无线传感器网络模型设计-英文文献翻译.doc

无线传感器网络模型设计-英文文献翻译.doc
无线传感器网络模型设计-英文文献翻译.doc

Model Design of Wireless Sensor Network based on Scale-Free Network Theory

ABSTRACT

The key issue of researches on wireless sensor networks is to balance the energy costs across the whole network and to enhance the robustness in order to extend the survival time of the whole sensor network. As a special complex network limited especially by the environment, sensor network is much different from the traditional complex networks, such as Internet network, ecological network, social network and etc. It is necessary to introduce a way of how to study wireless sensor network by complex network theory and analysis methods, the key of which lies in a successful modeling which is able to make complex network theory and analysis methods more suitable for the application of wireless sensor network in order to achieve the optimization of some certain network characteristics of wireless sensor network. Based on generation rules of traditional scale-free networks, this paper added several restrictions to the improved model. The simulation result shows that improvements made in this paper have made the entire network have a better robustness to the random failure and the energy costs are more balanced and reasonable. This improved model which is based on the complex network theory proves more applicable to the research of wireless sensor network.

Key-words: Wireless sensor network; Complex network; Scale-free network

I. INTRODUCTION

In recent years, wireless sensor networks have attracted more and more related researchers for its advantages. Sensor nodes are usually low-power and non-rechargeable. The integrity of the original networks will be destroyed and other nodes will have more business burden for data transmission if the energy of some certain nodes deplete. The key issue of sensor network research is to balance the energy consumption of all sensor nodes and to minimize the impact of random failure of sensor nodes or random attacks to sensor nodes on the entire network [1].

Complex network theory has been for some time since first proposed by Barabasi and Albert in 1998, but complex network theory and analysis method applied to wireless sensor networks research is seriously rare and develops in slow progress. As a special complex network limited especially by the environment, sensor network is much different from the traditional complex network, and the existing complex network theory and analysis methods can not be directly applied to analyze sensor networks. Based on scale-free network theory (BA model) [2], (1) this paper added a random damage mechanism to each sensor node when deployed in the generation rule; (2) considering the real statement of wireless sensor networks, a minimum and maxinum restriction on sensor communication radius was added to each sensor node; (3) in order to maintain a balanced energy comsuption of the entire network, this paper added a limited degree of saturation value to each sensor node. This improved scale-free model not only has the mentioned improvements above, but also has lots of advantages of traditional scale-free networks, such as the good ability to resist random attacks, so that the existing theory and analysis methods of complex network will be more suitable for the researches of wireless sensor network.

II. PROGRESS OF RELATED RESEARCH

Hailin Zhu and Hong Luo have proposed two complex networks-based models for wireless sensor networks [3], the first of which named Energy-aware evolution model (EAEM) can organize the networks in an energy-efficient way, and can produce scale-free networks which can improve the networks reliance against random failure of the sensor nodes. In the second model named Energy-balanced evolution model (EBEM), the maximum number of links for each node is introduced into the algorithm, which can make energy consumption more balanced than the previous model (EAEM).

CHEN Lijun and MAO Yingchi have proposed a topology control of wireless sensor networks under an average degree constraint [4]. In the precondition of the topology connectivity of wireless sensor networks, how to solve the sparseness of the network topology is a very important problem in a large number of sensor nodes deployed randomly. They proved their proposed scheme can decrease working nodes, guarantee network topology sparseness, predigest routing complexity and prolong network survival period.

LEI Ming and LI Deshi have proposed a research on self-organization reliability of wireless sensor network[5], which aiming on the two situations: deficiency of WSN nodes and under external attack, analyzes the error tolerance ability of different topologies of WSN, and eventually obtains optimized self—organized topological models of WSN and proposes a refined routing algorithm based on WSN.

III. IMPROVED SCALE-FREE MODEL FOR WSN

Because of the limited energy and the evil application environment, wireless sensor networks may easily collapse when some certain sensor nodes are of energy depletion or destruction by the nature, and even some sensor nodes have been damaged when deployed. There is also a restriction on maxinum and mininum communication radius of sensor nodes rather than the other known scale-free networks such as Internet network, which has no restriction on communication radius. To have a balanced energy consumption, it is necessary to set up a saturation value limited degree of each sensor node [6].

In response to these points, based on the traditional scale-free model, this paper has made the following improvements in the process of model establishment:

(1) A large number of researches have shown that many complex networks in nature are not only the result from internal forces, but also the result from external forces which should not be ignored to form an entire complex network. Node failure may not only occour by node energy depletion or random attacks to them when sensor networks are in the working progress, but also occour by external forces, such as by the nature, when deployed. In this paper, a mechanism of small probability of random damage has been added to the formation of sensor networks.

(2) Unlike Internet network where two nodes are able to connect directly to each other and their connection are never limited by their real location, sensor network, two nodes in which connect to each other by the way of multi-hop, so that each node has a maximum of length restriction on their communication radius. To ensure the sparse of the whole network, there must also be a minimum of length restriction on their communication radius. In this paper, a length restriction on communication radius of sensor nodes has been proposed in the improved model.

(3) In sensor network, if there exists a sensor node with a seriously high degree, whose energy consumption is very quickly, it will be seriously bad. The whole sensor network would surely collapse if enough energy were not supported to the certain node. To avoid this situation, this paper has set up a saturation value limited degree of each sensor node. By adding the mentioned restrictions above to the formation of the scale-free model, the new improved model will be more in line with the real statement of sensor network. Complex network theory and analysis methods will be more appropriate when used to research and analyze the sensor network.

IV . DESCRIPTION OF THE IMPROVED ALGORITHM

The specific algorithm of the improved model formation are described as follows :

(1) A given region (assumed to be square) is divided into HS*HSbig squares (named as BS);

(2) Each BS (assumed to be square) is divided into LS*LS small squares (named as SS), and each SS can have only one node in its coverage region;

(3) m0 backbone nodes are initially generated as a random graph, and then a new node will be added to the network to connect the existing m nodes with m edges at each time interval. (m< m0, mis a quantity parameter);

(4) The newly generated node v, has a certain probability of Peto be damaged directly so that it will never be connected with any existing nodes;

(5) The newly generated node vconnects with the existing node i, which obeyes dependent-preference rule and is surely limited by the degree of the certain saturation value .

(6) The distance div between the newly generated node v connects and the existing node i shall be shorter than the maximum dmax of the communication radius of sensor nodes.

Above all, the probability that the existing node i will be connected with the newly generated node v can be shown as follows:

In order to compute it conveniently, here assumed that few nodes had reached the degree of saturation value kimax . That is, N is very minimal in Eqs.

(1) so that it can be ignored here. And in Eqs.

i

N j 1ak Kj

π=≈∑ 0N=m 1t +- (2)

With The varying rate with time of ki, we get:

0m 112i i i i t j

j k amk amk m t mt m k δπδ+-====-∑ (3)

When t→∞,

condition: k i (t i )=m, we get the solution: i 2,i t k t a

ββ=(t )=m ()(4) The probability that the degree of node I is smaller than k is:

11{k (t)k}P{t }i i m t P k ββ<=> (5)

The time interval when each newly generated node connected into the network is equal, so that probability density of t i is a constant parameter:

01(t )i P m t

=+1/β we replace it into Eqs. (5), then we get:

11111{k (t)k}P{t }1(t )i m t k i i i t m t P P k ββββ=<=>=-∑ (6)

1101(t m )

m t k ββ-+ So we get: 110(k (t)k)21(k).i P m t P k m t k ββ

δδ<==+ (7) When t →∞, we get:

2(k)2m r P k -= (8) In which 1

2=1+=1+a γβ, and the degree distribution we get and the degree distribution of traditional scale-free network are similar. Approximately, it has nothing to do with the time parameter t and the quantity of edges m generated at each time interval.

max P{d d }iv ≤could be calculated by the max in um restriction dmax on communication radius of each sensor node and the area of the entire coverage region S, that is

max P{d d }iv ≤=2S

d π Then w

e replace max P{d d }iv ≤=2

S d π and a=max P{d d }iv ≤(1-P )e into

Eqs. and eventually we get: 22S 21122(k)2m 2e a P k

m k π----==(1-P )d .

V . SIMULATION

2.英文翻译格式和要求

英文 小四号字,单倍行距,首行缩进2个字符,不能定义文档网格。约3千英文单词。 MCU Description SCM is also known as micro-controller (Microcontroller Unit), commonly used letters of the acronym MCU MCU that it was first used in industrial control. Only a single chip by the CPU chip developed from a dedicated processor. The first design is by a large number of peripherals and CPU on a chip in the computer system, smaller, more easily integrated into a complex and demanding on the volume control device which. INTEL's Z80 is the first designed in accordance with this idea processor, then on the development of microcontroller and dedicated processors have parted ways. 一、SCM history SCM was born in the late 20th century, 70, experienced SCM, MCU, SoC three stages. SCM the single chip microcomputer (Single Chip Microcomputer) stage, mainly seeking the best of the best single form of embedded systems architecture. "Innovation model" success, laying the SCM and general computer completely different path of development. In the open road of independent development of embedded systems, Intel Corporation contributed. MCU the micro-controller (Micro Controller Unit) stage, the main direction of technology development: expanding to meet the embedded applications, the target system requirements for the various peripheral circuits and interface circuits, highlight the object of intelligent control.It involves the areas associated with the object system, therefore,the development of MCU's responsibility inevitably falls on electrical, electronics manufacturers. From this point of view, Intel faded MCU development has its objective factors. In the development of MCU, the most famous manufacturers as the number of Philips Corporation. Philips company in embedded applications, its great advantage, the MCS-51 single-chip micro-computer from the rapid development of the micro-controller. Therefore, when we look back at the path of development of embedded systems, do not forget Intel and Philips in History. 二、Embedded Systems Embedded system microcontroller is an independent development path, the MCU important factor in the development stage, is seeking applications to maximize the solution on the chip; Therefore, the development of dedicated single chip SoC trend of the natural form. As the microelectronics, IC design, EDA tools development, application system based on MCU SoC design have greater development. Therefore, the understanding of the microcontroller chip microcomputer can be, extended to the single-chip micro-controller applications. 三、MCU applications SCM now permeate all areas of our lives, which is almost difficult to find traces of the field without SCM. Missile navigation equipment, aircraft, all types of instrument control, computer network communications and data transmission, industrial automation, real-time process control and data processing, extensive use of various smart IC card, civilian luxury car security system, video recorder, camera, fully automatic washing machine control, and program-controlled toys, electronic pet, etc., which are inseparable from the microcontroller. Not to mention the area of robot control, intelligent instruments, medical equipment was. Therefore, the MCU learning, development and application of the large number of computer applications and

冲压模具专业词汇中英文翻译

Counter bored hole 沉孔 Chamfer 倒斜角 Fillet 倒圆角 padding block垫块 stepping bar垫条 upper die base上模座 lower die base下模座 upper supporting blank上承板 upper padding plate blank上垫板 spare dies模具备品 spring 弹簧 bolt螺栓 document folder活页夹 file folder资料夹 to put file in order整理资料 spare tools location手工备品仓 first count初盘人 first check初盘复棹人 second count 复盘人 second check复盘复核人 equipment设备 waste materials废料 work in progress product在制品 casing = containerization装箱 quantity of physical inventory second count 复盘点数量 Quantity of customs count 会计师盘,点数量 the first page第一联 filed by accounting department for reference会计部存查 end-user/using unit(department)使用单位 Summary of year-end physical inventory bills 年终盘点截止单据汇总表 bill name单据名称 This sheet and physical inventory list will be sent to accounting department together (Those of NHK will be sent to financial department) 本表请与盘点清册一起送会计部-(NHK厂区送财会部) Application status records of year-end physical inventory List and physical inventory card 年终盘点卡与清册使用-状况明细表 blank and waste sheet NO. 空白与作废单号

外文翻译 - 英文

The smart grid Smart grid is the grid intelligent (electric power), also known as the "grid" 2.0, it is based on the integration, high-speed bidirectional communication network, on the basis of through the use of advanced sensor and measuring technology, advanced equipme nt technology, the advanced control method, and the application of advanced technology of decision support system, realize the power grid reliability, security, economic, efficient, environmental friendly and use the security target, its main features include self-healing, incentives and include user, against attacks, provide meet user requirements of power quality in the 21st century, allow all sorts of different power generation in the form of access, start the electric power market and asset optimizatio n run efficiently. The U.S. department of energy (doe) "the Grid of 2030" : a fully automated power transmission network, able to monitor and control each user and power Grid nodes, guarantee from power plants to end users among all the nodes in the whole process of transmission and distribution of information and energy bi-directional flow. China iot alliance between colleges: smart grid is made up of many parts, can be divided into:intelligent substation, intelligent power distribution network, intelli gent watt-hourmeter,intelligent interactive terminals, intelligent scheduling, smart appliances, intelligent building electricity, smart city power grid, smart power generation system, the new type of energy storage system.Now a part of it to do a simple i ntroduction. European technology BBS: an integration of all users connected to the power grid all the behavior of the power transmission network, to provide sustained and effective economic and security of power. Chinese academy of sciences, institute of electrical: smart grid is including all kinds of power generation equipment, power transmission and distribution network, power equipment and storage equipment, on the basis of the physical power grid will be modern advanced sensor measurement technology, network technology, communication

机械专业术语英文翻译

陶瓷 ceramics 合成纤维 synthetic fibre 电化学腐蚀 electrochemical corrosion 车架 automotive chassis 悬架 suspension 转向器 redirector 变速器 speed changer 板料冲压 sheet metal parts 孔加工 spot facing machining 车间 workshop 工程技术人员 engineer 气动夹紧 pneuma lock 数学模型 mathematical model 画法几何 descriptive geometry 机械制图 Mechanical drawing 投影 projection 视图 view 剖视图 profile chart 标准件 standard component 零件图 part drawing 装配图 assembly drawing 尺寸标注 size marking

技术要求 technical requirements 刚度 rigidity 内力 internal force 位移 displacement 截面 section 疲劳极限 fatigue limit 断裂 fracture 塑性变形 plastic distortion 脆性材料 brittleness material 刚度准则 rigidity criterion 垫圈 washer 垫片 spacer 直齿圆柱齿轮 straight toothed spur gear 斜齿圆柱齿轮 helical-spur gear 直齿锥齿轮 straight bevel gear 运动简图 kinematic sketch 齿轮齿条 pinion and rack 蜗杆蜗轮 worm and worm gear 虚约束 passive constraint 曲柄 crank 摇杆 racker 凸轮 cams

3英文文献及翻译格式示例

哈尔滨工业大学毕业设计(论文) 英文原文(原文也可以直接将PDF版打印) ASSESSING CREDIT OR DETERMINING QUANTITY? THE EVOLVING ROLE OF RATING AGENCIES Lynnette D. Purda* This version: April 21, 2011 Abstract Over the past ten years, credit rating agencies have come under intense criticism from both practitioners and academics, first for their failure to identify problems resulting in bankruptcies at Enron and Worldcom and second for providing overly optimistic ratings for structured finance products. While many investors question the value of rating agencies in light of these criticisms, they have proven remarkably resilient. This paper provides a brief background on how rating agencies secured competitive advantages in evaluating credit quality. It then reviews the empirical evidence on the information content of ratings given these advantages. I argue that the information content of ratings stems from two intertwined sources: 1) information related to credit quality and 2) information related to the firm’s ability to access debt. Based on this evidence, I suggest that the dominant role for ratings today is as a benchmark for financial contracting. In this way, ratings remain influential in establishing the supply and demand of debt securities. 译文 评级机构的发展的作用评估信用还是决定数量? 本文:2011.4.21 摘要 在过去的十年,信用评级机构一直处于来自实践者和学者的激烈的批评中,首先他们未能发现问题,导致安然和世通破产;其次对结构性金融产品提供过于乐观的评级。虽然许多投资者因为这些批评对评级机构的价值提出了质疑,但他们仍然被证明是相当有活力的。这篇文章首先在评估机构如何在信用评级质量中获得竞争优势提供一个简单地背景介绍,然后考虑到这些优势回顾了一些信息内容方面的评级经验证据。个人认为信息内容的评级来自两种交织在一起(错综复杂)的来源:1)和信贷质量相关的信息;2)和公司获取债务资本能力相关的信息。以此为据,我建议当前评级的主导作用是作为基准的金融收缩。以这种方式,在建立债券的供应和需求方面评级仍然是有效的。 - -1

机械设计外文翻译(中英文)

机械设计理论 机械设计是一门通过设计新产品或者改进老产品来满足人类需求的应用技术科学。它涉及工程技术的各个领域,主要研究产品的尺寸、形状和详细结构的基本构思,还要研究产品在制造、销售和使用等方面的问题。 进行各种机械设计工作的人员通常被称为设计人员或者机械设计工程师。机械设计是一项创造性的工作。设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚的基础知识。如前所诉,机械设计的目的是生产能够满足人类需求的产品。发明、发现和科技知识本身并不一定能给人类带来好处,只有当它们被应用在产品上才能产生效益。因而,应该认识到在一个特定的产品进行设计之前,必须先确定人们是否需要这种产品。 应当把机械设计看成是机械设计人员运用创造性的才能进行产品设计、系统分析和制定产品的制造工艺学的一个良机。掌握工程基础知识要比熟记一些数据和公式更为重要。仅仅使用数据和公式是不足以在一个好的设计中做出所需的全部决定的。另一方面,应该认真精确的进行所有运算。例如,即使将一个小数点的位置放错,也会使正确的设计变成错误的。 一个好的设计人员应该勇于提出新的想法,而且愿意承担一定的风险,当新的方法不适用时,就使用原来的方法。因此,设计人员必须要有耐心,因为所花费的时间和努力并不能保证带来成功。一个全新的设计,要求屏弃许多陈旧的,为人们所熟知的方法。由于许多人墨守成规,这样做并不是一件容易的事。一位机械设计师应该不断地探索改进现有的产品的方法,在此过程中应该认真选择原有的、经过验证的设计原理,将其与未经过验证的新观念结合起来。 新设计本身会有许多缺陷和未能预料的问题发生,只有当这些缺陷和问题被解决之后,才能体现出新产品的优越性。因此,一个性能优越的产品诞生的同时,也伴随着较高的风险。应该强调的是,如果设计本身不要求采用全新的方法,就没有必要仅仅为了变革的目的而采用新方法。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不受各种约束。即使产生了许多不切实际的想法,也会在设计的早期,即绘制图纸之前被改正掉。只有这样,才不致于堵塞创新的思路。通常,要提出几套设计方案,然后加以比较。很有可能在最后选定的方案中,采用了某些未被接受的方案中的一些想法。

机械专业外文翻译中英文翻译

外文翻译 英文原文 Belt Conveying Systems Development of driving system Among the methods of material conveying employed,belt conveyors play a very important part in the reliable carrying of material over long distances at competitive cost.Conveyor systems have become larger and more complex and drive systems have also been going through a process of evolution and will continue to do so.Nowadays,bigger belts require more power and have brought the need for larger individual drives as well as multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine).The ability to control drive acceleration torque is critical to belt conveyors’ performance.An efficient drive system should be able to provide smooth,soft starts while maintaining belt tensions within the specified safe limits.For load sharing on multiple drives.torque and speed control are also important consideratio ns in the drive system’s design. Due to the advances in conveyor drive control technology,at present many more reliable.Cost-effective and performance-driven conveyor drive systems cov ering a wide range of power are available for customers’ choices[1]. 1 Analysis on conveyor drive technologies 1.1 Direct drives Full-voltage starters.With a full-voltage starter design,the conveyor head shaft is direct-coupled to the motor through the gear drive.Direct full-voltage starters are adequate for relatively low-power, simple-profile conveyors.With direct fu11-voltage starters.no control is provided for various conveyor loads and.depending on the ratio between fu11- and no-1oad power requirements,empty starting times can be three or four times faster than full load.The maintenance-free starting system is simple,low-cost and very reliable.However, they cannot control starting torque and maximum stall torque;therefore.they are

汉译英格式规范

汉译英翻译格式规范 I 格式规范 1. 正文标题、机构名称、图表格名称和表头中所有单词(除虚词外)的首字母均大 写;但标题为句子的情况除外; 2. 译文中出现的标准、规范名称,单独出现时每个单词首字母均应大写并斜体,不 加引号;在表格中出现时不用斜体; 3. 摄氏度符号统一从“符号”“Times new roman”中找到“°”(位于最右一列)插 入,然后在后面加上大写“C”,即“°C”; 4. 排比和并列的内容,标点应统一。一般做法是中间采用“;”,最后一个采用“.”, 最后一个与倒数第二个之间用“; and”; 5. 数值范围的表示形式应是:110-220 kV,而不是110 kV~220 kV;注意:数字和 连字符之间没有空格,数字和单位之间有空格数字与单位之间要加一个空格,但“°C”、“°F”和“%”除外; 6. 在英文中,百分号应采用英文半角“%”,而不可采用中文全角“%”; 7. 公式中的符号从“插入公式”中选择; 8. 文本框中第一个单词首字母大写; 9. 1号机组和2号机组、一期和二期的表示方法:Unit 1 & 2;Phase I & II; 10. 第x条(款、项)和第y条(款、项)的表示方法:Article x and Article y,即表 示条(款、项)的词不能省略; 11. 文件中出现公式时,公式后说明性文字的“其中”、“式中”统一译为“Where:”, 注意其后加冒号;对公式中的字母和符号进行解释时,采用“-”,其前后均不空格,“-”后的首字母为小写;公式后的说明要用分号,最后采用句号。例如: Where: F sc-short circuit current force (lb/ft); V-velocity; P-gas density. 12. 冒号后首字母小写; 13. 大于号、小于号、等号两边均有空格; 14. 表格的标题和标题栏字体加粗; 15. 注意上下标与原文一致; 16. 直径符号φ的输入方法:插入,符号,字体选择Symbol,然后选择输入φ,并采用 斜体;

机械专业相关词汇中英文翻译大全

机械专业相关词汇中英文翻译大全 单价unit price 工日合计Man-day total/work-day total 人工费cost of labor 材料费materials expenses 机械的mechanical 检查接线connection test 发电机generator 调相机phase regulator 周波cycle 减负荷装置 load-shedding equipment 断路器柜circuit breaker cabinet 单母线single busbar 互感器transformer 每相电流Current by Phase 封闭式插接close type socket joint 发电机控制面板generator control panel 分级卸载sorted unloading 同步控制synchronization control 调速器 speed governor 信号屏signal screen 继电器relay 高压柜high pressure cabinet 油浸电力变压器oil-immersed power transformer 空气断路器air circuit breaker 控制屏control panel 直流馈电屏direct current feed control panel 电容器electric condenser 计量盘metering panel 成套配电箱whole set of distribution box 落地式floor model 控制开关Control switches 铜芯电力电缆Copper core power cable 控制电缆actuating cable 热缩式电力电缆终端头pyrocondensation power cable terminal 钢结构支架配管steel structure bracket tubing 万用槽钢versatile U-steel 电缆托架 cable bracket 钢制托盘式桥架steel Tray-type cable support system waterproof socket 防水插座 防爆插座Explosion-proof socket 接地绞线earthing twisted pair 接地母线 earthing bus

机械专业术语英文翻译

机械专业英语词汇 陶瓷ceramics 合成纤维synthetic fibre 电化学腐蚀electrochemical corrosion 车架automotive chassis 悬架suspension 转向器redirector 变速器speed changer 板料冲压sheet metal parts 孔加工spot facing machining 车间workshop 工程技术人员engineer 气动夹紧pneuma lock 数学模型mathematical model 画法几何descriptive geometry 机械制图Mechanical drawing 投影projection 视图view 剖视图profile chart 标准件standard component 零件图part drawing 装配图assembly drawing 尺寸标注size marking 技术要求technical requirements 刚度rigidity 内力internal force 位移displacement 截面section 疲劳极限fatigue limit 断裂fracture 塑性变形plastic distortion 脆性材料brittleness material 刚度准则rigidity criterion 垫圈washer 垫片spacer 直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical-spur gear 直齿锥齿轮straight bevel gear 运动简图kinematic sketch 齿轮齿条pinion and rack 蜗杆蜗轮worm and worm gear 虚约束passive constraint 曲柄crank 摇杆racker

英文文献及中文翻译撰写格式

关于毕业设计说明书(论文)英文文献及中文翻译撰写格式 为提高我校毕业生毕业设计说明书(毕业论文)的撰写质量,做到毕业设计说明书(毕业论文)在内容和格式上的统一和规范,特规定如下: 一、装订顺序 论文(设计说明书)英文文献及中文翻译内容一般应由3个部分组成,严格按以下顺序装订。 1、封面 2、中文翻译 3、英文文献(原文) 二、书写格式要求 1、毕业设计(论文)英文文献及中文翻译分毕业设计说明书英文文献及中文翻译和毕业论文英文文献及中文翻译两种,所有出现相关字样之处请根据具体情况选择“毕业设计说明书” 或“毕业论文”字样。 2、毕业设计说明书(毕业论文)英文文献及中文翻译中的中文翻译用Word 软件编辑,英文文献用原文,一律打印在A4幅面白纸上,单面打印。 3、毕业设计说明书(毕业论文)英文文献及中文翻译的上边距:30mm;下边距:25mm;左边距:3Omm;右边距:2Omm;行间距1.5倍行距。 4、中文翻译页眉的文字为“中北大学2019届毕业设计说明书” 或“中北大学××××届毕业论文”,用小四号黑体字,页眉线的上边距为25mm;页脚的下边距为18mm。 5、中文翻译正文用小四号宋体,每章的大标题用小三号黑体,加粗,留出上下间距为:段前0.5行,段后0.5行;二级标题用小四号黑体,加粗;其余小标题用小四号黑体,不加粗。 6、文中的图、表、附注、公式一律采用阿拉伯数字分章编号。如图1.2,表2.3,附注3.2或式4.3。 7、图表应认真设计和绘制,不得徒手勾画。表格与插图中的文字一律用5号宋体。

每一插图和表格应有明确简短的图表名,图名置于图之下,表名置于表之上,图表号与图表名之间空一格。插图和表格应安排在正文中第一次提及该图表的文字的下方。当插图或表格不能安排在该页时,应安排在该页的下一页。 图表居中放置,表尽量采用三线表。每个表应尽量放在一页内,如有困难,要加“续表X.X”字样,并有标题栏。 图、表中若有附注时,附注各项的序号一律用阿拉伯数字加圆括号顺序排,如:注①。附注写在图、表的下方。 文中公式的编号用圆括号括起写在右边行末顶格,其间不加虚线。 8、文中所用的物理量和单位及符号一律采用国家标准,可参见国家标准《量和单位》(GB3100~3102-93)。 9、文中章节编号可参照《中华人民共和国国家标准文献著录总则》。

大学毕业论文---软件专业外文文献中英文翻译

软件专业毕业论文外文文献中英文翻译 Object landscapes and lifetimes Tech nically, OOP is just about abstract data typing, in herita nee, and polymorphism, but other issues can be at least as importa nt. The rema in der of this sect ion will cover these issues. One of the most importa nt factors is the way objects are created and destroyed. Where is the data for an object and how is the lifetime of the object con trolled? There are differe nt philosophies at work here. C++ takes the approach that con trol of efficie ncy is the most importa nt issue, so it gives the programmer a choice. For maximum run-time speed, the storage and lifetime can be determined while the program is being written, by placing the objects on the stack (these are sometimes called automatic or scoped variables) or in the static storage area. This places a priority on the speed of storage allocatio n and release, and con trol of these can be very valuable in some situati ons. However, you sacrifice flexibility because you must know the exact qua ntity, lifetime, and type of objects while you're writing the program. If you are trying to solve a more general problem such as computer-aided desig n, warehouse man ageme nt, or air-traffic con trol, this is too restrictive. The sec ond approach is to create objects dyn amically in a pool of memory called the heap. In this approach, you don't know un til run-time how many objects you n eed, what their lifetime is, or what their exact type is. Those are determined at the spur of the moment while the program is runnin g. If you n eed a new object, you simply make it on the heap at the point that you n eed it. Because the storage is man aged dyn amically, at run-time, the amount of time required to allocate storage on the heap is sig ni fica ntly Ion ger tha n the time to create storage on the stack. (Creat ing storage on the stack is ofte n a si ngle assembly in structio n to move the stack poin ter dow n, and ano ther to move it back up.) The dyn amic approach makes the gen erally logical assumpti on that objects tend to be complicated, so the extra overhead of finding storage and releas ing that storage will not have an importa nt impact on the creati on of an object .In additi on, the greater flexibility is esse ntial to solve the gen eral program ming problem. Java uses the sec ond approach, exclusive". Every time you want to create an object, you use the new keyword to build a dyn amic in sta nee of that object. There's ano ther issue, however, and that's the lifetime of an object. With Ian guages that allow objects to be created on the stack, the compiler determines how long the object lasts and can automatically destroy it. However, if you create it on the heap the compiler has no kno wledge of its lifetime. In a Ianguage like C++, you must determine programmatically when to destroy the

相关文档
最新文档