、新的测温方法、新的测温材料、新的市场应用。要准确地测量温度也非易事,如测温元件选择不当、测量方法不宜,均不能得到满意结果。 据有关部门统计,2009年我国传感器的销售额为327亿元人民币,其中温度传感器占整个传感器市场的14%,主要应用于通信电子产品、家用电器、楼宇自动化、医疗设备、仪器仪表、汽车电子等领域。 温度传感器的特点 作为一个理想的温度传感器,应该具备以下要求:测量范围广、精度高、可靠性好、时漂小、重量轻、响应快、价格低、能批量生产等。但同时满足上述条件的温度传感器是不存在的,应根据应用现场灵活使用各种温度传感器。这是因为不同的温度传感器具有不同的特点。 ● 不同的温度传感器测量范围和特点是不同的。 几种重要类型的温度传感器的温度测量范围和特点,如表1所示。 ● 测温的准确度与测量方法有关。 根据温度传感器的使用方法,通常分为接触测量和非接触测量两类,两种测量方法的特点如 ● 不同的测温元件应采用不同的测量电路。 通常采用的测量电路有三种。“电阻式测温元件测量电路”,该测量电路要考虑消除非线性误差和热电阻导线对测量准确度的影响。“电势型测温元件测量电路”,该电路需考虑线性化和冷端补偿,信号处理电路较热电阻的复杂。“电流型测温元件测量电路”,半导体集成温度传感器是最典型的电流型温度测量元件,当电源电压变化、外接导线变化时,该电路输出电流基本不受影响,非常适合远距离测温。 温度测量的最新进展 ● 研制适应各种工业应用的测温元件和温度传感器。 铂薄膜温度传感器膜厚1μm,可置于极小的测量空间,作温度场分布测量,响应时间不超过1ms,偶丝最小直径25μm,热偶体积小于1×10-4mm3,质量小于1μg。 多色比色温度传感器能实时求出被测物体发射率的近似值,提高辐射测温的精

相关文档
最新文档