数学(理)一轮教学案第七章第4讲 基本不等式 Word版含解析

数学(理)一轮教学案第七章第4讲 基本不等式 Word版含解析
数学(理)一轮教学案第七章第4讲 基本不等式 Word版含解析

第讲基本不等式

考纲展示命题探究

基本不等式)

基本不等式及有关结论

()基本不等式:如果>,>,则

,当且仅当

时,等号成立,即正数与的算术平均数不小于它们=

的几何平均数.

,则+

()重要不等式:

时,等号成立.

,当且仅当

()几个常用的重要结论

①+≥(与同号,当且仅当=时取等号);

②+≥(>,当且仅当=时取等号),+

(<,当且仅当=-时取等号);

③≤(,∈,当且仅当=时取等号);

④≤≤≤(,>,当且仅当=时取等号).

利用基本不等式求最值

已知>,>,则

()如果积是定值,那么当且仅当=时,+有最小值

(简记:积定和最小).()如果+是定值,那么当且仅当=时,有最大值

(简记:和定积最大).

注意点基本不等式的使用条件

()求最值时要注意三点:“一正”“二定”“三相等”.所谓

“一正”指正数,“二定”是指应用定理求最值时,和或积为定值,

“三相等”是指等号成立.

()连续使用基本不等式时,要注意等号要同时成立.

.思维辨析

()函数=+的最小值是.( )

()≤成立的条件是>.( )

()当≥,≥时,≥.( ) ()两个不等式+≥与≥成立的条件是相同的.( )

答案()×()×()√()×.当>时,关于函数()=+,下列叙述正确的是( )

.函数()有最小值

.函数()有最大值

.函数()有最小值

.函数()有最大值

答案

解析∵>,∴->,∴()=+=-++≥+=,等号成立的条件

为当且仅当-=,即=.

.已知,∈+,且满足+=,则的最大值为.

答案

解析∵>,>且=+≥,∴≤.当且仅当=时取等号.即=,=时,

取得最大值.

[考法综述]

高考中对基本不等式的考查,主要是利用基本不等式求最值,且常与函数、数列、解析几何等知识进行综合考查,同时运用基本不等

式的性质求参数范围、证明不等式等也是热点.

命题法利用基本不等式求最值

典例()若(+)=,则+的最小值是( )

.+.+

.+.+

新版人教初二不等式教案

不等式及其解集 [教学目标] 1、了解不等式和一元一次不等式的概念; 2、理解不等式的解和解集,能正确表示不等式的解集。 [重点难点] 不等式、一元一次不等式、不等式的解、解集的概念是重点;不等式解集的 理解与表示是难点 一、课前预习: (1)如图,小明与小聪玩跷跷板,大家都不用力时,跷跷板左低右高。小明的身体质量 为 p(kg),小聪的身体质量为q(kg),书包的质量为2kg ,怎样表示p 、q 之间的关系? (2)如图,天平左盘放三个乒乓球,右盘放5g 砝码,天平倾斜。设每个乒乓球的质量为 x (g ),则根据图形可列出怎样的关系式? (3)公路上常有这样的标志:限速100km/h ,速度记作a ,则可以写出不等式是 (4)(x+1)0=1,x 必须满足的条件是 二、不等式的概念 1、不等式 “>”、“<”、 “ ≠”叫做不等号,不等号也可以写成“≤”、“≥” 的 形式。 总之,用不等号连接起来的式子叫做不等式。 2、一元一次不等式 类似于一元一次方程,含有一个未知数,并且未知数的次数是1的不等式,叫做一元 一次不等式。 注意:分母含有未知数的不等式不是一元一次不等式,这一点与一元一次方程类似。 三、典型例题 1、用不等式表示: (1)x 的一半小于-1 ; (2)y 与4的和大于0.5; (3)a 是负数; (4)b 是非负数; 模仿练习:用不等式表示 (1)a 是正数; (2)a 是非负数; (3)a 与6的和小于5; (4)x 与2的差大于-1; (5)x 的4倍不大于7; (6)y 的一半不小于3. (7)x 2与1的和是非负数 (8)3与x 的差的一半是非正数 2、一辆48座的旅游车载有游客x 人,到一个站上又上来2个人,车上仍有空位,有数学 式子表示上述数量关系 3、某一天的最低气温是-2℃,最高气温 是6℃,该市这一天某一时刻的气温t ℃。

高考数学二轮复习专题突破训练一第2讲不等式与线性规划理含2014年高考真题

第2讲 不等式与线性规划 考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2 +bx +c >0(a ≠0),再求相应一元二次方程ax 2 +bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f x g x >0(<0)?f (x )g (x )>0(<0); ②变形? f x g x ≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x ) >a g (x ) ?f (x )>g (x ); ②当0a g (x ) ?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2 ≥0(a ∈R ). (2)a 2 +b 2 ≥2ab (a 、b ∈R ). (3) a +b 2 ≥ab (a >0,b >0). (4)ab ≤(a +b 2)2 (a ,b ∈R ). (5) a 2+ b 22 ≥ a +b 2 ≥ab ≥ 2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.

4 第4讲 基本不等式

第4讲 基本不等式 1.基本不等式:ab ≤ a +b 2 (1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. (3)其中a +b 2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤???? a + b 22 (a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥ ????a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +a b ≥2(a ,b 同号),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 2 4 .(简记:和定积最大) 判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1 x 的最小值是2.( ) (2)ab ≤???? a + b 22成立的条件是ab >0.( ) (3)“x >0且y >0”是“x y +y x ≥2”的充要条件.( ) (4)若a >0,则a 3+1 a 2的最小值是2a .( ) 答案:(1)× (2)× (3)× (4)× (教材习题改编)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 解析:选C.xy ≤????x +y 22 =???? 1822 =81,当且仅当x =y =9时等号成立,故选C.

高中数学_均值不等式教学设计学情分析教材分析课后反思

必修5 第三章 不等式 3.2 均值不等式(新授课) 一、教学目标确立依据 1.课程标准要求 (,0)2 a b a b +≤ ≥ ①探索并了解基本不等式的证明过程; ②会用基本不等式解决简单的最大(小)问题. 2.课程标准解读 对上述①的解读:首先给学生创设探索的平台得到基本不等式,同时给学生机会让学生用所学方法证明基本不等式; 对上述②的解读:首先教师用问题的方式搭建平台让学生发现基本不等式的限制条件,同时教师由浅入深给学生探究最值的平台,由理论到实践操作将最值问题与实际问题挂钩,让学生在探究和实践过程中学会用基本不等式解决简单的最大(小)问题. 3.学情分析与教材分析 学生已经学习“不等式的性质”、“不等式的解法”及“线性规划”的基础上对不等式的进一步研究.知晓不等式证明以及函数求最值的某些方法. “均值不等式” 是必修5的重点内容,在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了分类讨论、化归等重要数学思想,有利于培养学生良好的思维品质. 为了帮助学生构建知识体系,教科书分三个层面来展现:第一层面,从简单的不等式证明入手,在降低难度的基础上让学生体会基本不等式在证明不等式总中的作用;第二层面,通过应用题,体现基本不等式在实际问题的应用,以及让学生体会简单的基本不等式的应用;第三层面,通过分母是一次函数,分子是二次函数的分式形式,循序渐进的增加难度,让学生学会判断条件学会拼凑或者添项转化为公式所需要的条件.本课正处于第一、第二个层面以及第三层面的初级阶段. 本节内容体现了数学的工具性、应用性,同时也渗透了转化与化归、数形结

《基本不等式》教案

《基本不等式》教案 教学三维目标: 1、知识与能力目标:掌握基本不等式及会应用基本不等式求最值. 2、过程与方法目标:体会基本不等式应用的条件:一正二定三相等;体会应用基本不等式求最值问题解题策略的构建过程;体会习题的改编过程. 3、情感态度与价值观目标:通过解题后的反思,逐步培养学生养成解题反思的习惯;通过变式练习,逐步培养学生的探索研究精神. 教学重点、难点: 重点:基本不等式在解决最值问题中的应用. 难点:利用基本不等式失效(等号取不到)的情况下采用函数的单调性求解最值. 学情分析与学法指导: 基本不等式是求最值问题中的一种很重要的方法,但学生在运用过程中“一正、二定、三相等”的应用条件一方面容易被忽视,另一方面某些问题看似不符合前面的三个条件,但经过适当的变形又可以转化成运用基本不等式的类型学生解决起来有一定的困难。在本节高三复习课中,结合学生的实际编制了教学案,力求在学生的“最近发展区”设计问题,逐步启发、引导学生课前自主预习、小组合作学习. 教学过程: 一、基础梳理 基本不等式:如果a,b 是正数,那么2a b + (当且仅当a b 时取""=号 ) 代数背景:如果22a b + 2ab (,,a b R ∈当且仅当a b 时取""=号 )(用代换思 想得到基本不等式) 几何背景:半径不小于半弦。 常见变形: (1)ab 22 2a b + (2)222a b + 2 2a b +?? ??? (3)b a a b + 2(a ,b 同号且不为0) 3、算术平均数与几何平均数

如果a 、b 是正数,我们称 为a 、b 的算术平均数,称 的a 、b 几何平均数. 4、利用基本不等式求最值问题(建构策略) 问题: (1)把4写成两个正数的积,当这两个正数取什么值时,它们的和最小? (2)把4写成两个正数的和,当这两个正数取什么值时,它们的积最大? 请根据问题归纳出基本不等式求解最值问题的两种模式: 已知x ,y 都大于0则 (1)“积定和最小”:如果积xy 是定值P ,那么当 时,和x +y 有最小值 ; (2)“和定积最大”:如果和x +y 是定值S ,那么当 时,积xy 有最大值 . 二、课前热身 1、已知,(0,1)a b a b ∈≠且,下列各式最大的是( ) A. 22a b + B. C. 2ab D. a b + 2、已知,,a b c 是实数,求证222a b c ab bc ac ++≥++ 3、.1,0)1(的最小值求若x x x +> .)1(,10)2(的最大值求若x x x -<< 4、大家来挑错 (1)2121=?≥+ x x x x 21的最小值是x x +∴ (2)2121,2=?≥+ ≥x x x x x 则 21,2的最小值是时x x x +≥∴ 5、的最小值求若31,3-+ >a a a 三、课堂探究 1、答疑解惑 方法:小组提交预习中存在的疑问,由其他组学生或教师有针对性地答疑。 2、典例分析 例1、设02,x <<求函数y =. 例2、41,3lg lg x y x x >=++ 设求函数的最值. 变式1:将条件改为01x << 变式2:去掉条件1x > 变式3:将条件改为1000≥x 例3、若正数,3,a b ab a b ab =++满足则的取值范围是 . 变式:求a b +的取值范围.

2020浙江高考数学二轮专题强化训练:专题一第4讲 不等式 Word版含解析

专题强化训练 1.(2019·金华十校联考)不等式(m -2)(m +3)<0的一个充分不必要条件是( ) A .-3<m <0 B .-3<m <2 C .-3<m <4 D .-1<m <3 解析:选A.由(m -2)(m +3)<0得-3<m <2,即不等式成立的等价条件是-3<m <2, 则不等式(m -2)(m +3)<0的一个充分不必要条件是(-3,2)的一个真子集, 则满足条件是-3<m <0. 故选A. 2.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪????-1 2,+∞,则a =( ) A .2 B .-2 C .-1 2 D.12 解析:选B.根据不等式与对应方程的关系知-1,-1 2是一元二次方程ax 2+x (a -1)-1=0 的两个根,所以-1×????-12=-1 a ,所以a =-2,故选B. 3.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +1 3y 的最小值是( ) A .2 B .2 2 C .4 D .2 3 解析:选C.因为lg 2x +lg 8y =lg 2, 所以x +3y =1, 所以1x +13y =????1x +13y (x +3y )=2+3y x +x 3y ≥4, 当且仅当3y x =x 3y , 即x =12,y =1 6 时,取等号. 4.若平面区域???? ?x +y -3≥0, 2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间 的距离的最小值是( )

A.35 5 B.2 C.322 D.5 解析:选B.不等式组???? ?x +y -3≥02x -y -3≤0x -2y +3≥0表示的平面区域如图中阴影部分所示,其中A (1,2)、 B (2,1),当两条平行直线间的距离最小时,两平行直线分别过点A 与B ,又两平行直线的斜率为1,直线AB 的斜率为-1,所以线段AB 的长度就是过A 、B 两点的平行直线间的距离,易得|AB |=2,即两条平行直线间的距离的最小值是2,故选B. 5.(2019·金丽衢十二校高三联考)若函数f (x )=2x 2-a x -1(a <2)在区间(1,+∞)上的最小值为 6,则实数a 的值为( ) A .2 B.32 C .1 D.12 解析:选 B.f (x )= 2x 2-a x -1 = 2(x -1)2+4(x -1)+2-a x -1 =2(x -1)+ 2-a x -1 + 4≥2 2(x -1)·2-a x -1+4=2 4-2a +4,当且仅当2(x -1)=2-a x -1 ?x =1+ 2-a 2 时,等号成立,所以2 4-2a +4=6?a =3 2 ,故选B. 6.若不等式组? ????x 2-2x -3≤0, x 2+4x -(1+a )≤0的解集不是空集,则实数a 的取值范围是( ) A .(-∞,-4] B .[-4,+∞) C .[-4,20] D .[-4,20) 解析:选B.不等式x 2-2x -3≤0的解集为[-1,3],

基本不等式教学设计与反思

“基本不等式”教学设计与教学反思 一、教材背景分析 1.教材的地位和作用 本节内容是在系统的复习了不等关系和不等式性质,掌握了不等式性质的基础上展开的。教材通过赵爽弦图回顾基本不等式,在代数证明的基础上,通过“探究”引导学生回顾基本不等式的几何意义,并给出在解决函数最值和实际问题中应用,在知识体系中起着承上启下的作用;从知识的应用价值上看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法(如数形结合、抽象归纳、演绎推理、分析法证明等)在各种不等式的研究中均有着广泛的应用;从内容的人文价值上看,基本不等式的探究、推导和应用需要学生观察、分析、猜想、归纳和概括等,有助于培养学生思维能力和探索精神,是培养学生数形结合意识和提高数学能力的良好载体. 本节是复习课,不仅应让学生进一步理解概念,还要掌握应用基本不等式求最值,体会基本不等式在实际生活中的指导作用。 2.学情分析 在认知上,学生已经掌握了不等式的基本性质,并能够根据不等式的性质进行数、式的大小比较,也具备了一定的平面几何的基本知识. 如何让学生再认识“基本”二字,是本节学习的前提. 事实上,该不等式反映了实数的两种基本运算(即加法和乘法)所引出的大小变化,这一本质不仅反映在其代数结构上,而且也有几何意义,由此而生发出的问题在训练学生的代数推理能力和几何直观能力上都发挥了良好的作用. 因此,必须从基本不等式的代数结构和几何意义两方面入手,才能让学生深刻理解它的本质. 另外,在用基本不等式解决最值时,学生往往容易忽视基本不等式使用的前提条件和等号成立的条件,因此,在教学过程中,应借助辨误的方式让学生充分领会基本不等式成立的三个限制条件(一正二定三相等)在解决最值问题中的作用. 3、教学重难点: 教学重点:用数形结合的思想理解基本不等式,并从不同角度回顾和探索基本不等式的证明过程;用基本不等式解决一些简单的最值问题. 教学难点:回顾在几何背景下抽象出基本不等式的过程;基本不等式中等号成立的条件;应用基本不等式解决实际问题. 二、教学目标 1、利用“赵爽弦图”回顾重要不等式、基本不等式,再利用教材中的“探究”回顾基本不等式的几何意义,通过基本不等式的回顾,进一步让学生体会和感悟形数统一的思想方法;

人教A版高中数学选修4-5_《不等式选讲》全册教案

选修4--5 不等式选讲

一、课程目标解读 选修系列4-5专题不等式选讲,内容包括:不等式的基本性质、含有绝对值的不等式、不等式的证明、几个著名的不等式、利用不等式求最大(小)值、数学归纳法与不等式。通过本专题的教学,使学生理解在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系都是基本的数学关系,它们在数学研究和数学应用中起着重要的作用;使学生了解不等式及其证明的几何意义与背景,以加深对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析问题解决问题的能力。 二、教材内容分析 作为一个选修专题,虽然学生已经学习了高中必修课程的5个模块和三个选修模块,教材内容仍以初中知识为起点,在内容的呈现上保持了相对的完整性.整个专题内容分为四讲,结构如下图所示: 第一讲是“不等式和绝对值不等式”,为了保持专题内容的完整性,教材回顾了已学过的不等式6个基本性质,从“数与运算”的思想出发,强调了比较大小的基本方法。回顾了二元基本不等式,突出几何背景和实际应用,同时推广到n个正数的情形,但教学中只要求理解掌握并会应用二个和三个正数的均值不等式。 对于绝对值不等式,借助几何意义,从“运算”角度,探究归纳了绝对值三角不等式,并用代数方法给出证明。通过讨论两种特殊类型不等式的解法,学习解含有绝对值不等式的一般思想和方法,而不是系统研究。 第二讲是“证明不等式的基本方法”,教材通过一些简单问题,回顾介绍了证明不等式的比较法、综合法、分析法,反证法、放缩法。其中,用反证法和放缩法证明不等式是新的课程标准才引入到中学数学教学中的内容。这些方法大多在选修2-2“推理与证明”已经学过,此处再现也是为了专题的完整性,对于新增的放缩法,应通过实际实际例子,使学生明确不等式放缩的几个简单途径和方法,比如舍掉或加进一些项,在分式中放大或缩小分子或分母,应用基本不等式进行放缩等(见分节教学设计)。本讲内容也是本专题的一个基础内容。 第三讲是“柯西不等式和排序不等式”。这两个不等式也是本专题实质上的新增内容,教材主要介绍柯西不等式的几种形式、几何背景和实际应用。其中柯西不等式及其在证明不等式和求某些特殊类型函数极值中的应用是教材编写和我们教学的重点。事实上,柯西不等式和均值不等式在求最值方面的简单应用,二者同样重要,在某些问题中,异曲同工。比如课本P41页,习题3.2 第四题。

2019-2020年高考数学一轮复习第七章不等式第4讲基本不等式理

2019-2020年高考数学一轮复习第七章不等式第4讲基本不等式理 一、选择题 1.若x >0,则x +4 x 的最小值为( ). A .2 B .3 C .2 2 D .4 解析 ∵x >0,∴x +4 x ≥4. 答案 D 2.已知a >0,b >0,a +b =2,则y =1a +4 b 的最小值是( ). A.72 B .4 C.9 2 D .5 解析 依题意得1a +4b =12? ????1a +4b (a +b )=12??????5+? ????b a +4a b ≥12? ? ???5+2 b a ×4a b =9 2 , 当且仅当????? a + b =2b a = 4a b a >0,b >0 ,即a =2 3 , b =4 3时取等号,即1a +4b 的最小值是9 2 . 答案 C 3.小王从甲地到乙地的时速分别为a 和b (a a 2 -a 2 a + b =0,∴v >a . 答案 A 4.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4

C.a +b 有最大值 2 D .a 2+b 2 有最小值 22 解析 由基本不等式,得ab ≤ a 2+ b 2 2 = a +b 2 -2ab 2,所以ab ≤14,故B 错;1a +1b = a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2 ≤ a +b 2 = 1 2 ,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2 -2ab =1-2ab ≥1-2×14=12,故D 错. 答案 C 5.已知x >0,y >0,且2x +1y =1,若x +2y >m 2 +2m 恒成立,则实数m 的取值范围是 ( ). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2) 解析 ∵x >0,y >0且2x +1 y =1, ∴x +2y =(x +2y )? ?? ??2x +1y =4+4y x +x y ≥4+2 4y x ·x y =8,当且仅当4y x =x y , 即x =4,y =2时取等号, ∴(x +2y )min =8,要使x +2y >m 2 +2m 恒成立, 只需(x +2y )min >m 2 +2m 恒成立, 即8>m 2 +2m ,解得-40),l 1与函数y =|log 2x |的图象从左至右相 交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,b a 的最小值为 ( ). A .16 2 B .8 2 C .83 4 D .434 解析 如图,作出y =|log 2x |的图象,由图可 知A ,C 点的横坐标在区间(0,1)内,B ,D 点的横坐标在区间(1,+∞)内,而且x C -x A 与x B -

数学苏教版必修5基本不等式(教案)

基本不等式(一) 教学目标: 1. 学会推导并掌握均值不等式定理; 2. 能够简单应用定理证明不等式并解决一些简单的实际问题。 教学重点:均值不等式定理的证明及应用。 教学难点:等号成立的条件及解题中的转化技巧。 教学过程: 重要不等式:如果a 、b ∈R ,那么a 2+b 2 ≥2ab (当且仅当a =b 时取“=”号) 证明:a 2+b 2-2ab =(a -b )2 当a ≠b 时,(a -b )2>0,当a =b 时,(a -b )2=0 所以,(a -b )2≥0 即a 2+b 2 ≥2ab 由上面的结论,我们又可得到 定理:如果a ,b 是正数,那么 a +b 2 ≥ab (当且仅当a =b 时取“=”号) 证明:∵(a )2+(b )2≥2ab 4a +b ≥2ab 即 a +b 2 ≥ab 显然,当且仅当a =b 时,a +b 2 =ab 说明:1)我们称a +b 2 为a ,b 的算术平均数,称ab 为a ,b 的几何平均数,因而, 此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2)a 2+b 2≥2ab 和a +b 2 ≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数. 3)“当且仅当”的含义是充要条件. 4)数列意义 问:a ,b ∈R -? 例题讲解: 例1 已知x ,y 都是正数,求证: (1)如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P ; (2)如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值14 S 2 证明:因为x ,y 都是正数,所以 x +y 2 ≥xy (1)积xy 为定值P 时,有x +y 2 ≥P ∴x +y ≥2P 上式当x =y 时,取“=”号,因此,当x =y 时,和x +y 有最小值2P . (2)和x +y 为定值S 时,有xy ≤S 2 ∴xy ≤ 14 S 2 上式当x=y 时取“=”号,因此,当x=y 时,积xy 有最大值14 S 2.

不等式教学设计

9.1 不等式 教材分析:本课由实际问题中的不等关系引出不等式的概念;类比方程的解,明确不等式解和解集的概念,以及不等式解集的两种表示方法。 教学目标:了解不等式概念,理解不等式的解和解集。 教学重难点:不等式及解集概念的理解。 教学过程: 一:引出新知。 现实世界中存在大量的数量关系,包括相等关系和不等关系。用等式(包括方程),我们可以研究相等关系,而研究不等关系需要用本章的不等式,如引言中选择购物商场问题. 二:探索新知。 问题1 一辆匀速行驶的汽车在11:20距离A地50 km,要在12:00之前驶过A地.你能用式子表示出车速应满足的条件吗? 1、汽车在12:00之前驶过A地的意思是什么? 从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50 km所用的时间不到。 从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶的路程要超过50 km。 2、如何用式子表示以上不等关系? 设:车速为x km/h. 从时间上看:

从路程上看: (1)对于不等式而言,车速可以是80 km/h吗?78 km/h呢? 75 km/h呢?72 km/h呢? (2)类比方程的解,什么叫不等式的解? 使不等式成立的未知数的值. (3)不等式还有其他解吗?如果有,这些解应满足什么条件? 一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式. (4)除了用不等式表示取值范围,还有其他表示方法吗? 数轴 三、运用新知。 例1 请用不等式表示: (1)是负数; (2)与5的和小于-7; (3)的一半大于3. 例2 直接说出不等式的解集,并在数轴上表 示出来. 四、归纳总结 (1)什么叫不等式? (2)什么叫不等式的解?不等式的解和方程的解的区别?(3)什么叫不等式的解集?不等式的解和不等式的解集的区别?

高考数学二轮复习 第一部分 专题篇 专题一 集合、常用逻辑用语、不等式、函数与导数 第四讲 不等式课

2017届高考数学二轮复习 第一部分 专题篇 专题一 集合、常用逻 辑用语、不等式、函数与导数 第四讲 不等式课时作业 理 A 组——高考热点基础练 1.已知a ,b ,c 满足c <b <a 且ac <0,则下列选项中不一定能成立的是( ) A.c a <b a B.b -a c >0 C.b 2c 0,∴c a 0,a -c ac <0, 但b 2 与a 2 的关系不确定,故b 2c 0,即-16x 2+56 x -1>0,解 得2

C .4 D .5 解析:先作出可行域,再求目标函数的最大值. 根据题意作出可行域如图阴影部分所示,平移直线y =-2x ,当直线平移到虚线处时,目标 函数取得最大值.由? ?? ?? 2x -y =0, x +y =3,可得A (1,2),此时2x +y 取最大值为2×1+2=4. 答案:C 4.已知函数f (x )=ax 2 +bx +c ,不等式f (x )<0的解集为{x |x <-3或x >1},则函数y =f (- x )的图象可以为( ) 解析:由f (x )<0的解集为{x |x <-3或x >1}知a <0,y =f (x )的图象与x 轴交点为(-3,0),(1,0), ∴f (-x )图象开口向下,与x 轴交点为(3,0),(-1,0). 答案:B 5.设a ,b ∈R ,且a +b =3,则2a +2b 的最小值是( ) A .6 B .42 C .2 2 D .26 解析:2a +2b ≥22a +b =223=42,当且仅当2a =2b ,a +b =3,即a =b =32 时,等号成立.故 选B. 答案:B

一元一次不等式教案

课题: 9.2.1一元一次不等式 课型:新授课主备人:徐宝永审核人: 段海涛二次审核人:七年级数学组

补偿应用补偿提高 ②不大于 3 1 2- x 的值; 小结:⑴什么叫一元一次不等式?解一元一次不等式的一般步骤是:①________ (根据不等式的基本性质2或3);②________(根据等式的运算法则);③_________ (根据不等式的基本性质1);?④_____________(根据整式的运算法则);⑤ _________(根据不等式的基本性质2或3).⑵解一元一次不等式的注意点:①移 项要变号(同方程解法) ②当不等式两边都乘以或除以一个负数时,不等号方向改 变. 三补偿应用 1. 下列选项中,是不等式的是_____,是一元一次不等式的是____ (1) 3>2 (2) 3 2 50 < x (3)3x2+2x(4)x<3x+1 (5)x=2x+5 (6)a+b≠c (7)x-2<2x-1 (8)a-1 ≤3 (9)x2+4x<3x+1 2.在解不等式 221 35 x x +- >的下列过程中,错误的一步是() A.去分母得5(2+x)>3(2x-1) B.去括号得10+5x>6x-3 C.移项得5x-6x>-3-10 D.系数化为1得x>13 3.(2011.重庆)解不等式2x-3< 3 1 + x ,并把解集在数轴上表示出来 4.(2012?嘉兴)解不等式2(x-1)-3<1并把解集在数轴上表示出来 . 四补偿提高 1、解下列不等式,并将解集在数轴上表示出来: ()()5 2 5 2 3 3+ > -x x()()3 2 2 14- < - - -x x; 2 2 5 3 1 - - > + x x 2.解不等式 532 1 23 x x ++ -<,小兵的解答过程是这样的. 解:去分母,得x+5-1<3x+2 ① 移项得x-3x<2-5+1 ② 合并同类项,得-2x<-2 ③ 在教学中, 仍要让学 生注意每 一步骤变 形的依据, 从而灵活 运用。

专题一 第3讲 不等式

第3讲 不等式 [考情分析] 1.不等式的解法是数学的基本功,在许多题目中起到工具作用.2.求最值和不等式 恒成立问题常用到基本不等式.3.题型多以选择题、填空题形式考查,中等难度. 考点一 不等式的性质与解法 核心提炼 1.不等式的倒数性质 (1)a >b ,ab >0?1a <1b . (2)a <0b >0,0b d . 2.不等式恒成立问题的解题方法 (1)f (x )>a 对一切x ∈I 恒成立?f (x )min >a ,x ∈I ;f (x )g (x )对一切x ∈I 恒成立?当x ∈I 时,f (x )的图象在g (x )的图象的上方. (3)解决恒成立问题还可以利用分离参数法. 例1 (1)若p >1,01 B.p -m p -n log n p 答案 D 解析 方法一 设m =14,n =1 2 ,p =2,逐个代入可知D 正确. 方法二 对于选项A ,因为01,所以00,所以p -m p -n >m n ,故B 不正确;对于 选项C ,由于函数y =x -p 在(0,+∞)上为减函数,且0n -p ,故C 不正确;对于选项D ,结合对数函数的图象可得,当p >1,0log n p ,故D 正确. (2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b )x -3b <0的解集是( )

柯西不等式教学设计

3.1 二维形式的柯西不等式(一)教学设计 一、设计思想: 本节乃至本讲的编写意图不是仅仅介绍经典不等式及其证明方法,而是更希 望能通过分析和解决问题,讨论经典不等式的简单应用,提高学生运用重要数学 结论进行推理论证的能力,即在理解重要数学结论的基础上,能够发现面临的具 体问题与重要数学结论之间的内在联系,并善于利用这样的联系,应用重要数学 结论及其所反映的数学思想方法解决具体问题。 二、教材分析: 二维形式的柯西不等式是人教A 版教材选修4-5第三讲第一节的内容,是学生 继学习均值不等式之后学习的又一个经典不等式,它在教材中起着承前启后的作 用,一方面巩固了前面证明不等式及求最值的基本方法,另一方面与后面学习的 三维形式的柯西不等式及一般形式的柯西不等式有着相通的研究方法,是从特殊 到一般的研究过程。本节教学的核心是二维形式的柯西不等式、几何意义以及它 的简单应用。 三、学情分析: 学生不仅掌握了不等式的基本证明方法,还具备了一定的观察、分析、逻辑推 理能力,学生对柯西不等式的向量形式也有了一定的认识,这是学生知识的“最 近发展区”。另外授课班级是高二年级(4)班,学生基础较好,学习积极性较高。 四、教学目标 1、知识与技能目标 (1)认识二维柯西不等式的几种不同形式,理解其几何意义。 (2)能用二维柯西不等式解决简单的证明问题及求最值问题。 2、过程与方法目标 通过创设情境提出问题,然后探索解决问题的方法,培养学生 独立思考能力和逻辑推理能力及数形结合能力。 3、情感态度与价值观 简单介绍法国数学家柯西,渗透数学史和数学文化。 五、教学重难点 (1)教学重点 二维形式的柯西不等式 ; 二维形式的柯西不等式的向量形式 (2)教学难点 数形结合的认识两种形式的等价关系;应用柯西不等式求最值 六、教学过程 (一)定理探究 设α ,β 为平面上以原点O 为起点的两个非零向量,它们的坐标α =(b a ,) β =(d c ,)那么它们的数量积为ac bd αβ→→?=+而22||a b α→=+,22||c d β=+ ||||cos αβαβθ?=?? ,cos 1θ≤ ||||||αβαβ∴ ?≤? ,其中等号当且仅当两个向量共线时成立。 定理:(二维柯西不等式的向量形式)设α ,β 为平面上的两个向量,则 ||||||αβαβ?≤? ,当且仅当β 是零向量或存在实数k ,使k αβ= 时等号成立。 用向量坐标表示不等式||||||αβαβ?≤? ,得2222||d c b a bd ac +?+≤+

(浙江专用)最新2020-2021高考数学二轮复习 专题三 数列与不等式 第4讲 不等式学案

第4讲 不等式 [考情考向分析] 1.利用不等式性质比较大小、不等式的求解、利用基本不等式求最值、线性规划、绝对值不等式的应用问题是高考的热点,主要以选择题、填空题为主.2.一元二次不等式常与函数、数列结合考查一元二次不等式的解法和参数的取值范围.3.在解答题中,特别是在解析几何中求最值、范围问题或在解决导数或数列问题时常利用不等式进行求解,难度较大. 热点一 基本不等式 利用基本不等式求最大值、最小值,其基本法则是:(1)如果x >0,y >0,xy =p (定值),当x = y 时,x +y 有最小值2p (简记为:积定,和有最小值);(2)如果x >0,y >0,x +y =s (定值), 当x =y 时,xy 有最大值14 s 2 (简记为:和定,积有最大值). 例1 (1)(2018·浙江省金丽衢十二校联考)设a >b >0,当a 2 2+2 b (a -b )取得最小值 c 时,函数f (x ) =|x -a |+|x -b |+|x -c |的最小值为( ) A .3 B .2 2 C .5 D .4 2 答案 A 解析 a 2 2+2b (a -b )=[b +(a -b )]2 2+2 b (a -b ) ≥2b (a -b )+ 2 b (a -b ) ≥2 2b (a -b )· 2 b (a -b ) =4, 当且仅当a =2b =2时,上面不等式中两个等号同时成立, 所以a 2 2+2 b (a -b )的最小值为4,此时a =2,b =1, c =4, 则f (x )=|x -1|+|x -2|+|x -4| =????? 7-3x ,x <1,5-x ,1≤x ≤2,x +1,24, 所以当x =2时,函数f (x )取得最小值f (2)=5-2=3,故选A. (2)(2018·诸暨市高考适应性考试)已知a ,b 为正实数,且(a +b )(a +2b )+a +b =9,则3a +4b 的最小值为________.

【高考精品复习】第七篇 不等式 第4讲 基本不等式

第4讲 基本不等式 【高考会这样考】 1.考查应用基本不等式求最值、证明不等式的问题. 2.考查应用基本不等式解决实际问题. 【复习指导】 1.突出对基本不等式取等号的条件及运算能力的强化训练. 2.训练过程中注意对等价转化、分类讨论及逻辑推理能力的培养. 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)a 2+b 22≥? ?? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定

积最大 ) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b 2≥ab (a ,b >0)逆用就是ab ≤? ?? ??a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥? ?? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); (2) a 2+b 22≥a +b 2≥ab ≥2 1a +1b (a >0,b >0,当且仅当a =b 时取等号). 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是

均值不等式教案

§ 3.2 均值不等式 本节内容是选自人教版高中数学B 版必修五第三章第二节——均值不等式。它在不等式这一章中占有非常重要的地位,在不等式的证明中尤其突出。 一、教学目标 知识与技能:均值不等式的基本表达式;均值不等式所表达的几何意 义;能够应用均值不等式进行简单的证明 过程与方法:掌握数形结合的数学思想方法 情感态度价值观:数学来源于生活,善于从生活中去探索数学的奥秘 二、重难点 重点:均值不等式的证明与应用;“=”成立的条件 难点:均值不等式的几何意义;在怎样的情况下应用均值不等式 三、教学方法 讲授法 四、教学过程 (一)情境引入 某一届国际数学家大会的会标,我们将其中的几何图形抽象出来得到这样一个图形:已知的是直角三角形的两直角边分别为a ,b ,那我们能否从其中找出一些不等关系? 解答:图中四个直角三角形的面积总和为:1 42 ab

大的正方形的面积为:22a b + 我们可以很直观地得出:22a b +>2ab 问:同学们再想一想,这个“>”可以换成“≥”吗? 当直角三角形变为等腰直角三角形的时候,也即是a b =时,这时,正方形EFGH 变为一点,可以得到222a b ab +=。 (二)得出结论并证明(基础) 一般地,,a b R ∈,则222a b ab +≥. 证明: 2222()a b ab a b +-=- 当a b ≠时,()2 0a b ->;当a b =时,2()0a b -=. 综上所述,可得222a b ab +≥. (三)均值不等式的变式(重点) 若0,0,a b >>则 2 a b ab +≥(当a b =时,“=”取到) 需明确的两个概念:2 a b +表示a 与b 的算术平均数 ; ab 表示a 与b 的几何平均数 。 证明(几何意义): 如图:AC 是圆O 的直径,点D 是AC 上任一点,AD a =,CD b =,过点D 做BD AC ⊥交圆周于B , 连接OB . 则22 AC a b OB += = 又Rt ADB Rt BDC ?? ,则AD AB DB BD BC DC == 所以2BD AD DC ab =?=,也即BD ab = 又OB BD ≥,所以 2 a b ab +≥.

相关文档
最新文档