双闭环控制系统设计

双闭环控制系统设计
双闭环控制系统设计

电力拖动自动控制系统课程设计报告

课程设计名称:电力拖动自动控制系统课程设计

题目:双闭环控制系统设计

学生姓名:董长青

专业:电气自动化技术专业

班级:Z070303

学号:Z07030330

指导教师:姬宣德

日期:2010年03月10日

摘要

随着现代工业的发展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了他的这一缺陷。

双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以及抗电网电压扰动之上。正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进行深入的探讨和研究。本次课程设计目的就是旨在对双闭环进行最优化的设计。

Summary

With the development of modern industry, in the speed area, the concept of dual-loop control has been increasingly widespread recognition and application.

Relative to the single closed-loop system can not arbitrarily control the dynamic process of current and torque weakness. Double closed-loop control is very good to make up for this shortcoming of his.

Double-loop speed and current control can achieve the difference of two negative feedback effect, thus get a good static and dynamic performance. The good dynamic performance mainly reflected in its anti-disturbance and anti-grid load over voltage disturbance. Precisely because of the many advantages of Double Closed Loop, so here it is necessary to optimize the design of its depth discussion and study. This course is designed to designed to optimize the double loop design.

目录一.课程设计设计说明书4

1.1系统性能指标

1.2整流电路4

1.3触发电路的选择和同步5

1.4双闭环控制电路的工作原理6

二. 设计计算书7

2.1整流装置的计算7

2.1.1变压器副方电压7

2.1.2变压器和晶闸管的容量8

2.1.3平波电抗器的电感量8

2.1.4晶闸管保护电路9

2.2 控制电路的计算10

2.2.1已知参数10

2.2.2预选参数11

2.2.3最佳典型II型速度环的计算14

2.3系统性能指标的分析计算15

2.3.1静态指标的计算15

2.3.2动态跟随指标的计算16

2.3.3动态抗扰动指标的计算16

三、心得体会

四、附录

五.参考文献18

一、课程设计设计说明书

1.1系统性能指标

调速范围D>10 静差率s<5% 电流超调量<5%

空载起动到额定转速的超调量<10%,调整时间<1s

当负载变化20%的额定值,电网波动10%额定值时,最大动态速降<10%,动态恢复时间<0.3s

1.2整流电路

本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。

三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。

三相桥式全控整流电路的工作原理是当o

0=α时的工作情况。触发电路先

后向各自所控制的6只晶闸管的门极(对应自然换相点)送出触发脉冲,即在三相电源电压正半波的1、3、5点(正半波自然换相点)向共阴极组晶闸管VT1、VT3、VT5输出触发脉冲;在三相电源电压负半波的2、4、6点(负半波自然换相点)向共阳极组晶闸管VT2、VT4、VT6输出触发脉冲。

以下三点是三相桥式全控整流电路所要遵循的规律:

1)三相桥式全控整流电路任一时刻必须有两只晶闸管同时导通,才能形

成负载电流,其中一只在共阳极组,另一只在共阴极组。 2)整流输出电压波形是由电源线电压

UV

u 、

UW

u 、

VW

u 、

VU

u 、

WU

u 和

WV

u 的轮流输出所组成的,各线电压正半波交点1~6分别是VT1~VT6的自然换相点。

3)六只晶闸管中每管导通o

120,每间隔o

60有一只晶闸管换流。 综上所述,三相桥式全控整流电路的整流输出电压脉动小,脉动频率高,基波频率为300Hz ,所以串入的平波电抗器电感量较小。在负载要求相同的直流电压下,晶闸管承受的最大电压,将比采用三相半波可控整流电路要减小一半,且无需要中线,谐波电流也小。所以,广泛应用于大功率直流电动机调速系统。如果为了省去整流电压器,可以选用额定电压为440V 的直流电动机。相比其他各类整流电路而言,再根据其优点,所以采用三相桥式全控整流电路。

本次本次课程设计的变压器联结组别采用的是主变压器为Yd11和同步变压器为Yy4。当然不同的联结组别的选择会产生不同的效果和作用。 三相变压器的绕组联结时应注意利用单相变压器接成三相变压器组时,要注意绕组的极性。把三相心式变压器的一、二次侧三相绕组接成星形或三角形时,其首端都应为同名端;一、二次绕组相序要一致。

1.3触发电路的选择和同步

晶闸管的电流容量越大,要求的触发功率越大。对于大中电流容量的晶闸管,为了保证其触发脉冲具有足够的功率,往往采用由晶体管组成的触发电路。本次课程设计的触发电路采用的是锯齿波同步的触发电路,该电路由五个部分组成,分别为同步环节;锯齿波形成及脉冲移相环节;脉冲形成、放大和输出环节;双脉冲形成环节;强触发环节。

选择好触发电路后,就要考虑同步的问题。实现同步的主要方法是通过同步变压器TS 的不同联结组别向各触发单元提供不同相位的交流电压,确保变流装置中各晶闸管能按规定的顺序和时刻获得触发脉冲并有序地工作。通常,同步变压器的联结组别与主电路整流变压器联结组别、主电路形式、负载性质以及采用何种触发电路均有关系。实际上所谓三相触发电路同步定相,就是在主电路整流变压器联结组别、主电路形式、负载提出的所需移相范围以及触发电路均已确定的条件下,如何经过简便的方法来确定同步变压器联结组别并给各触发单元选取相应的同步电压。

由于同步变压器二次电压要分别接到各单元触发电路,而各单元触发电路又均有公共“接地”端点,所以同步变压器的二次侧选择星形联结。由于整流变压器与同步变压器一次绕组总是接在同一的三相电源上,所以对同

步变压器联结组别的确定可以采用简化的电压相量图解方法。

1.4双闭环控制电路的工作原理

首先是对双闭环控制电路的稳态工作原理的分析,可以根据系统的稳态结构框图来分析,分析稳态工作原理的关键是要了解PI调节器的稳态特征,一般都会存在着两种状况:饱和——输出达到限幅值,不饱和——输出未达到限幅值。当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和;换句话说,饱和的调节器暂时隔断了输入和输出间的联系,相当于使该调节环开环。当调节器不饱和时,PI的作用使输入偏差电压在稳态时总为零。在实际的正常运行时,电流调节器是不会达到饱和状态的。因此,只有转速调节器饱和和不饱和两种情况。

当转速调节器不饱和时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零。而当转速调节器饱和时,ASR输出达到限幅值,转速外环呈开环状态,转速的变化对系统不再产生影响。双闭环系统变成一个电流无静差的单电流闭环调节系统。在稳态工作点上,转速是由给定电压决定的,ASR的输出量是由负载电流决定的,而控制电压的大小则同时取决于转速和负载电流。PI调节器的输出量在动态过程中决定于输入量的积分,到达稳态时,输入为零,输出的稳态值与输入无关,而是由它后面环节的需要决定的。

双闭环调速系统的静特性在负载电流小于Idm时表现为转速无静差,这时,转速负反馈起主要调节作用。当负载电流达到Idm时,对应于转速调节器的饱和输出,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI调节器分别形成内、外两个闭环的效果。这样的静特性比带电流截止负反馈的单闭环系统静特性好。

最后是对其动态抗扰性能的分析,对于调速系统,最重要的动态性能是抗扰性能。主要是抗负载扰动和抗电网电压扰动的性能。

负载扰动作用在电流环之后,因此只能靠转速调节器ASR 来产生抗负载扰动的作用。

就静特性而言,系统对它们的抗扰效果是一样的。但从动态性能上看,由于扰动作用点不同,存在着能否及时调节的差别。负载扰动能够比较快地反映到被调量n 上,从而得到调节,而电网电压扰动的作用电力被调量稍远,调节作用受到延滞,因此单闭环调速系统抑制电压扰动的性能要差一点。

综上所述,由于增设了电流内环,电压波动可以通过电流反馈得到比较及时的调节,不必等它影响到转速以后才能反馈回来,抗绕性能大有改善。因此,在双闭环系统中,由电网电压波动引起的转速动态变化会比单闭环系统小得多。

二、 设计计算书

2.1整流装置的计算

2.1.1变压器副方电压

为了减小电网与整流装置的相互干扰,使整流主电路与电网隔离,为此需要配置整流装置。但由于电网电压波动、管子本身的压降以及整流变压器等效内阻造成的压降等。所以设计时U2φ应按下式计算:

)

(cos 22min 2n dl T

dn I I CU AB U n U U -?+=

αφ

式中:Udn 为负载的额定电压,取220V

ΔUt 为整流元件的正向导通压降,取1V

n 为电流回路所经过的整流元件的个数,桥式电路取2

A 为理想情况下 0=α时2

0U U d ,取2.34

B 为实际电压与理想空载电压比,取0.93

min α为最小移相角,取 10

C 为线路接线方式系数,取0.5 dl

U 为变压器阻抗电压比,取0.05

N

I I 2为二次侧允许出现的最大电流与额定电流之比,取0.816

所以将数据代入

V

U 3.106)816.005.05.098.0(93.034.21

22202=??-???+=

φ

2.1.2变压器和晶闸管的容量

(1)变压器容量

理想条件下变压器二次容量为

KVA

I U I U S N 617.10816.0332222=??==φ

(2) 晶闸管容量

晶闸管额定电压应选等于元件实际承受最大峰值电压TM U 的(2~3)倍

V

U U U TM Tn 66.30022)3~2(2=??==φ

考虑3倍的过压容量,取V 98.901 晶闸管额定电流:有效值

A I I N

VT .55.233==

平均值24

.1215)57.1()(=≥==N VT AT VT KI I I

考虑(1.5~2)

)

(AT VT I 的过流裕量,取A 28.24

2.1.3平波电抗器的电感量

为了使负载电流得到平滑的直流,通常在整流输出端串入带有气隙铁心的电抗器。 电流连续时:

)

2(11D B d L L L L +-=

式中

mH U I U K L dl rec

B B 461.005.088.443

.1069.3%2=??

=??

mH L D 8= 所以mH

L d 528.38)8461.02(45.471=+?-=

电流断续时:

)

2(22D B d L L L L +-=

其中Si 给定的允许电流脉动系数,三相整流电路中,)%

10~5(

取%5。 所以

mH L d 644.2)8461.02(566.112=+?-=

平波电抗器电感

mH

L L L d d d 528.38},m ax {21==

平波电抗器电阻为

d R =Ω1.0

2.1.4晶闸管保护电路

(1)晶闸管关断过电压保护

为了避免晶闸管两端在关断过程中出现瞬时反向过电压尖峰波形,最常用的保护方式是在晶闸管两端并接RC 吸收元件。 选择根据

A

I AT VT 15)(=查表得:电阻Ω=80R

电容C=0.15μF

电阻功率W fCU P m R

08.510)3.1066(15.050106

262=????=?=-- (2)交流侧过电压保护

为了避免接通、断开交流侧电源时出现暂态过程而引起的过电压,故采用阻容吸收电路

电容

F

U S I C μφ

φ

075.03.1063

10617%46%62

220=?

?=?

电阻

Ω

=??=??≥K I U S U R dl 22.804

.005

.035333.1063.2%%3.22022φφ

A

fCU I C C 0193.0103.150075.05014.3210266=?????==--π

电阻功率W

R I P C R 18

.982200193.03)4~3(22

=??=≥

(3)直流侧过电压保护

直流侧由于是电感性负载,故在某种情况下,会发生浪涌过电压.如电压过高的话,有可能会造成晶闸管硬开通而损坏。为避免它,故在直流负载两端并接压敏电阻来保护。

V U U d mA 40422023.123.11=??=??=

通流容量选择0.5KA 压敏电阻型号规格为MY31-440/0.5 (4)过电流保护

造成晶闸管过电流的主要原因是:电网电压波动太大、电动机轴上拖动的负载超过允许值、电路中管子误导通以及管子击穿短路等。为了避免这些影响,通常采取快速熔断器来起到过电流的保护作用。快速熔断器接法有三种,本设计采用接入桥臂与晶闸管串联的方法。 选择根据TM

FU AV VT I I I ≥≥)(57.1的计算公式来进行选择

本设计中

15

)(=AV VT I ,所以查表得型号为50-RLS

(5) 电压上升率和电流上升率

避免晶闸管由于正向电压上升率过大,而引起的晶闸管误导通,造成快熔或晶闸管烧坏。通常限制措施是在每一个晶闸管桥臂中串接一个空芯小电感(电感量约为20~30μH )。本设计选择H

L S μ20=

(6)选择触发电路

主电路变压器选择12-Y Y 的联结组别

同步变压器一组选择4-Y 、另一组选择10-Y 的联结组别

2.2 控制电路的计算

2.2.1已知参数

(1)直流电动机

Pn=7.5Kw ,Un=220V ,In=40.8A ,Nn=1500r/min , R=0.398Ω,Ld=8mhGD 2=3.82N ·m

(2)晶闸管整流电源

电源电阻 Ω=?===

1383.014.321000

/524.86822πωπB B S L m mX R

放大倍数

40=S K 时间常数

s

T S 00167.0=

2.2.2固有参数的设计计算

给定电压最大值 V

U nm 10~8=*

调节器限幅电压 V

U U im nm 10~8==

参数计算如下 电动机电磁时间常数 ∑

∑=R L T l

mH

L L L L L S B d D 009.4702.0461.0528.388=+++=+++=∑

Ω

=+++=+++=∑6363.111.01383.0398.0B d S a R R R R R

s

T l 0287.06363.1470.0==

电动机电势常数

r V n R I U C N a N N e min 1358.01500

398.08.40220?=?-=-=

电动机转矩常数

A

m N C C e m ?=?=29689.155.9

电动机机电时间常数

s

C C R G

D T m e m 094.029689.11358.06363

.137582.33752=??=?=∑

转速惯量 2

32

1018.10375s m N GD J ???==-

2.2.3预选参数

调节器输入阻抗

Ω

=K R 200

电流反馈系数 A

V I U dm im 13.08.405.18=?==*β

转速反馈系数

r

V n U N nm min 103.5150083??===-*α

电流反馈滤波时间常数 ms

T fi 1= 转速反馈滤波时间常数 ms

T fn 5=

电流给定滤波时间常数 ms

T T fl oi 1== 转速给定滤波时间常数

ms

T T fn on 5==

2.2.4最佳典型I 型电流环的计算

简化系统并确定时间常数:略去反电势

n

C E e =对电流变化的影响。合并

小惯性环节,包括晶闸管延迟和反馈滤波环节。电流环小时间常数之和为:

s

T T T s oi i 00267.000167.0001.0=+=+=∑

求出固有部分的传递函数,画出简化后的电流环结构图

固有部分的传递函数为:

)

10287.0)(100167.0(178

.3)

1)(1()(++=

++=

s s s T s T R

K s W l s s i β

简化后的电流环结构图1.1所示为:

-图1.1

选择电流调节器结构 根据设计要求

%5≤i σ,并保证稳态电流无差,可按典型I 型系统设计电

流调节器。电流环控制对象是双惯性型的,因此可用PI 型电流调节器,其

传递函数为

s

s K s W i i i ACR ττ)1()(+=

检查对电源电压的抗扰性能:093.00287.000267.0==∑l i T T , 参

照表后各项指标都是可接受的。

计算电流调节器参数 电流调节器超前时间常数:s T l i 0287.0==τ

电流环开环增益:要求

%5≤i σ时,应取5.0=∑i i T K ,因此

127.18700267.05

.05.0-∑===

s T K i I

ACR 的比例系数为

693.113

.0406363

.10287.027.187=???==

βτS i I i K R K K

检验近似条件 电流环截止频率:

1

27.187-==s K I ci ω

晶闸管整流装置传递函数的近似条件

ci

S s T ω≥=?=-160.19900167

.031

31

满足近似条件

忽略反电势变化对电流环动态影响的条件

ci

l m s T T ω≤=?=-175.570287

.0094.01

313

满足近似条件 电流环小时间常数近似处理条件

ci

oi S s T T ω≥=??=-19.257001

.000167.01

31131

满足近似条件

计算调节器电阻和电容 运算放大器Ω

=K R 200,各电阻和电容值为

Ω

=Ω?==K K R K R i i 86.3320693.10,取ΩK 34

F K R C i

i

i μτ45.8340287

.0=Ω=

=

,取F μ5.8

F K R T C oi oi μ2.020001.0440=Ω

?==

,取F μ2.0

2.2.5最佳典型II 型速度环的计算

确定时间常数 电流环等效时间常数

s

T K i I 00534.000267.0221=?==∑

转速环小时间常数s T K T on I

n 01034.0005.000534.01

=+=+=

选择转速调节器结构

按照设计要求,选用PI 调节器,其传递函数为

s

s K s W n n n ASR ττ)1()(+=

计算转速调节器参数

按跟随和抗扰动性能都较好的原则,取h=5,则ASR 的超前时间常数为

s hT n n 0515.001034.05=?==∑τ

转速开环增益为

2

2

22112201034

.02526

21-∑=??=

+=

s T h h K n N

ASR 的比例系数为

1036

.1101034

.06363.1103.552094

.01358.013.062)1(3=????????=+=

-∑n m e n RT h T C h K αβ

检验近似条件

转速环截止频率为

1

1

78.570515.01122-=?===

s K K n N N

cn τωω

电流环传递函数简化条件为

cn

i I s T K ω≥==-∑128.8800267

.027

.1873131,满足近似条件

转速环小时间常数近似处理条件为

cn

on I s T K ω≥==-15.64005

.027

.1873131,满足近似条件

计算调节器电阻和电容 运算放大器Ω

=K R 200,各电阻和电容值为

Ω

=Ω?==K K R K R n n 072.222201036.110,取ΩK 230

F

K R C n

n

n μτ22.02300515

.0=Ω

=

=

,取F μ22.0

F K R T C on on μ120005

.0440=Ω

?==

,取F μ1

2.3系统性能指标的分析计算

2.3.1静态指标的计算

(A )典型I 型系统

给定阶跃输入:

=++==→→)

1001.0)(100167.0(188

lim

)(lim 00

s s s k G K S S P

=ss e

(B )典型II 型系统 给定阶跃输入:

=+++==→→)

10053.0)(1005.0()

10515.0(1135lim

)(lim 200

s s s s k G K S S P

=sr e

扰动阶跃输入:

s s s s s s

s sE e S n S sn 1

)10515.0(3.6)10053.0)(1005.0(272lim )(lim 20

?

++++-==→→

0=

||||=+=sn sr ss e e e

2.3.2动态跟随指标的计算

(1)电流环可以达到的动态跟随性能指标为%5%3.4<=i σ

s

T t i r 0125.07.4==∑

s T t i s 01602

.06==∑

(2)空载起动到额定转速的最大超调量%n σ ,在饱和非线性下,以ASR

“退饱和超调”符合系统实际。

%78.811.03277.05.1%2.812)()(

2%)(

%max max =????=???-???=??=∑**m

n N b n b

b n T T

n n z C C n

n C C λσσ

s T t n r 03.001034.085.285.2=?==∑

s

T t n s 1.001034.055.955.9=?==∑

2.3.3动态抗扰动指标的计算

(1)负载变化20%额定负载时

mi n

49.2101034.03958.12716.82%20222r T J C I T FK C n m N II b =???=???==∑

4069.17max max =??=

?II

b b

C C C n

%6385.1%1002.0|max

2.0=??=

N

n n n n N

σ

s

T t n v 09.08.8=?=∑

(2)电网电压波动10%额定值时 (A )电流环

min 721.6611.0225.021

2r FK C I b =??==

09

.2max max =??=?I

b b

C C C I

%2.51%1001.0|max

1.0=??=

N

I i I I N

σ

s

T t i V 06.07.21=?=∑

(B )速度环

min

55.001034.074.1209.2222max 2r T J C I T FK C n m II b =???=????==∑

447.0max max =??=

?II

b b

C C C n

%029.0%100|max

=??=

N

n n n n N

σ

s

T t n v 09.08.8=?=∑

稳定性指标的分析 (A )电流环的稳定性

当其幅频特性曲线过0 时,既其转折点所对应相频率特性曲线的点在-180之上,并且仍有一定余量,充分说明该环节稳定。 (B )转速环的稳定性

当其幅频特性曲线过0 时,既其转折点所对应相频率特性曲线的点在-180之上,并且仍有一定余量,充分说明该环节稳定。

三、心得体会

课程设计是培养学生综合运用所学知识,发现,提出,分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程.

回顾起此次电力拖动自动控制系统课程设计,至今我仍感慨颇多,的确,从选题到定稿,从理论到实践,在整整一星期的日子里,可以说得是苦多于甜,但是可以学到很多很多的的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。

运动控制课程设计虽然结束了,但通过设计所学到的东西将长久存在。相信这次设计带给我们的严谨的学习态度和一丝不苟的科学作风将会给我们未来的工作和学习打下一个更坚实的基

础。

五、参考文献

文亚凤.双闭环调速系统工程设计方法的数字仿真.现代电力.2000;17(1):76~81

潘继安.双闭环调速系统及程序编制.四川轻化工学院学报.2001;14(2):33~38

陈渝光.电气自动控制原理与系统机械工业出版社2004年9月1日

赵明.直流调速系统.机械工业出版社.2003

姬宣德.韩英. 李广宏. 基于matlab 的直流双闭环调速系统设计与仿真.矿工机械.2005;33(9):87~89

马国伟.叶平.无刷直流电动机的双闭环调速系统设计.机电产品开发与创新.2004;17(6):6~8

王果.朱大鹏.直流电机双闭环调速系统的工程设计方法仿真.电机技术.2005;3:23~25

张传伟.郭卫.直流电机双闭环调速系统仿真研究.机床与液压.2005;2:128~129

陈伯时.电力拖动自动控制系统—运动控制系统.北京.机械工业出版社.2005

双闭环直流调速系统

题目:双闭环直流调速系统的设计与仿真 已知:直流电动机:P N=60KW,U N=220V,I N=305A,n N=1000r/min,λ=2,R a=0.08, R rec=0.1, T m=0.097s, T l=0.012s, T s=0.0017s, 电枢回路总电阻R=0.2Ω。设计要求:稳态无静差,σ ≤5%,带额定负载起动到额定转速的转速超调σn≤10%。(要求完 i 成系统各环节的原理图设计和参数计算)。 系统各环节的原理图设计和参数计算,包括主电路、调节器、电流转速反馈电路和必要的保护等,并进行必要的计算。按课程设计的格式要求撰写课程设计说明书。 设计内容与要求:1、分析双闭环系统的工作原理 2、改变调节器参数,分析对系统动态性能的影响 3、建立仿真模型

1.双闭环直流调速系统的原理及组成 对于正反转运行的调速系统,缩短起,制动过程的时间是提高生产率的重要因素。为此,在起动(或制动)过渡过程中,希望始终保持电流(电磁转矩)为允许的最大值,是调速系统以最大的加(减)速度运行。当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。实际上,由于主电路电感的作用,电流不可能突变,为了实现在允许条件下的最快起动,关键是要获得一段使 电流保持为最大值dmI的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,采用电流负反馈应该能够得到近似的恒流过程。 为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器。从闭环结构上看,电流环在里面,称做内环;转速环在外面,称做外环。这就形成了转速电流负反馈直流调速系统。为了获得良好的静动态性能,转速和电流两个调节器一般采用PI调节器。 2.双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压*nU由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三

比值控制系统

第三节比值控制系统 一、比值控制原理 在炼油、化工、制药等许多生产过程中,经常需要两种物料或两种以上的物料保持一定的比例关系。最常见的就是燃烧过程,燃料与空气要保持一定的比例关系,才能满足生产与环保的要求:造纸过程中,浓纸浆与水要以一定的比例混合,才能制造出合格的纸浆;许多化学反应的诸个进料要保持一定的比例。 通常,在两个需要保持一定比例关系的物料中,一个就是主动量或关键量,另一个就是从动量或辅 助量。由于物料通常就是液体,因此称主动量为主流量F M ,从动量为副流量F S 。F M 与F S 之间的关系为 Fs=KF M (8-l) 式中,K为比值系数。 因此,只要主副流量的给定值保持比值关系,或者副流量给定值随主流量按一定比例关系而变化即可实现比值控制。 二、比值控制系统的类型 l.单闭环比值控制系统图8-12表示一个燃烧过程单闭环比值控制系统,主流量就是燃料,副流量就 是空气。F M T测量出主流量并变换为标准信号,乘以比值系数K后,作为副流量控制系统中被控变量Fs的给定值。如此,可以保持主流量与副流量之间的比例关系。从系统结构外观上瞧,似乎单闭环比值控制系统与串级控制系统很相似。但它们的方块图就是不同的,功能也就是不同的。单闭环比值控制系统的方块图如图8-13所示。 图8-13 单闭环比值控制系统方块图 从图8-13中可以瞧到,没有主对象与主调节器,这就是单闭环比值控制系统在结构上与串级不同的地方,串级中的副变量就是调节变量到被控变量之间总对象的一个中间变量,而比值中,副流量不会影响主流量,这就是两者之间本质上的区别。 副流量控制系统就是一个随动控制系统,它的给定值由系统外部的KF M 提供,它的任务就就是使副流 量Fs尽可能地保持与KF M 相等,随F M 的变化而变化,始终保持F M 与Fs的比值关系。当系统处于稳态时,

(完整word版)双闭环控制系统

课程设计报告 课程课程设计 课题双闭环控制系统设计 班级 姓名 学号

目录 第1章双闭环系统分析 (1) 1.1系统介绍 (1) 1.2系统原理 (1) 1.3双闭环的优点 (1) 第2章系统参数设计 (2) 2.1电流调节器的设计 (2) 2.1.1时间参数选择 (2) 2.1.2计算电流调节参数 (2) 2.1.3校验近似条件 (3) 2.2转速调节器的设计 (3) 2.2.1电流环等效时间常数: (3) 2.2.2转速环截止频率为 (5) 2.2.3计算控制器的电阻电容值 (5) 第3章仿真模块 (6) 3.1电流环模块 (6) 3.2转速环模块 (6) 第4章仿真结果 (7) 4.1电流环仿真结果 (7) 4.2转速环仿真结果 (7) 4.4稳定性指标的分析 (8) 4.4.1电流环的稳定性 (8) 4.4.2转速环的稳定性 (8) 结论 (9) 参考文献 (10)

第1章双闭环系统分析 1.1系统介绍 整流电路可从很多角度进行分类,主要分类方法是:按组成的器件可分为不可控,半控和全控三种;按电路结构可分为桥式电路和零式电路;按交流输入相数分可分为单相、双相、三相和多相电路;按控制方法又可分为相控整流和斩波控制整流电路。 本系统采用的是三相全控桥式晶闸管相控整流电路。这是因为电机容量相对较大,并且要求直流脉动小、容易滤波。其交流侧由三相电网直接供电,直流侧输出脉动很小的直流电。在分析时把直流电机当成阻感性加反电势负载。因为电机电流连续所以分析方法与阻感性负载相同,各参量计算公式亦相同。 1.2系统原理 ASR(速度调节器)根据速度指令Un*和速度反馈Un的偏差进行调节,其输出是电流指令的给定信号Ui*(对于直流电动机来说,控制电枢电流就是控制电磁转矩,相应的可以调速)。 ACR(电流调节器)根据Ui*和电流反馈Ui的偏差进行调节,其输出是UPE(功率变换器件的)的控制信号Uc。进而调节UPE的输出,即电机的电枢电压,由于转速不能突变,电枢电压改变后,电枢电流跟着发生变化,相应的电磁转矩也跟着变化,由Te-TL=Jdn/dt,只要Te与TL不相等转速会相应的变化。整个过程到电枢电流产生的转矩与负载转矩达到平衡,转速不变后,达到稳定。 1.3双闭环的优点 双闭环调速系统属于多环控制系统,每一环都有调节器,构成一个完整的闭环系统。工程设计方法遵循先内环后外环的原则。步骤为:先设计电流环(内环),对其进行必要的变换和近似处理,然后依照电流环的控制要求确定把它校正成哪一种典型系统,再根据控制对象确定其调节器的类型,最后根据动态性能指标的要求来确定其调节器的有关参数。电流环设计完成以后,把电流环看成转速环(外环)中的一个环节,再用同样的方法设计转速环。 在电流检测信号中常有交流分量,为了不让它影响调节器的输入,加入了低通滤波器,然而滤波环节可以使反馈信号延迟,为了消除此延迟在给定位置加一个相同时间常数的惯性环节。同理,由测速发电机得到的转速反馈电压常含有换向纹波,因此也在给定和反馈环节加入滤波环节。

双闭环系统仿真深入设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y 控制系统数字仿真及C A D 实验报告 院系:电气工程及自动化 班级:0106512 设计者:王宏佳/张卫杰 学号:1010610108 哈尔滨工业大学电气工程系

2005年8月 摘要 本实验报告的第一部分详细阐述了直流电动机双闭环调速系统的CAD设计过程,主要采用了MATLAB/Simulink工具箱。 一般情况下,KZ-D系统均设计成转速、电流双闭环形式。双闭环直流调速系统着重解决了如下两方面的问题:启动的快速性问题和提高系统抗扰性能。 双闭环KZ-D系统中的ASR和ACR一般均采用PI调节器。为了获得较好的跟随性能,电流环按照典型Ⅰ型系统设计,为了获得较好的抗扰性能,转速环按照典型Ⅱ型系统设计。按照先内环,后外环的设计思想设计。 实验报告的第二部分着重讨论了基于 MATLAB/SimPowerSystem工具箱的双闭环直流调速系统仿真分析。

第一部分直流电动机双闭环调速系统设计及分析 自70年代以来,国内外在电气传动领域里,大量地采用了“晶闸管整流电动机调速”技术(简称KZ-D调速系统)。尽管当今功率半导体变流技术已有了突飞猛进的发展,但在工业生产中KZ-D系统的应用还是占有相当比重的。 一般情况下,KZ-D系统均设计成转速、电流双闭环形式;“双闭环控制”是经典控制理论在实践中的重要运用,在许多实际生产实践中大量存在。无论是直流调速系统、龙门吊车系统还是一阶倒立摆的控制,都可以通过双闭环控制技术,来实现对控制对象的控制。因此理解双闭环控制技术的原理,掌握双闭环控制的设计方法,是工业控制领域技术人员的一项基本要求。 然而,由于双闭环控制技术所依赖的经典控制理论只能解决线性定常系统设计问题,而实际系统往往是非线性的;所以,设计时要进行线性化等近似处理,由此而引起的模型不准确问题将会影响到设计参数的选取(这种影响有时会导致3~5倍的误差),这给实际系统的调试带

双闭环直流调速系统

转速、电流双闭环调速系统 班级:铁道自动化091 姓名:陈涛 指导老师:严俊 完成日期:2011-10-31 湖南铁道职业技术学院

目录 摘要 (3) 一、直流调速介绍 (4) 1、调速定义 (4) 2、调速方法 (4) 3、调速指标 (4) 二、双闭环直流调速系统介绍 (5) 1、转速、电流双闭环调速系统概述 (5) 2、转速、电流双闭环调速系统的组成 (6) 3、PI调节器的稳态特征 (7) 4、起动过程分析 (8) 5、动态性能 (11) 6、两个调节器的作用 (11) 三、总结 (12)

摘要 随着近代电力电子技术和计算机的发展以及现代控制理论的应用,自动化电力拖动正向着计算机控制的生产过程自动化的方向迈进,以达到高速、优质、高效率地生产。在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成部分。 本文讲述的是转速、电流双闭环直流调速系统,通过学习使我对转速、电流双闭环直流调速系统的组成、调速器的稳态特性和作用以及系统的动态特性有了一定的了解。该系统是在单闭环系统的基础上加以改进后完成的,通过对电力拖动自动控制系统的学习,我们里了解到转速、电流双闭环直流调速系统相对于单闭环调速系统的一些优势,它是通过转速反馈和电流反馈两个环节分别起作用的。 通过这次的学习,我懂得了很多,具有了通过运用理论上所掌握的知识来独立发现问题、思考问题、解决问题的能力,在这次的论文中,我有一次重新学习了转速、电流双闭环直流调速系统,使我这一系统有了更进一步的了解。

转速、电流双闭环调速系统 一、直流调速介绍 1、调速定义 调速是指在某一具体负载情况下,通过改变电动据或电源参数的方法,使机械特性曲线得以改变,从而使电动机转速发生变化或保持不变。 2、调速方法 1.调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无 级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 2.改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方 法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 3.改变电枢回路电阻 <。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 3、调速指标 1.调速范围(包括:恒转矩调速范围/恒功率调速范围),

双闭环管道流量比值控制系统设计报告

双闭环管道流量比值控制系统设计报告 PLC控制技术实训评分表 课程名称: PLC控制技术实训 设计题目:单容液位变频器PID单回路控制,比值控制系统班级:学号:姓名: 指导老师: 年月日

双闭环管道流量比值控制系统设计报告常熟理工学院 电气及自动化工程学院 《PLC控制技术实训》报告 题目:单容液位变频器PID单回路控制 比值控制系统设计 姓名:李良、何龙太 莫勇、高虎 学号: 160112109、160112106 160112113、160112104 班级:自动化121 指导教师:刘叔军 起止日期: 2015.6.29~7.12

摘要 本课题针对液位控制系统系统作初步设计和基本研究,该系统能对水箱液位信号进行采集,以PLC为下位机,以工控组态软件组态王设计上位机监控画面,实现PID 对水箱液位的控制。 针对比值控制系统进行模拟复杂控制系统设计、分析和测试研究,该系统通过涡轮流量计、电磁流量计进行信号采集,以工控组态软件组态王上位机监控P画面并对PID参数调节,实现对比值系统的控制。 关键词:PLC PID控制液位控制比值控制组态王流量

目录 1、引言................................ 错误!未定义书签。 1.1主要内容 ............................ 错误!未定义书签。 1.2任务要求 ............................ 错误!未定义书签。 2、设计方案............................ 错误!未定义书签。 2.1设计原理 ............................ 错误!未定义书签。 2.2设计方案论证......................... 错误!未定义书签。 2.3系统原理图........................... 错误!未定义书签。 2.4系统结构图........................... 错误!未定义书签。 2.5系统工艺流程图 (4) 3、硬件设计 (4) 3.1流量计(涡轮流量计、电磁流量计) (3) 3.2 电动调节阀 (5) 3.3 变频器面板 (6) 3.4百特自整定PID调节器 (6) 3.5 EM235拓展模块 (7) 3.6 硬件接线图 (8) 3.7 I/O口分配表 (10) 4、软件设计............................ 错误!未定义书签。 4.1 程序流程图.......................... 错误!未定义书签。 4.2程序分析 ............................ 错误!未定义书签。 5、系统建模及MATALAB仿真调试 .......... 错误!未定义书签。

自动控制系统双闭环直流调速系统稳态结构解读

目录 引言 (2) 1设计目的 (3) 2直流调速系统的理论设计 (3) 2.1 系统组成及要求 (3) 2.2 电流调节器设计 (4) 2.3 转速调节器设计 (7) 3系统仿真 (10) 4结论 (12) 5心得体会 (13) 6参考文献 (13)

引言 本设计从直流电动机的工作原理入手,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。 转速、电流双闭环直流调速系统是性能很好,应用最广的直流调速系统, 采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。应掌握转速、电流双闭环直流调速系统的基本组成及其静特性;应用工程设计方法解决双闭环调速系统中两个调节器的设计问题,等等。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。

1设计目的 1进一步对自动控制系统这门学科进行理解。 2掌握双闭环直流调速系统的设计过程。 3体会参数设计的过程。 2 直流调速系统的理论设计 2.1系统组成及要求 本控制系统采用转速、电流双闭环结构,其原理图图1,双闭环直流调速系统稳态结构图图2和动态结构框图图3如下所示。 图1双环调直流速系统原理图 图2双闭环直流调速系统稳态结构图

双闭环控制系统设计

双闭环控制系统设计 课程设计报告 电力拖动自动控制系统课程设计 题目:双闭环控制系统设计学生姓名:董长青专业:电气自动化技术专业班级: Z070303 学号: Z07030330 指导教师:姬宣德 日期:2010年03月10日 随着现代工业的发展,在调速领域中,双闭环控制的理念已经得 到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地 控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了他的 这一缺陷。 双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得 良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以 及抗电网电压扰动之上。正由于双闭环调速的众多优点,所以在此有 必要对其最优化设计进行深入的探讨和研究。本次课程设计目的就是 旨在对双闭环进行最优化的设计。 Summary With the development of modern industry, in the speed area, the concept of dual-loop control has been increasingly widespread recognition and application. Relative to the single closed-loop system can not arbitrarily control the dynamic

process of current and torque weakness. Double closed-loop control is very good to make up for this shortcoming of his. Double-loop speed and current control can achieve the difference of two negative feedback effect, thus get a good static and dynamic performance. The good dynamic performance mainly reflected in its anti-disturbance and anti-grid load over voltage disturbance. Precisely because of the many advantages of Double Closed Loop, so here it is necessary to optimize the design of its depth discussion and study. This course is designed to designed to optimize the double loop design. 一.课程设计设计说明书4 1.1系统性能指标 1.2整流电路4 1.3触发电路的选择和同步5 1.4双闭环控制电路的工作原理6 二. 设计计算书7 2.1整流装置的计算7 2.1.1变压器副方电压7 2.1.2变压器和晶闸管的容量8 2.1.3平波电抗器的电感量8 2.1.4晶闸管保护电路9 2.2 控制电路的计算10

比值控制系统

比值控制系统 问题的提出:在工业生产过程中,要求两种或多种物料流量成一定比例关系 要求严格控制比例。 最常见的是燃烧过程,燃料与空气要保持一定的比例关系,才能满足生产和环保的要求。 造纸过程中,浓纸浆与水要以一定的比例混合,才能制造出合格的纸浆,许多化学反应的诸个进料要保持一定的比例。 例如1、氨合成生产过程3H2+1N2=2NH3,要求H2和N2完全按照3:1进料。 2、造纸过程中,对纸浆浓度有要求,进料浓纸浆和水的进料就要满足一定比例。 如果有三个进料,对三个进料之间需要满足一定比例关系。 而我们之前学习的控制系统的控制达不到这样的控制要求。因此就要用到一个新的控制————比值控制系统基本概念: 1.比值控制系统(流量比值控制系统):实现两个或两个以上参数符合一定比例关系的控制系统。 2.主物料或主动量:在保持比例关系的两种物料中处于主导地位的物料,称为主物料;表征主物料的参数称为主动量(主流量),用F1表示。 3.从物料或从动量:按照主物料进行配比,在控制过程中跟随主物料变化而变化的物料称为从物料;表征从物料特性的参数称为从动量(副流量),用F2表示。 4.有些场合,用不可控物料为主物料,用改变可控物料即从物料来实现比值关系。 5. 比值控制系统就是要实现从动量与主动量成一定的比值关系: K= F2/ F1 F2—为从动量A F1—为主动量B (从动量/主动量=K 常数)在比值控制系统中 从动量是跟随主动量变化的物料流量,因此,比值控制系统实际上是一种随动控制系统。 比值控制系统的类型: 开环比值控制系统 单闭环比值控制系统 双闭环比值控制系统 变比值比值控制系统 (串级比值控制系统) 开环比值控制系统 开环比值控制系统是最简单的比值控制系统,同时也是一个开环控制系统。 随着F1的变化,F2跟着变化,满足F2=KF1的要求。(阀门开度与F1之间成一定的比例关系)。 图P162 图5.1 开环比值控制缺点: 1.当F2因管线两端压力波动而发生变化时,系统不起控制作用,即F2本身无抗干扰能力。 2.适用于副流量较平稳且比值精度要求不高的场合。 特点:由于系统是开环的,对从动量F2有干扰无法克服,无法保持比值关系。 适用场合:适用于从动量较平稳且比值关系要求不高的场合,实际生产上很少用。 单闭环比值控制 图P162 图5.2 单闭环比值控制系统是为了克服开环比值系统存在的不足,在开环比值控制系统的基础上增加一个从动量的闭环控制系统。 单闭环比值控制原理: (1)、当F1不变而F2受到扰动,通过闭环实现定值控制,将F2调回到F1的给定值上。

基于Simulink仿真双闭环系统综合课程设计

- -- 课程设计 双闭环直流调速系统设计及仿真验证 学院年级:工程学院08级 组长:陈春明学号2 08自动化1班成员一:陈木生学号3 08自动化1班 指导老师: 日期:2012-2-28 华南农业大学工程学院

摘要 转速、电流双闭环调速系统是应用最广的直流调速系统,由于其静态性能良好,动态响应快,抗干扰能力强,因而在工程设计中被广泛地采用。现在直流调速理论发展得比较成熟,但要真正设计好一个双闭环调速系统并应用于工程设计却有一定的难度。 Matlab是一高性能的技术计算语言,具有强大的科学数据可视化能力,其中Simulink具有模块组态简单、性能分析直观的优点,方便了系统的动态模型分析。应用Simulink来研究双闭环调速系统,可以清楚地观察每个时刻的响应曲线,所以可以通过调整系统的参数来得出较为满意的波形,即良好的性能指标,这给分析双闭环调速系统的动态模型带来很大的方便。 本研究采用工程设计方法,并利用Matlab协助分析双闭环调速系统,依据自动控制系统快、准、稳的设计要求,重点分析系统的起动过程。 关键词:双闭环直流调速Simulink 自动控制

目录 1、直流电机双闭环调速系统的结构分析....................... 1.1 双闭环调速系统的组成............................... 1.2 双闭环调速系统的结构.................................... 2 、建立直流电机双闭环调速系统的模型............................ 2.1 小型直流调速系统的指标及参数......................... 2.2 电流环设计............................................... 2.3 转速环设计................................................ 3、直流电动机双闭环调速系统的MATLAB仿真.................... 3.1 系统框图的搭建............................................. 3.2 PI控制器参数的设置...................................... 3.3 仿真结果.................................................... 4、结论与总结....................................................... 5、参考资料.......................................................

双闭环比值控制系统仿真

学号:2013133301 课程设计报告 题目双闭环比值系统仿真 学院计算机科学与信息工程学院 专业自动化 班级2013级自动化3 学生姓名刘博 指导教师吴诗贤 2016 年11 月26 日

摘要 3 一、课程设计任务 5 5 (1) PID控制原理及PID参数整定概述 5 (2) 基于稳定边界法的PID控制器参数整定算法7 (3) 利用Simulink建立仿真模型9 (4) 参数整定过程14 (5) 调试分析过程及仿真结果描述20 三、总结20

参考文献21

双闭环比值控制系统仿真 摘要: 双闭环比值控制系统的特点是在保持比值控制的前提下,主动量和从动量两个流量均构成闭环回路,这样克服了自身流量的干扰,使主、从流量都比较平稳,并使得工艺总负荷也较稳定。从动量控制回路是随动控制系统,期望系统响应快些,一般按单回路整定;主动量控制回路是定值控制系统,反应速度较慢时有利于从动控制回路的快速跟踪,一般整定为周期过程。主、从控制回路均选择PI控制方式。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C、FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink 具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵

直流电机双闭环调速系统设计要点

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

双闭环直流调速系统工作原理

双闭环直流调速系统设计 内容摘要 电机自动控制系统广泛应用于各行业,尤其是工业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电.直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。有效地控制电机,提高其运行性能,具有很好的现实意义。本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理以及介绍变频调速技术的发展概况,变频调速技术的发展趋势关键词:双闭环控制系统,转速控制环,系统现状,发展趋势 英文翻译:Electrical automatic control system widely used in various industries, especially in industry. Most of the production machinery used in these industries motor as a prime mover. Effectively control electricity. Dc motor has a good start, braking performance, adaptable to smooth speed regulation in large scale, in many need to speed or fast forward and reverse has been widely used in the area of electric drive. Effectively control motor, improve its operation performance, has the very good practical significance. I ntroduced in this paper, based on the engineering design to the design of dc speed regulating system, the working principle of the double closed loop control system of dc speed regulating and also I ntroduce the development general situation and the development trend Key words: double closed loop control system, speed control loop, th e status quo,the development of trend 一:引言 矿井提升机是煤矿、有色金属矿中的重要运输设备,是“四大运转设备”之一。矿井提升系统具有环节多、控制复杂、运行速度快、惯性质量大、运行特性复杂的特点,且工作状况经常交替转换。 近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、

双闭环设计

双闭环直流电机调速系统设计 目录 一、设计任务与要求 (2) 1、设计题目及技术指标 (2) 1.1 设计题目 (2) 1.2 技术指标 (3) 2、系统总方案设计 (3) 2.1 逻辑无环流工作原理 (3) 2.2 系统设计分析 (4) 二、各个器件参数的设计 (5) 1、参数计算 (5) 1.1、变压器参数计算 (5) 1.2 平波电抗器参数计算 (5) 1.3可控晶闸管参数计算 (6) 2、双闭环调速系统 (6) 2.1、输出限幅 (6) 2.2、双闭环直流调速系统设计 (7) 2.3、电流调节器的设计 (10) 2.4转速调节器的设计 (11) 总结体会 (13) 参考文献 (14)

摘要 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。根据晶闸管的特性,通过调节控制角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图。然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。这就形成了转速、电流双闭环调速系统。先确定其结构形式和设计各元部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算,最后画出了调速控制电路电气原理图。 关键词: 双闭环; 转速调节器;电流调节器 一、设计任务与要求 1、 设计题目及技术指标 1.1 设计题目 为某生产机械设计一个调速范围宽、起制动性能好的直流调速系统,且拟定该系统为晶闸管-电动机系统。已知系统中直流电动机主要数据如下: 额定功率kW P N 60=;额定电压V U N 220=; 额定电流A I N 220=;额定转速 min /1000r n N = ; 电枢电阻 Ω =05.0a R ;转动惯量 2 2 80m N GD ?= 电枢回路总电阻Ω=5.0R 电网供电电压为三相380V ;电网电压波动为+5% -- -10%;速度检测采用测速电机;控制系统电源电压为V 15± 测速发电机的选择

双闭环直流调速系统(精)

直流双闭环调速系统设计 1设计任务说明书 某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:V U N 750=,A I N 780=,min 375r n N =,04.0=a R ,电枢电路 总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量2 2 4.11094Nm GD =。 晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0= 电流反馈系数?? ? ??≈=N I V A V 5.11201.0β 电压反馈系数?? ? ??=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi == V U U U cm im nm 12===* *;调节器输入电阻Ω=K R O 40。 设计要求: 稳态指标:无静差 动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量 0010≤n σ。

目录 1设计任务与分析? 2调速系统总体设计...................................................................................................................................... 3直流双闭环调速系统电路设计? 3.1晶闸管-电动机主电路的设计........................................................ 3.1.1主电路设计? 3.1.2主电路参数计算................................................................. 3.2转速、电流调节器的设计? 3.2.1电流调节器.................................................................. 3.2.1.1电流调节器设计? 3.2.1.2电流调节器参数选择........................................................ 3.2.2转速调节器.................................................................... 3.2.2.1转速调节器设计.............................................................. 3.2.2.2转速调节器参数选择.......................................................... 4计算机仿真.................................................................................................................................................. 4.1空载起动? 4.2突加负载........................................................................................................................................ 4.3突减负载 5设计小结与体会? 6参考文献.....................................................................................................................................................

双闭环系统的最佳工程设计

29 双闭环系统的最佳工程设计 双闭环系统的最佳工程设计 设计任务书 课程名称:电气技术综合实验 班级: 论文题目:双闭环系统的最佳工程设计 小组成员: 任课教师: 目录 第一章设计任务书2 1.1系统性能指标2

1.2设计内容2 1.3应完成的技术文件 2 第二章设计说明书3 2.1综述 3 2.2整流主电路 3 2.3触发电路的选择和同步 4 第三章设计计算书8 3.1整流装置的计算8 3.2计算系统中一些环节的参数确定其传递函数11 3.3双闭环系统的参数计算和系统原理图的确定12 3.4系统性能指标的校核计算17 第四章参考资料20 第五章附图与附表21 5.1系统基本原理图21 5.2静态结构图21 5.3动态结构图和相应的动态结构参数表 22 5.4典I典II的开环对数辐频特性图22 5.5系统参数表23 5.6元器件明细表27 5.7系统原理图28 第六章个人小结29

1.设计任务书 1.1 系统性能指标 1) 调速范围D >10 2) 静差率s <5% 3) 电流超调量i σ<5% 4) 空载起动到额定转速的超调量n σ<15% 调整时间s t <1s 5) 当负载变化20%的额定值、电网电压波动10%额定值时 最大动态速降N n n /max ?<10% 动态恢复时间s t <0.3s 1.2 设计内容 1) 设计系统原理图 2) 计算调节器参数及其它参数 3) 编写课程设计说明书 1.3 应完成的技术文件 1) 设计说明书 2) 设计计算书 3) 系统原理图 4) 电器元件明细表

2.课程设计说明书 2.1 综述 运动控制系统也可称作电力拖动自动控制系统运动控制系统的任务是通过对电动机电压、电流、频率等输入量的控制,来改变电动机的转矩、速度、位移等机械量,使其拖动的机械按照人们期望的要求运行,以满足工业现场的要求。随着工业的发展,对于运动控制的要求也越来越高,在这种背景下,运动控制系统日趋复杂,逐渐成为一个跨多学科的综合性技术。运动控制系统主要用到以下学科的知识。 关键词:双闭环系统最佳电流环速度 2.2 整流主电路 整流电路是电力电子电路中出现最早的一种,它的作用是将交流电能变为直流电能供给直流用电设备。整流电路应用十分广泛,直流电机就是其中一种十分常见的负载。 整流电路可从很多角度进行分类,主要分类方法是:按组成的器件可分为不可控、半控和全控三种;按电路结构可分为桥式电路和零式电路;按交流输入相数分可分为单相、双相、三相和多相电路;按控制方法又可分为相控整流和斩波控制整流电路。 本系统采用的是三相全控桥式晶闸管相控整流电路。这是因为电机容量相对较大,并且要求直流脉动小、容易滤波。其交流侧由三相电网直接供电,直流侧输出脉动很小的直流电。在分析时把直流电机当成阻感性加反电势负载。因为电机电流连续所以分析方法与阻感性负载相同,各参量计算公式亦相同。