第二章 红外光谱

第二章 红外光谱
第二章 红外光谱

第二章 红外光谱

一.分析

1. 指出下列各种振动形式,哪些是红外活性振动,(Δμ≠0),哪些是红外非活性振动(Δμ=0)。

分子 振动形式 (1) CH 3–CH 3 νC —C (2) CH 3–CCl 3 ν C —C (3) O ═ C ═ O νS ,CO2 (4) SO 2 νS , SO2 (5) CH 2═CH 2 νS , C ═ C (6)

CH 2═CH—CHO νS , C ═ C

二、回答下列问题:

1. C —H ,C —Cl 键的伸缩振动峰何者要相对强一些?为什么

2. νC═O 与νC═C 都在6.0μm 区域附近。试问峰强有何区别?意义何在

三、分析比较

1. 试将C═O

键的吸收峰按波数高低顺序排列,并加以解释。

(1)CH 3COCH 3 CH 3COOH CH 3COOCH 3 CH 3CONH 2 CH 3COCl CH 3CHO

(A ) (B ) (C ) (D ) (E ) (F )

(2)

(A ) (B ) (C )

(D ) (E )

2.能否用稀释法将化合物(A )、(B )加以区分,试加以解释。

(A ) (B

)

四.结构分析

1.

O

CH 3C

O CH 3C

CH 3

O CH 3C

CH 3

CH 3

CH O

O

OH

O O OH O CH 3C

NH 2

O CH 3C

NO 2

(1

)

(2)

(A ) (B ) (A ) (B ) (3) (4)

(A ) (B ) (A ) (B )

2.某化合物在4000~1300cm –1区间的红外吸收光谱如下图所示,问此化合物的结构是(A)还是(B)?

(A) (B)

3.用IR 光谱(下图)表示的化合物C 8H 9O 2N 是下面哪一种

C 8H 9O 2N

O COOC 2H 5

O

COOC 2H 5

COCH 3

COCH 3

CH 3

CH 3CH 3

O O

Me

O O

Me

OH

C O

CH 3

OH

C CH 3

O

HO

C N

C O

NH 2

NHCOCH 3OH

NH 2COOCH 3

CONH 2

OCH 3

CH 2NH 2COOH

NHCH 3COOH

4.某化合物初步推测为Ⅰ或Ⅱ或Ⅲ。试根据其部分红外光谱作出判断。

五、简答

1. 1–丙烯与1–辛烯的IR 光谱何处有明显区别

2.下列两个化合物,哪个化合物的IR 光谱中有两个 C═ O 吸收峰

?

3. 某一天然产物结构不是(A)就是(B),在IR 光谱中,只有2870cm –1峰和926cm –1强吸收,而无2960cm –1峰,试判断该天然产物的正确结构?

并说明理由。

4. 用其它光谱确定某一苷类化合物的结构不是A 就是B ,在IR 光谱出现890cm –1弱至中强吸收试确定其可能结构是哪一个,为什么

(A ) (B )

六、结构解析.

O

O

OH

OH

O

O

OH

OH

HO

O

O

OC H 3

OC H 3

HO

O

O

O

O

O

OH

OH OC H 3

H OH O

OH

OH H

OC H 3OH OH

1. 某未知物1分子式为C8H7N,低温下为固体,熔点29℃,其IR光谱图见下图试解析其结构。

未知物1

2.某化合物2分子式为C6H12O,IR光谱见图,试推断其可能结构式,并说明1400~1360cm–1区域的特征。

H12O)的

某化合物2(C

第四章 振动光谱

第四章振动光谱 一、教学目的 理解掌握震动光谱分析的基本理论,掌握红外光谱图的分析处理,了解红外光谱实验技术。 二、重点、难点 重点:震动光谱分析的基本理论,红外光谱图的分析处理。 难点:震动光谱分析的基本理论。 三、教学手段 多媒体教学 四、学时分配 4学时 引言: ●1900~1910年间,科布伦茨(W.W.C。blentz)首先用红外光测量了一些有 机物液体的吸收光谱而建立起一种新的分析方法——红外光谱法。他发现分子中的一定原子群可以吸收特定的频率,这些特定的频率犹如人类的指纹,可以用来辨认分子中特定原子群的存在。 ●它主要可以用作分子结构的基础研究和物质化学组成(物相)的分析(包括定性和 定量)。红外光谱法作分子结构的研究可以测定分子的键长、键角大小,并推断分子的立体构型,或根据所得的力常数,间接得知化学键的强弱,也可以从正则振动频率来计算热力学函数等。 ●不过红外光谱法更多的用途是根据谱的吸收频率的位置和形状来判定本知物,并按 其吸收的强度来测定它们的含量。因此红外光谱法在目前已成为十分方便而有效的分析方法之一。 ●红外光谱法应用得较多的是在有机化学领域,对无机化合物和矿物的红外鉴定开始 较晚。红外光谱法对测定矿物的结构或组分虽不如X射线衍射分析那么成熟,却也有其独特长处。 所谓振动光谱是指物质因受光的作用,引起分子或原子基团的振动,从而产生对光的吸收。如果将透过物质的光辐射用单色器加以色散,使波长授长短依次排列,同时测量在不同波长处的辐射强度,得到的是吸收光谱。如果用的光源是红外光波,即0.78~1000μm,就是红外吸收光谱。如果用的是强单色光,例如激光,产生的是激光拉曼光谱。本章主要介绍红外光谱的原理及其在无机非金属材料中的应用,对拉曼光谱只作简单的介绍。

红外光谱习题答案

红外光谱习题 一. 选择题 1.红外光谱是(AE ) A :分子光谱 B :原子光谱 C :吸光光谱 D :电子光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则(ACE ) A :吸收光子的能量越大 B :吸收光子的波长越长 C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是(AC ) A :乙炔分子中对称伸缩振动 B :乙醚分子中不对称伸缩振动 C :CO 2分子中对称伸缩振动 D :H 2O 分子中对称伸缩振动 E :HCl 分子中H -Cl 键伸缩振动 4.下面五种气体,不吸收红外光的是(D ) A:O H 2 B:2CO C:HCl D:2N 5 分子不具有红外活性的,必须是(D ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6.预测以下各个键的振动频率所落的区域,正确的是(ACD ) A:O-H伸缩振动数在4000~25001 -cm B:C-O 伸缩振动波数在2500~15001 -cm C:N-H 弯曲振动波数在4000~25001 -cm D:C-N 伸缩振动波数在1500~10001 -cm E:C ≡N 伸缩振动在1500~10001 -cm 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数最大者是(B ) A:乙烷中C-H 键,=k 5.1510?达因1 -?cm B: 乙炔中C-H 键, =k 5.9510?达因1 -?cm

C: 乙烷中C-C 键, =k 4.5510?达因1 -?cm D: CH 3C ≡N 中C ≡N 键, =k 17.5510?达因1 -?cm E:蚁醛中C=O 键, =k 12.3510?达因1 -?cm 8.基化合物中,当C=O 的一端接上电负性基团则(ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 9.以下五个化合物,羰基伸缩振动的红外吸收波数最大者是(E ) A: B: C: D: E: 10.共轭效应使双键性质按下面哪一种形式改变(ABCD ) A:使双键电子密度下降 B:双键略有伸长 C:使双键的力常数变小 D.使振动频率减小 E:使吸收光电子的波数增加 11.下五个化合物羰基伸缩振动的红外吸收波数最小的是(E ) A: B: C: D: E: 12.下面四个化合物中的C=C 伸缩振动频率最小的是(D ) A: B: C: D: 13.两 个化合物(1) ,(2) 如用红外光谱鉴别,主要依 据的谱带是(C )

红外光谱习题

1009 在红外光谱分析中,用KBr制作为试样池,这是因为:( ) (1) KBr 晶体在4000~400cm-1范围内不会散射红外光 (2) KBr 在4000~400 cm-1范围内有良好的红外光吸收特性 (3) KBr 在4000~400 cm-1范围内无红外光吸收 (4) 在4000~400 cm-1范围内,KBr 对红外无反射 1022 下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪 一结构与光谱是一致的?为什么?( ) 1023 下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构 与光谱是一致的,为什么?

1068 一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与 光谱最近于一致? 1072 羰基化合物 R C O O R(I),R C O R? (¢ò), R C O N H R(I I I), A r S C O S R(I V) 中,C = O 伸缩振动 频率出现最低者为( ) (1) I (2) II (3) III (4) IV 1075 一种能作为色散型红外光谱仪色散元件的材料为( ) (1) 玻璃(2) 石英(3) 卤化物晶体(4) 有机玻璃1088 并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为( ) (1) 分子既有振动运动,又有转动运动,太复杂 (2) 分子中有些振动能量是简并的 (3) 因为分子中有C、H、O 以外的原子存在

(4) 分子某些振动能量相互抵消了 1097 下列四组数据中,哪一组数据所涉及的红外光谱区能够包括 CH 3- CH 2-CH = O 的吸收带 ( ) 1104 请回答下列化合物中哪个吸收峰的频率最高? ( ) (1) R C O R (2) C O R (3) C O (4) F C O R 1114 在下列不同溶剂中,测定羧酸的红外光谱时,C =O 伸缩振动频率出现最高者为( ) (1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇 1179 水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( ) (1) 2 个,不对称伸缩 (2) 4 个,弯曲 (3) 3 个,不对称伸缩 (4) 2 个,对称伸缩 1180

第三章 振动光谱作业

第二章振动光谱作业 1.红外光区的划分? 红外光按波长不同划分为三个区域:近红外区域(1-2.5微米)/中红外区域(2.5-25微米)/远红外区域(25-1000微米) 2.振动光谱有哪两种类型?多原子分子的价键或基团的振动有哪些类型?同一种基团哪种振动的频率较高?哪种振动的频率较低? 振动光谱有红外吸收光谱和激光拉曼光谱两种类型。 价键或基团的振动有伸缩振动和弯曲振动。其中伸缩振动分为对称伸缩振动和非对称伸缩振动;弯曲振动则分为面内弯曲振动(剪式振动、面内摇摆振动)和面外弯曲振动(扭曲振动、面外摇摆振动)。 伸缩振动频率较高,弯曲振动频率较低。(键长的改变比键角的改变需要更大的能量)非对称伸缩振动的频率高于对称伸缩振动。 3. 说明红外光谱产生的机理与条件? 产生机理: 当用红外光波长范围的光源照射物质时,物质因受光的作用,引起分子或原子基团的振动,若振动频率恰与红外光波段的某一频率相等时就引起共振吸收,使光的透射强度减弱,使通过试样的红外光在一些波长范围内变弱,在另一些范围内则较强,用光波波长(或波数)对光的透过率作图,便可得到红外光谱 产生条件: 1)辐射应具有能满足物质产生振动-转动跃迁所需的能量,即振动的频率与红外光谱谱段的某频率相等。 2)辐射与物质间有相互偶合作用,即振动中要有偶极矩变化 4.红外光谱图的表示法? 红外光谱图的表示法:横坐标:波数cm-1或者波长μm 纵坐标:透过率%或者吸光度A 5. 红外光谱图的四大特征(定性参数)是什么? 如何进行基团的定性分析?如何进行物相的定性分析? 四大特征:谱带(或者说是吸收峰)的数目、位置、形状和强度。 进行基团的定性分析时,首先,观察特征频率区,根据基团的伸缩振动来判断官能团。 进行物相的定性分析: 进行物相的定性分析: 对于已知物: a、,观察特征频率区,判断官能团,以确定所属化合物的类型 b、观察指纹频率区,进一步确定基团的结合方式 c、对照标准谱图进行比对,若被测物质的与已知物的谱图峰位置和相对强度完全一致,则可确认为一种物质。 对于未知物:A、做好准备工作。了解试样的来源,纯度、熔点、沸点点各种信息,如果是混合物,尽量用各种化学、物理的方法分离 B、按照鉴定已知化合物的方法进行 6. 何谓拉曼效应?说明拉曼光谱产生的机理与条件? 光子与试样分子发生非弹性碰撞,也就是说在光子与分子相互作用中有能量的交换,产生了频率的变化,且方向改变叫拉曼效应。 产生的机理: 斯托克斯线产生机理:处于振动基态的分子在光子作用下,激发到较高的不稳定的能态(虚

第六章 红外光谱法

1.下列羰基化合物中,C=O伸缩振动频率出现最高的是:() (A)RCOF (B)RCOCl (C)RCOH (D)RCOR 2.在醇类化合物中,O-H伸缩振动频率随溶液C上升,向低波数方向移动的原因是()(A)溶液极性增加(B)诱导效应增加(C)分子间氢键的增加(D)易产生振动偶合 3.一种氯苯的红外谱图在900cm-1~690cm-1间无吸收带,它的可能结构为:() (A)对二氯苯(B)间三氯苯(C)六氯苯(D)四取代氯苯 4.CO2的平动、转动、振动的自由度分别为:() (A)324 (B)234 (C)342 (D)423 5.乙炔分子的平动、转动、振动自由度为() A. 2, 3, 3 B. 3, 2, 8 C. 3, 2, 7 D. 2, 3, 7 6.分子式为C7H11N2OSCl的不饱和度Ω为:() (A)1 (B)2 (C)3 (D)4 7.下面四种气体无红外吸收光谱的为() (A)H2O (B)CO2(C)HCl (D)N2 8. 红外光谱法中的红外吸收带的波长位置与吸收谱带的强度, 可以用来() A. 鉴定未知物的结构组成或确定其化学基团及进行定量分析与纯度鉴定; B. 确定 配位数; C. 研究化学位移; D. 研究溶剂效应. 9. 下列哪种方法是由外层电子跃迁引起的?( ) A. 原子发射光谱和紫外吸收光谱 B. 原子发射光谱和核磁共振谱 C. 红外光谱和Raman光谱 D. 原子光谱和分子光谱 10. 同时具有红外活性和拉曼活性的是:( ) A. O2对称伸缩振动 B.CO2的不对称伸缩振动 C. H2O的弯曲振动 D. CS2的弯曲振动 11. 分子不具有红外活性的者,必须是:( ) A:分子的偶极矩为零B:分子没有振动C:非极性分子D:分子振动时没有偶极矩变化E:双原子分子 12 .试比较以下五个化合物,羰基伸缩振动的红外吸收波数最大者是:( ) A: B: C: D: E: 13.以下五个化合物羰基伸缩振动的红外吸收波数最小的是:( ) A: B: C: D: E:

红外光谱法习题参考答案

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 3 3 ,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1 。 烯烃主要特征峰为H C C C H C -==-=γνν,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1 。νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γνν,,,其中H C -≡ν峰位在3333-3267cm -1 。C C ≡ν峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1 和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动( =C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动( c=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动( =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及OH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的 OH 峰位在955~915 cm -1 范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c

第二章红外光谱习题

第二章红外光谱 一、判断题 [1] 红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振转光谱。(√) [2] 同核双原子分子N≡N、Cl-Cl、H-H等无红外活性。(√) [3] 由于振动能级受分子中其他振动的影响,因此红外光谱中出现振动耦合谱带。(√) [4] 确定某一化合物骨架结构的合理方法是红外光谱分析法。(×) [5] 对称结构分子,如H2O分子,没有红外活性,水分子的H-O-H对称伸缩振动不产生吸收峰。(×) [6] 红外光谱图中,不同化合物中相同基因的特征频率峰总是在特定波长范围内出现,故可以根据红外光谱图中的特征频率峰来确定化合物中该基团的存在。(√) [7] 不考虑其他因素的影响,下列羰基化合物υc=0伸缩频率的大小顺序为:酰卤>酰胺>酸>醛>酯。(×) [8] 醛基中υC=H伸缩频率出现在2720cm-1。(√) [9] 红外光谱与紫外光谱仪在构造上的差别是检测器不同。(×) [10] 当分子受到红外光激发,其振动能级发生跃迁时,化学键越强吸收的光子数目越多。(×) [11] 游离有机酸C=O伸缩振动υc=0频率一般出现在1760cm-1,但形成多聚体时,吸收频率会向高波数移动。(×) [12] 醛、酮、羧酸等的羰基的伸缩振动在红外光谱中的吸收峰频率相同。(×) [13] 红外吸收峰的数目一般比理论振动数目少,原因之一是有些振动是非红外活性的。(√) [14] 红外光谱的特点是一方面官能团的特征吸收频率的位置基本上是固定的,另一方面它们又不是绝对不变的,其频率位移可以反映分子的结构特点。(√) [15] Fermi共振是一个基频振动与倍频(泛频)或组频之间产生耦合作用。(√) 二、选择题(单项选择) [1] 红外光可引起物质的能级跃迁是(C)。 A. 分子的电子能级的跃迁,振动能级的跃迁,转动能级的跃迁; B. 分子内层电子能级的跃迁; C. 分子振动能级及转动能级的跃迁; D. 分子转动能级的跃迁。 [2] H2O在红外光谱中出现的吸收峰数目为(A)。 A. 3 B. 4 C. 5 D. 2 [3] 在红外光谱中,C=O的伸缩振动吸收峰出现的波数(cm-1) 范围(A )。 A. 1900~1650 B. 2400~2100 C. 1600~1500 D. 1000~650 [4] 在下列分子中,不能产生红外吸收的是(D )。 A. CO B. H2O C. SO2 D. H2 [5] 下列化学键的伸缩振动所产生的吸收峰波数最大的是(D)。 A. C=O B. C-H C. C=C D. O-H [6] 表示红外分光光度法通常是(C)。 A. HPLC B. GC C. IR D. TLC [7] 羰基化合物①RCOR、②RCOCl、③RCOH、④RCOF中,C=O伸缩振动频率最高的是(D )。 A. ① B. ② C. ③ D. ④ [8] 在醇类化合物中,O-H伸缩振动频率随溶液浓度增加而向低波数移动,原因是(B )。

红外光谱、拉曼和紫外作业

1.比较C=C和C=O键的伸缩振动,谱带强度更大的是C=O。 2.何谓基团频率?它有什么重要性及用途? 答: 不同分子中同一类型的化学基团,在红外光谱中的吸收频率总是出现在一个较窄的范围内,这种吸收谱带的频率称为基团频率。 它们不随分子构型的变化而出现较大的改变,可用作鉴别化学基团。基团频率区在4000~1300厘米-1,其中4000~2500厘米-1为单键伸缩振动区,2500~1900厘米-1为叁键和累积双键区,1900~1300厘米-1为双键伸缩振动区和单键弯曲振动区。 3.某化合物C8H9NO2,试根据如下谱图推断其结构,并说明依据。 答:U=8-(1-9)/2 + 1 =5,推断有苯环和C=C或C=O δ=3.8,单峰,归属CH3,推测为O-CH3

δ=7.1,7.8,均是双峰,归属Ar-H,是苯环对位取代特征峰 δ=7.2,双峰,推测可能为-NH2 3392cm-1,3172cm-1,N-H伸缩振动,双峰说明可能是-NH2 1651cm-1,N-H变形振动 1618cm-1,1574cm-1,1516cm-1,1423cm-1,芳环C=C伸缩振动 1397cm-1,甲基变形振动 1254cm-1,C-O-C伸缩振动吸收峰 853cm-1,苯环相邻两个H原子=C-H的面外变形振动,苯环对位取代的特征 故推测结构为 4.紫外吸收光谱有哪些基本特征? 答: (1)紫外吸收光谱所对应的电磁波长较短,能量大,它反映了分子中价电子能级跃迁情况。主要应用于共轭体系(共轭烯烃和不饱和羰基化合物)及芳香族化合物的分析。(2)由于电子能级改变的同时,往往伴随有振动能级的跃迁,所以电子光谱图比较简单,但峰形较宽。一般来说,利用紫外吸收光谱进行定性分析信号较少。 (3)紫外吸收光谱常用于共轭体系的定量分析,灵敏度高,检出限低。 5.光度分析误差的主要来源有哪些?如何降低光度分析的误差? 1对朗伯-比尔定律的偏离: (1)非单色光引起的偏离。◎使用比较好的单色器,从而获得纯度较高的“单色光”,使标准曲线有较宽的线性范围。◎人射光波长选择在被测物质的最大吸收处,保证测定有较高的灵敏度,此处的吸收曲线较为平坦,在此最大吸收波长附近各波长的光的?值大体相等,由于非单色光引起的偏离要比在其他波长处小得多。◎测定时应选择适当的浓度范围,使吸光度读数在标准曲线的线性范围内。 (2)介质不均匀引起的偏离。故在光度法中应避免溶液产生胶体

红外光谱的吸收

红外光谱的吸收

第六章红外吸收光谱法 基本要点: 1. 红外光谱分析基本原理; 2. 红外光谱与有机化合物结构; 3. 各类化合物的特征基团频率; 4. 红外光谱的应用; 5. 红外光谱仪. 学时安排:3学时 第一节概述 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。 红外吸收光谱也是一种分子吸收光谱。 当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产

生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。 一、红外光区的划分 红外光谱在可见光区和微波光区之间,波长范围约为 0.75 ~ 1000μm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 ~ 2.5μm ),中红外光区(2.5 ~25μm ),远红外光区(25 ~ 1000μm )。 近红外光区(0.75 ~ 2.5μm ) 近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收等产生的。该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。中红外光区(2.5 ~ 25μm ) 绝大多数有机化合物和无机离子的基频吸收带出现在该 光区。由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数据资料,因此它是应用极为广泛的光谱区。通常,中红外光谱法又简称为红外光谱法。 远红外光区(25 ~ 1000μm )该区的吸收带主要是由气体分子中的纯转动跃迁、 振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。由于低频骨架振动能很灵敏地反映出结构变化,所以对异构体的研究特别方便。此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究。但由于该光区能量弱,除非其它波长区间内没有合适的分析谱带,一般不在此范围内进行分析。 红外吸收光谱一般用T~ 曲线或T~ 波数曲线表示。纵坐标

红外光谱习题答案

红外光谱习题 一. 选择题 1红外光谱是(AE) A :分子光谱 B :原子光谱 D :电子光谱E:振动光谱 2. 当用红外光激发分子振动能级跃迁时,化学键越强,则A:吸收光子的能量越大 B:吸收光子的波长越长 C:吸收光子的频率越大 D:吸收光子的数目越多 E:吸收光子的波数越大 3. 在下面各种振动模式中,不产生红外吸收的是(AC)A :乙炔分子中-对称伸缩振动 B:乙醚分子中---不对称伸缩振动 C: CO2分子中- -对称伸缩振动 D: H2O分子中日对称伸缩振动 E: HCl分子中H —Cl键伸缩振动 4. 下面五种气体,不吸收红外光的是(D) A: H2O B: C°2 C: HCl D: N2 5分子不具有红外活性的,必须是(D) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6. 预测以下各个键的振动频率所落的区域,正确的是( A:O — H伸缩振动数在4000?2500cm 1 B:C-0伸缩振动波数在2500?1500cm 1 C:N-H弯曲振动波数在4000?2500cm 1 D:C-N伸缩振动波数在1500?1000cm 1 ACE ) ACD) C :吸光光谱

E:C三N伸缩振动在1500?1000cm 1

7. 下面给出五个化学键的力常数,如按简单双原子分子计算,则在红 外光谱中波数最大者是(B ) A :乙烷中C-H 键,k 5.1 105达因cm 1 B :乙炔中C-H 键,k 5.9 105达因cm 1 C :乙烷中C-C 键,k 4.5 105达因cm 1 D : CfO N 中 O N 键,k 17.5 105 达因 cm 1 E :蚁醛中C=0键,k 12.3 105达因cm 1 8基化合物中,当C=O 的一端接上电负性基团则(ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 以下五个化合物,羰基伸缩振动的红外吸收波数最大者是( R —C —H C: R —0—C1 II D: ° E: 10.共轭效应使双键性质按下面哪一种 形式改变( ABCD ) A:使双键电子密度下降 E:双键略有伸长 C:使双键的力常数变小 D.使振动频率减小 E:使吸收光电子的波数增加 11 ..下五个化合物羰基伸缩振动的红外吸收波数最小的是( R -| R —C — II -H O II . A: B: C : K —C —CH=CH —R D: R ! 3 5 E: 尺一田二 — r —( ) 1-0 12.下面四个化合物中的C=C 伸缩振动频率最小的是(D ) A: Q B: 0 C: □ D: A II 9. A: B: II 0

第二章 红外光谱习题教学提纲

第二章红外光谱习题

第二章红外光谱 一、判断题 [1]红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振 转光谱。(√) [2]同核双原子分子N≡N、Cl-Cl、H-H等无红外活性。(√) [3]由于振动能级受分子中其他振动的影响,因此红外光谱中出现振动耦合谱 带。(√) [4]确定某一化合物骨架结构的合理方法是红外光谱分析法。(×) [5]对称结构分子,如H2O分子,没有红外活性,水分子的H-O-H对称伸缩振 动不产生吸收峰。(×) [6]红外光谱图中,不同化合物中相同基因的特征频率峰总是在特定波长范围 内出现,故可以根据红外光谱图中的特征频率峰来确定化合物中该基团的存在。(√) [7]不考虑其他因素的影响,下列羰基化合物υc=0伸缩频率的大小顺序为:酰 卤>酰胺>酸>醛>酯。(×) [8]醛基中υC=H伸缩频率出现在2720cm-1。(√) [9]红外光谱与紫外光谱仪在构造上的差别是检测器不同。(×) [10]当分子受到红外光激发,其振动能级发生跃迁时,化学键越强吸收的光子 数目越多。(×) [11]游离有机酸C=O伸缩振动υc=0频率一般出现在1760cm-1,但形成多聚体 时,吸收频率会向高波数移动。(×) [12]醛、酮、羧酸等的羰基的伸缩振动在红外光谱中的吸收峰频率相同。(×) [13]红外吸收峰的数目一般比理论振动数目少,原因之一是有些振动是非红外 活性的。(√) [14]红外光谱的特点是一方面官能团的特征吸收频率的位置基本上是固定的, 另一方面它们又不是绝对不变的,其频率位移可以反映分子的结构特点。 (√) [15]F ermi共振是一个基频振动与倍频(泛频)或组频之间产生耦合作用。(√) 二、选择题(单项选择) [1]红外光可引起物质的能级跃迁是( C)。 A. 分子的电子能级的跃迁,振动能级的跃迁,转动能级的跃迁; B. 分子内层电子能级的跃迁; C. 分子振动能级及转动能级的跃迁; D. 分子转动能级的跃迁。

红外作业参考答案.doc

红外吸收光谱作业(IR) 一、判断题 1.红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振转光谱。(√) 2.由于振动能级受分子中其他振动的影响,因此红外光谱中出现振动偶合谱带。(√) 3.确定某一化合物骨架结构的合理方法是红外光谱分析法。(×) 4.对称分子结构,如H2O分子,没有红外活性。(×) 5.分子中必须具有红外活性振动是分子产生红外吸收的必备条件之一。(√) 6.红外光谱中,不同化合物中相同基团的特征频率总是在特定波长范围内出现,故可以根据红外光谱中的特征频率峰来确定化合物中该基团的存在。(√) 7.不考虑其他因素的影响,下列羰基化合物的大小顺序为:酰卤>酰胺>酸>醛>酯。(×) 8.傅里叶变换型红外光谱仪与色散型红外光谱仪的主要差别在于它有干涉仪和计算机部件。(√)9.当分子受到红外光激发,其振动能级发生跃迁时,化学键越强吸收的光子数目越多。(√) 10.游离有机酸C=O伸缩振动v C=O频率一般出现在1760cm-1,但形成多聚体时,吸收频率会向高波数移动。(×) 二、选择题 1.化学键的力常数越大,原子的折合质量越小,则化学键的振动频率(B) A.越低;B.越高;C.不变 2.在红外吸收光谱中,乙烯分子的C-H非对称伸缩振动具有(A) A.红外活性;B.非红外活性;C.视实验条件 3.在醇类化合物中,O-H伸缩振动随溶液浓度的增大向低波数移动的原因是(C) A.诱导效应;B.溶液极性增大;C.形成分子间氢键;D.振动耦合 4.分子的C-H对称伸缩振动的红外吸收带频率比弯曲振动的(A) A.高;B.低;C.相当 5.在红外吸收光谱中,C=O和C=C基,两者的吸收强度的大小关系是(B) A.前者<后者;B.前者>后者.C.两者相等 6.用于测量红外辐射的检测器是(D)。 A.光电池;B.光电管;C.热导池;D.热电偶 7.应用红外光谱解析分子结构的主要参数是(B) A.质荷比;B.波数;C.偶合常数;D.保留值。 8.红外吸收光谱是(D) A.原子光谱;B.发射光谱;C.电子光谱;D.分子光谱。 9.在醇类化合物中,O—H伸缩振动频率随溶液浓度增加而向低波数移动,原因是(B) A.溶液极性变大;B.分子间氢键增强;C.诱导效应变大;D.易产生振动偶合。 10.下列化学键的伸缩振动所产生的吸收峰波数最大的是(D) A.C=O;B.C—H;C.C=C;D.O—H。 三、填空题 1.适用于红外光谱区的光源是(能斯特灯)和(硅碳棒),傅里叶变换红外光谱仪的分光系统是(迈克耳孙干涉仪)。 2.一个分子能否产生红外吸收峰,除了(辐射应具有刚好满足振动跃迁所需的能量)以外,还与分子的(偶极矩是否发生变化)有关。 3.红外分光光度法与紫-可见分光光度法一样,按光谱获得方式,两者都属于(吸收)光谱法,但就辐射跃迁的本质而言,两种方法有区别,前者主要研究(振动-转动)光谱,后者主要研究(电子)光谱。4.红外光谱研究最多的是基本振动频率,而这种分子振动主要有两种形式,即(伸缩)振动和(弯曲)

红外光谱分析习题解答

红外光谱分析习题解答 解:影响红外吸收峰强度的主要因素:红外吸收的强度主要由振动能级的跃迁概率和振动过程中偶极矩的变化决定。从基态向第一激 跃迁的概率大,因此基频吸收带一般较强。另外,基频振动过程中偶极矩的变化越大,则其对应的红外吸收越强。因此,如果化学键两 接原子的电负性差异越大,或分子的对称性越差,则伸缩振动时化学键的偶极矩变化越大,其红外吸收也越强,这就是 C=O 的强度大 =C 的原因。一般来说,反对称伸缩振动的强度大于对称收缩振动的强度,伸缩振动的强度大于变形振动的强度。 解:由量子力学可知,简单双原子分子的吸收频率可用下式表示: μπk c 21 (1) A N M M M M )(212 1+ (2) ) 式中: σ为波数(cm -1),c 为光在真空中的速度(310-10cm S -1),k 为化学键力常数(N cm -1) ) 式中: M 1和M 2分别为两种原子的摩尔质量,N A 为阿伏加德罗常数(6.021023mol -1 ) (2)式代入(1)得 2 1212121) (1307 )(221M M M M k M M M M k c N k c A +=+= πμπ 教材P 153公式(10-6)系数为1370有误】 Cl 键的键力常数 1 2 2 12 12 1.0079 .13453.350079.1453.35130729931307-?+?? ???+??? ??cm N M M M M σ 解:依照上题的计算公式

2 1212121) (1307 )(221M M M M k M M M M k c N k c A +=+= πμπ =9 N cm -1,M H =1.0079,M F =18.998代入可计算得到HF 的振动吸收峰频率为4023cm -1 。 解:2-戊酮的最强吸收带是羰基的伸缩振动( C=O ),分别在极性溶剂95%乙醇和非极性溶剂正己烷中,其吸收带出现的频率在正己 位于较高处。原因是乙醇中的醇羟基可以与戊酮的羰基形成分子间氢键,导致羰基的伸缩振动频率向低波数方向移动。而正己烷不能与 形成分子间氢键。 解: 断法则为:若振动前后引起偶极矩的变化的,是具有红外活性的,否则为非红外活性的。因此具有红外活性是:(b )(c )(e ),非 活性 (a )(d )(f )。 ⊕ C C H H H H ⊕ C C H H H C C H H H H (d )C =C 伸缩 (e )C ?H 剪式 (f )C ?H 摇摆 C C H H H H C C H H H H ⊕ ⊕ C C H H H H ⊕ ⊕ (a )C ?H 伸缩 (b )C ?H 伸缩 (c )CH 2扭曲

红外光谱习题答案

红外光谱习题 ACE ) B :原子光谱 C :吸光光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则( ACE ) A :吸收光子的能量越大 B :吸收光子的波长越长 C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是( AC ) A :乙炔分子中一C —C —对称伸缩振动 B :乙醚分子中。一C-5不对称伸缩振动 C : CO2 分子中 C —0—C D : H2O 分子中H/ \日 E : HCl 分子中H — CI 键伸缩振动 4.下面五种气体,不吸收红外光的是(D ) A: H 2O B: C°2 C: HCl D: N 2 5分子不具有红外活性的,必须是(D ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6.预测以下各个键的振动频率所落的区域,正确的是( AD ) A:O — H 伸缩振动数在 4000?2500cm 1 B:C-0伸缩振动波数在 2500?1500cm 1 C:N-H 弯曲振动波数在 4000?2500cm 1 D:C-N 伸缩振动波数在1500?1000cm 1 E:C 三N 伸缩振动在1500?1000cm 1 一. 选择题 1红外光谱是 A :分子光谱 D :电子光谱 对称伸缩振动 对称伸缩振动

0 A: R —C — H 0 II ;B: 0 C: K —C —CH=CH —R D: R — E: 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红 外光谱中波数最大者是(B ) 乙烷中C-H 键,k 5.1 105 达因 乙炔中C-H 键,k 5.9 乙烷中C-C 键,k 4.5 CH3O N 中 O N 键,k 蚁醛中C=C 键,k 12.3 8 基化合物中,当C=C 的一端接上电负性大的基团则(ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 以下五个化合物,羰基伸缩振动的红外吸收波数最大者是(E ) R —C —H 10.共轭效应使双键性质按下面哪一种形式改变( ABCD ) A:使双键电子密度下降 B:双键略有伸长 C:使双键的力常数变小 D.使振动频率减小 E:使吸收光电子的波数增加 1 cm 105 达因cm 1 105 达因cm 1 17.5 105 达因 cm 1 A B C D E 9. A : B : C : D : R —C —C1 II E: Cl —Cl K —CH=C —C — 11.下五个化合物羰基伸缩振动的红外吸收波数最小的是(

第六章 红外吸收光谱法

第六章红外吸收光谱法 一选择题 1分子光谱是由于___B___而产生的。 A 电子的发射 B 电子相对于原子核的运动以及核间相对位移引起的振动和转动 C 质子的运动 D 离子的运动 2溶剂对电子光谱的影响较为复杂,改变溶剂的极性,__B_____。 A 不会引起吸收带形状的变化 B 会使吸收带的最大吸收波长发生变化 C 精细结构并不消失 D 对测定影响不大 3红外光谱法中的红外吸收带的波长位置与吸收谱带的强度,可以用来_____A__。 A 鉴定未知物的结构组成或确定其化学基团及进行定量分析与纯度鉴定 B 确定配位数 C 研究化学位移 D 研究溶剂效应 4红外光谱的谱带较多,能较方便地对单组分或多组分进行定量分析,但红外光谱法的灵敏度较低,尚不适于____B___的测定。 A 常量组分 B 微量组分 C 气体试样 D 固体和液体试样 5 在有机化合物的红外吸收光谱分析中,出现在4000~1350cm-1频率范围的吸收峰可用于鉴定官能团,这一段频率范围称为_____A_。 A.指纹区,B.基团频率区,C.基频区,D.和频区。 6光学分析法主要根据物质发射、吸收电磁辐射以及物质与电磁辐射的相互作用来进行分析的。电磁辐射(电磁波)按其波长可分为不同区域,其中中红外区

波长为B______。 A 12820~4000cm-1 B 4000~200 cm-1 C 200~33 cm-1 D 33~10 cm-1 7 下列羰基化合物中C=O伸缩振动频率最高的是:C A RCOR’ B RCOCl C RCOF D RCOBr 8. 红外光谱法中的红外吸收带的波长位置与吸收谱带的强度,可以用来____A___。 A. 鉴定未知物的结构组成或确定其化学基团及进行定量分析与纯度鉴定; B. 确定配位数; C. 研究化学位移; D. 研究溶剂效应. 二填空题 1 共轭效应使共轭体具有共面性,且使电子云密度平均化,造成双键略有伸长,单键略有缩短。因此,双键的红外吸收频率往___低_____波数方向移动。 2 在化合物R—C—H与R—C—F中,前者的C=O的伸缩振动产生的吸收峰的波数比后者的____低____;而在化合物R—C—R与R—C—NH2中,前者的C=O 的伸缩振动产生的吸收峰的波数比后者的______高__。 3在有机化合物中,常常因取代基的变更或溶剂的改变,使其吸收带的最大吸收波长发生移动,向长波方向移动称为___红(长)移______,向短波方向移动称为_____蓝(短)移______。 4 红外光谱是由于分子振动能级的跃迁而产生,当用红外光照射分子时,要使分子产生红外吸收,则要满足两个条件:(1)_____红外光辐射的频率与分子中某基团的震动频率相同 (2)_在震动的过程中,分子必须有偶极矩的改变 5红外光谱的强度与_______分子或基团的极性强弱______________成正比。

(新)红外光谱习题

红外、拉曼光谱习题 一. 选择题 1.红外光谱是( CE ) A :分子光谱 B :原子光谱 C :吸光光谱 D :电子光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则( CE ) A :吸收光子的能量越大 B :吸收光子的波长越长 C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是( AC ) A :乙炔分子中 对称伸缩振动 B :乙醚分子中 不对称伸缩振动 C :CO 2分子中 对称伸缩振动 D :H 2O 分子中对称伸缩振动 E :HCl 分子中H -Cl 键伸缩振动 4.下面五种气体,不吸收红外光的是( D ) A:O H 2 B:2CO C:HCl D:2N 5 分子不具有红外活性的,必须是(ABD ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6.预测以下各个键的振动频率所落的区域,正确的是( AC ) A:O-H 伸缩振动数在4000~25001-cm B:C-O 伸缩振动波数在2500~15001-cm C:N-H 弯曲振动波数在4000~25001-cm D:C-N 伸缩振动波数在1500~10001-cm E:C ≡N 伸缩振动在1500~10001-cm 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数 最大者是( ) A:乙烷中C-H 键,=k 5.1510?达因1-?cm B: 乙炔中C-H 键, =k 5.9510?达因1-?cm C: 乙烷中C-C 键, =k 4.5510?达因1-?cm D: CH 3C ≡N 中C ≡N 键, =k 17.5510?达因1-?cm

红外光谱分析法习题(含答案)

红外光谱分析法试题 一、简答题 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 2.以亚甲基为例说明分子的基本振动模式. 3.何谓基团频率?它有什么重要用途? 4.红外光谱定性分析的基本依据是什么?简要叙述红外定性分析的过程. 5.影响基团频率的因素有哪些? 6.何谓指纹区?它有什么特点和用途? 二、选择题 1.在红外光谱分析中,用 KBr制作为试样池,这是因为 ( ) A KBr晶体在 4000~ 400cm -1 范围内不会散射红外光 B KBr在 4000~ 400 cm -1 范围内有良好的红外光吸收特性 C KBr在 4000~ 400 cm -1 范围内无红外光吸收 D 在 4000~ 400 cm -1 范围内,KBr 对红外无反射 2.一种能作为色散型红外光谱仪色散元件的材料为 ( ) A 玻璃 B 石英 C 卤化物晶体 D 有机玻璃 3.并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) A 分子既有振动运动,又有转动运动,太复杂 B 分子中有些振动能量是简并的 C 因为分子中有 C、H、O以外的原子存在 D 分子某些振动能量相互抵消了 4.下列四种化合物中,羰基化合物频率出现最低者为 ( ) A I B II C III D IV 5.在下列不同溶剂中,测定羧酸的红外光谱时,C=O伸缩振动频率出现最高者为 ( ) A 气体 B 正构烷烃 C 乙醚 D 乙醇 6.水分子有几个红外谱带,波数最高的谱带对应于何种振动? ( )

A 2个,不对称伸缩 B 4个,弯曲 C 3个,不对称伸缩 D 2个,对称伸缩 7.苯分子的振动自由度为( ) A 18 B 12 C 30 D 31 8.在以下三种分子式中C=C双键的红外吸收哪一种最强? (1) CH3-CH = CH2(2) CH3-CH = CH-CH3(顺式)(3) CH3-CH = CH-CH3(反式)( ) A(1)最强 B (2)最强 C (3)最强 D 强度相同 9.在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带( ) A 向高波数方向移动 B 向低波数方向移动 C 不移动 D 稍有振动 10.以下四种气体不吸收红外光的是( ) A H2O B CO 2 C HCl D N2 11.某化合物的相对分子质量Mr=72,红外光谱指出,该化合物含羰基,则该化合物可能的分子式为( ) A C4H8O B C3H4O 2 C C3H6NO D (1) 或(2) 12.红外吸收光谱的产生是由于( ) A 分子外层电子、振动、转动能级的跃迁 B 原子外层电子、振动、转动能级的跃迁 C 分子振动-转动能级的跃迁 D 分子外层电子的能级跃迁 13. Cl2分子在红外光谱图上基频吸收峰的数目为( ) A 0 B 1 C 2 D 3 14.红外光谱法试样可以是( ) A 水溶液 B 含游离水 C 含结晶水 D 不含水 15.能与气相色谱仪联用的红外光谱仪为( ) A 色散型红外分光光度计 B 双光束红外分光光度计 C 傅里叶变换红外分光光度计 D 快扫描红外分光光度计 16.试比较同一周期内下列情况的伸缩振动(不考虑费米共振与生成氢键)产生的红外吸收峰,频率最小的是( ) A C-H B N-H C O-H D F-H 17.已知下列单键伸缩振动中C-C C-N C-O键力常数k/(N?cm-1) 4.5 5.8 5.0吸收峰波长λ/μm 6 6.46 6.85问C-C, C-N, C-O键振动能级之差⊿E顺序为( ) A C-C > C-N > C-O B C-N > C-O > C-C C C-C > C-O > C-N D C-O > C-N > C-C 18.一个含氧化合物的红外光谱图在3600~3200cm -1有吸收峰,下列化合物最可能的是( )

相关文档
最新文档