晶振的工作原理解析

晶振的工作原理解析
晶振的工作原理解析

晶振的工作原理

一、什么是晶振?

晶振是石英振荡器的简称,英文名为Crystal,它是时钟电路中最重要的部件,它的主要作用是向显卡、网卡、主板等配件的各部分提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题。

晶振还有个作用是在电路产生震荡电流,发出时钟信号.

晶振是晶体振荡器的简称。它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。

晶振在数字电路的基本作用是提供一个时序控制的标准时刻。数字电路的工作是根据电路设计,在某个时刻专门完成特定的任务,如果没有一个时序控制的标准时刻,整个数字电路就会成为“聋子”,不知道什么时刻该做什么事情了。

晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。

晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。

电路中,为了得到交流信号,可以用RC、LC谐振电路取得,但这些电路的振荡频率并不稳定。在要求得到高稳定频率的电路中,必须使用石英晶体振荡电路。石英晶体具有高品质因数,振荡电路采用了恒温、稳压等方式以后,振荡频率稳定度可以达到10^(-9)至10^ (-11)。广泛应用在通讯、时钟、手表、计算机……需要高稳定信号的场合。

石英晶振不分正负极, 外壳是地线,其两条不分正负

二、晶振的使用

晶振,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。

晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。

一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容

量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。

一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。

晶振是为电路提供频率基准的元器件,通常分成有源晶振和无源晶振两个大类,无源晶振需要芯片内部有振荡器,并且晶振的信号电压根据起振电路而定,允许不同的电压,但无源晶振通常信号质量和精度较差,需要精确匹配外围电路(电感、电容、电阻等),如需更换晶振时要同时更换外围的电路。有源晶振不需要芯片的内部振荡器,可以提供高精度的频率基准,信号质量也较无源晶振要好。

每种芯片的手册上都会提供外部晶振输入的标准电路,会表明芯片的最高可使用频率等参数,在设计电路时要掌握。与计算机用CPU不同,单片机现在所能接收的晶振频率相对较低,但对于一般控制电路来说足够了。

晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。

谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。

晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。

石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。如在极板间所加的是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场。一般来说,这种机械振动的振幅是比较小的,其振动频率则是很稳定的。但当外加交变电压的频率与晶片的固有频率(决定于晶片的尺寸)相等时,机械振动的幅度将急剧增加,这种现象称为压电谐振,因此石英晶体又称为石英晶体谐振器。其特点是频率稳定度很高。

石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件。石英晶体振荡器是利用石英晶体的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC来共同作用来工作的。振荡器直接应用于电路中,谐振器工作时一般需要提供3.3V电压来维持工作。振荡器比谐振器多了一个重要技术参数为:谐振电阻(RR),谐振器没有电阻要求。RR的大小直接影响电路的性能,也是各商家竞争的一个重要参数。

三、概述

微控制器的时钟源可以分为两类:基于机械谐振器件的时钟源,如晶振、陶瓷谐振槽路;基于相移电路的时钟源,如:RC (电阻、电容)振荡器。硅振荡器通常是完全集成的RC振荡器,为了提高稳定性,包含有时钟源、匹配电阻和电容、温度补偿等。

机械式谐振器与RC振荡器的主要区别

基于晶振与陶瓷谐振槽路(机械式)的振荡器通常能提供非常高的初始精度和较低的温度系数。相对而言,RC振荡器能够快速启动,成本也比较低,但通常在整个温度和工作电源电压范围内精度较差,会在标称输出频率的5%至50%范围内变化。图1所示的电路能产生可靠的时钟信号,但其性能受环境条件和电路元件选择以及振荡器电路布局的影响。需认真对待振荡器电路的元件选择和线路板布局。在使用时,陶瓷谐振槽路和相应的负载电容必须根据特定的逻辑系列进行优化。具有高Q值的晶振对放大器的选择并不敏感,但在过驱动时很容易产生频率漂移(甚至可能损坏)。影响振荡器工作的环境因素有:电磁干扰(EMI)、机械震动与冲击、湿度和温度。这些因素会增大输出频率的变化,增加不稳定性,并且在有些情况下,还会造成振荡器停振。

振荡器模块

上述大部分问题都可以通过使用振荡器模块避免。这些模块自带振荡器、提供低阻方波输出,并且能够在一定条件下保证运行。最常用的两种类型是晶振模块和集成硅振荡器。晶振模块提供与分立晶振相同的精度。硅振荡器的精度要比分立RC振荡器高,多数情况下能够提供与陶瓷谐振槽路相当的精度。

功耗

选择振荡器时还需要考虑功耗。分立振荡器的功耗主要由反馈放大器的电源电流以及电

路内部的电容值所决定。CMOS放大器功耗与工作频率成正比,可以表示为功率耗散电容值。比如,HC04反相器门电路的功率耗散电容值是90pF。在4MHz、5V电源下工作时,相当于1. 8mA的电源电流。再加上20pF的晶振负载电容,整个电源电流为2.2mA。

陶瓷谐振槽路一般具有较大的负载电容,相应地也需要更多的电流。

相比之下,晶振模块一般需要电源电流为10mA至60mA。

硅振荡器的电源电流取决于其类型与功能,范围可以从低频(固定)器件的几个微安到可编程器件的几个毫安。一种低功率的硅振荡器,如MAX7375,工作在4MHz时只需不到2mA 的电流。

时钟电路晶振与时钟IC芯片

主板时钟芯片电路提供给CPU,主板芯片组和各级总线(CPU总线,AGP总线,PCI总线,PCIE总线等)和主板各个接口部分基本工作频率,有了它,计算机才能在CPU控制下,按步就班,协调地完成各项功能工作:

1.晶振的工作原理:主板时钟芯片即分频器的原始工作振荡频率,由石英晶体多谐振荡器的谐振频率来产生,晶振其实是一个频率产生器,他主要把传进去的电压转化为频率信号。提供给分频率一个基准的14.318MHZ的振荡频率,它是一个多谐振荡器的正回馈环电路,也就是说它把输入作为输出,把输出作为输入的回馈频率,象这样一个永无休止的循环自激

过程。

⒉在主板上常见的时钟晶振:有14.318M(主时钟)与32.768HZ(南桥旁边的时钟)

⒊时钟IC芯片简介:他主要起着放大频率和缩小频率的作用,他和晶振组合后才能在主板上起作用。我们把他称做为时钟发生器(晶振+时钟IC芯片)

⒋时钟发生器的工作原理:时钟我们可以把他定义为各个部件的总线频率速度,他起着分配给各个部件的频率使他们能够正常工作。当晶振通电后发出的频率送入时钟IC芯片,它的各脚会传出相对应的频率通个时钟IC芯片旁边的电阻(时钟IC芯片旁边左右两边一排的小电阻基本为220=22欧,330=33欧).而内存,与AGP这些高速的时钟是由北桥内部提供给它的,(注有些主板AGP时钟不是由北桥提供的)将频率信号分配到主板各个部件,如(P CI 33M,CPU 100M133M200M I/O 48M和14M,南桥33M &14M北桥100M7&133M&200M

时钟IC芯片

上面讲到了时钟的产生,那他是如何工作的接下来我给大家讲解一下时钟IC芯片.时钟IC芯片的工作条件:

①.供电→他的供电基本上都经过个子较大的贴片电感进入时钟IC芯片(贴片电感时钟IC芯片附近就可以找到因为他比其它帖片要胖一点)。时钟IC芯片早期的供电有2组到3组:2组供电为2.5V与3.3V 3组供电为2.5V与2.8V时钟IC芯片后期的供电有1组到2组:1组为+3.3V 2组为3.3V与2.5V

②PG信号是在启动时输出电压都稳定后再给电脑一个启动信号,让电脑正式启动,而在意外断电时也能及时地送出关机信号让电脑马上停止工作,对电脑的稳定和外设起了很大的保护作用。PG信号基本是通过时钟IC芯片旁边的阻值较大的电阻(10K、4.7K电阻)进入时钟IC芯片内部的(PG要高于1.5V)当供电与PG都正常后时钟IC芯片内部才能正常工作,和晶体一起产生振荡,在晶体的两脚均可以看到波形。晶体的两脚之间的阻值在450--

-700欧之间。在它的两脚各有1V左右的电压,由分频器提供。他才能把14.318晶振送来的时钟频率放大或缩小后输给主板的各个部件.

时钟电路构架

上面大家知道了它的各个主成部分后,再来看看它的整个构架图

PLL是Phase-Locked Loop的缩写,中文含意为锁相环。PLL基本上是一个闭环的反馈控制系统,它可以使PLL的输出可以与一个参考信号保持固定的相位关系。PLL一般由鉴相器、电荷放大器(Charge Pump)、低通滤波器、压控振荡器、以及某种形式的输出转换器组成。为了使得PLL的输出频率是参考时钟的倍数关系,在PLL的反馈路径或(和)参考信号路径上还可以放置分频器。PLL的功能示意图如下图所示:

压控振荡器产生周期性的输出信号,如果其输出频率低于参考信号的频率,鉴相器通过电荷放大器改变控制电压使压控振荡器就的输出频率提高。如果压控振荡器的输出频率高于参考信号的频率,鉴相器通过电荷放大器改变控制电压使压控振荡器就的输出频率降低。低通滤波器的作用是平滑电荷放大器的输出,这样在鉴相器进行微小调整的时候,系统趋向一个稳态。

负载电容及反馈电阻

可能有些初学者会对晶振的频率感到奇怪,12M、24M之类的晶振较好理解,选用如11. 0592MHZ的晶振给人一种奇怪的感觉,这个问题解释起来比较麻烦,如果初学者在练习串口编程的时候就会对此有所理解,这种晶振主要是可以方便和精确的设计串口或其它异步通讯时的波特率。

问:我发现在使用晶振时会和它并一个电阻,一般1M以上,我把它去掉,板子仍可正常工作,请问这个电阻有什么用?可以不用吗? 我有看到过不用的!不理解~

答:这个电阻是反馈电阻,是为了保证反相器输入端的工作点电压在VDD/2,这样在振荡信号反馈在输入端时,能保证反相器工作在适当的工作区。虽然你去掉该电阻时,振荡电路仍工作了。但是如果从示波器看振荡波形就会不一致了,而且可能会造成振荡电路因工作点不合适而停振。所以千万不要省略此电阻。这个电阻是为了使本来为逻辑反相器的器件工作在线性区, 以获得增益, 在饱和区是没有增益的, 而没有增益是无法振荡的. 如果用芯片中的反相器来作振荡, 必须外接这个电阻, 对于CMOS而言可以是1M以上, 对于T TL则比较复杂, 视不同类型(S,LS...)而定. 如果是芯片指定的晶振引脚, 如在某些微处理器中, 常常可以不加, 因为芯片内部已经制作了, 要仔细阅读DATA SHEET的有关说明.

和晶振并联的电阻作为负载,一般1M欧。也有和晶振串联的电阻为谐振电阻。.

问:晶振的参数里有配用的谐振电容值。比如说32.768K的是12.5pF;4.096M的是20 pF. 这个值和实际电路中晶振上接的两个电容值是什么关系?像DS1302用的就是32.768K 的晶振,它内部的电容是6pF的

答:你所说的是晶振的负载电容值。指的是晶振交流电路中,参与振荡的,与晶振串联或并联的电容值。晶振电路的频率主要由晶振决定,但既然负载电容参与振荡,必然会对频率起微调作用的。负载电容越小,振荡电路频率就会越高4.096MHz的负载电容为20pF,说明晶振本身的谐振频率<4.096MHz,但如果让20pF的电容参与振荡,频率就会升高为4.

096MHz。或许有人会问为什么这么麻烦,不如将晶振直接做成4.096MHz而不用负载电容?不是没有这样的晶振,但实际电路设计中有多种振荡形式,为了振荡反馈信号的相移等原因,也有为了频率偏差便于调整等原因,大都电路中均有电容参与振荡。为了准确掌握晶振电路中该用多大的电容,只要把握晶体负载电容应等于振荡回路中的电容+杂散电容就可以了。你所说的IC中6pF的电容就可看作杂散电容

石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本结构大致是从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。

石英晶体的压电效应:若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。注意,这种效应是可逆的。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。

晶振在电气上可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率为串联谐振,较高的频率为并联

谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。

晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。

一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。

一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。

晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。

石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件。石英晶体振荡器是利用石英晶体的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC共同作用来工作的。振荡器直接应用于电路中,谐振器工作时一般需要提供3.3V电压来维持工作。振荡器比谐振器多了一个重要技术参数:谐振电阻(RR),谐振器没有电阻要求。RR 的大小直接影响电路的性能,因此这是各商家竞争的一个重要参数。

四、无源晶体与有源晶振的区别、应用范围及用法:

1、无源晶体——无源晶体需要用DSP片内的振荡器,在datasheet上有建议的连接方法。无源晶体没有电压的问题,信号电平是可变的,也就是说是根据起振电路来决定的,同样的晶体可以适用于多种电压,可用于多种不同时钟信号电压要求的DSP,而且价格通常也较低,因此对于一般的应用如果条件许可建议用晶体,这尤其适合于产品线丰富批量大的生产者。无源晶体相对于晶振而言其缺陷是信号质量较差,通常需要精确匹配外围电路(用于信号匹配的电容、电感、电阻等),更换不同频率的晶体时周边配置电路需要做相应的调整。建议采用精度较高的石英晶体,尽可能不要采用精度低的陶瓷警惕。

2、有源晶振——有源晶振不需要DSP的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。有源晶振通常的用法:一脚悬空,二脚接地,三脚接输出,四脚接电压。相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。对于时序要求敏感的应用,个人认为还是有源的晶振好,因为可以选用比较精密的晶振,甚至是高档的温度补偿晶振。有些DSP内部没有起振电路,只能使用有源的晶振,如TI 的6000系列等。有源晶振相比于无源晶体通常体积较大,但现在许多有源晶振是表贴的,体积和晶体相当,有的甚至比许多晶体还要小。

几点注意事项:

1、需要倍频的DSP需要配置好PLL周边配置电路,主要是隔离和滤波;

2、20MHz以下的晶体晶振基本上都是基频的器件,稳定度好,20MHz以上的大多是谐波的(如3次谐波、5次谐波等等),稳定度差,因此强烈建议使用低频的器件,毕竟倍频用的PLL

电路需要的周边配置主要是电容、电阻、电感,其稳定度和价格方面远远好于晶体晶振器件;

3、时钟信号走线长度尽可能短,线宽尽可能大,与其它印制线间距尽可能大,紧靠器件布局布线,必要时可以走内层,以及用地线包围;

4、通过背板从外部引入时钟信号时有特殊的设计要求,需要详细参考相关的资料。

此外还要做一些说明:

总体来说晶振的稳定度等方面好于晶体,尤其是精密测量等领域,绝大多数用的都是高档的晶振,这样就可以把各种补偿技术集成在一起,减少了设计的复杂性。试想,如果采用晶体,然后自己设计波形整形、抗干扰、温度补偿,那样的话设计的复杂性将是什么样的呢?我们这里设计射频电路等对时钟要求高的场合,就是采用高精度温补晶振的,工业级的要好几百元一个。

特殊领域的应用如果找不到合适的晶振,也就是说设计的复杂性超出了市场上成品晶振水平,就必须自己设计了,这种情况下就要选用晶体了,不过这些晶体肯定不是市场上的普通晶体,而是特殊的高端晶体,如红宝石晶体等等。

更高要求的领域情况更特殊,我们这里在高精度测试时采用的时钟甚至是原子钟、铷钟等设备提供的,通过专用的射频接插件连接,是个大型设备,相当笨重。

晶振:即所谓石英晶体谐振器和石英晶体时钟振荡器的统称。不过由于在消费类电子产品中,谐振器用的更多,所以一般的概念中把晶振就等同于谐振器理

解了。后者就是通常所指钟振。

2、分类。首先说一下谐振器。

谐振器一般分为插件(Dip)和贴片(SMD)。插件中又分为HC-49U、HC-49U/S、音叉型(圆柱)。HC-49U一般称49U,有些采购俗称“高型”,而HC-49U/S一般称49S,俗称

“矮型”。音叉型按照体积分可分为3*8,2*6,1*5,1*4等等。贴片型是按大小和脚位来分类。例如7*5(0705)、6*3.5(0603),5*3.2(5032)等等。脚位有4pin和2pin之分。

而振荡器也是可以分为插件和贴片。插件的可以按大小和脚位来分。例如所谓全尺寸的,又称长方形或者14pin,半尺寸的又称为正方形或者8pin。不过要注意的是,这里的14pin 和8pin都是指振荡器内部核心IC的脚位数,振荡器本身是4pin。而从不同的应用层面来分,又可分为OSC(普通钟振), TCXO(温度补偿),VCXO(压控),OCXO(恒温)等等。

3、基本术语。我想这也是很多采购同学比较模糊的地方。这里我选了一些常用的谐振器术语拿来做一下解释。

Frequency Tolerance(调整频差):在规定条件下,在基准温度(25±2℃)与标称频率允许的偏差。一般用PPm(百万分之)表示。

Frequency Stability(温度频差):指在规定的工作温度范围内,与标称频率允许的偏差。用PPm表示。

Aging(年老化率):在规定条件下,晶体工作频率随时间而允许的相对变化。以年为时间单位衡量时称为年老化率。

Shunt Capacitance(静电容):等效电路中与串联臂并接的电容,也叫并电容,通常用C0表示。

Load Capacitance(负载电容):与晶体一起决定负载谐振频率fL的有效外界电容,通常用CL表示。

一般最关注的参数有2个,即调整频差,负载电容。有一部分对温度频差有要求。如果工作温度范围比较广,则会对工作温度范围有所要求,即所谓宽温。

4、选用。主要讲讲谐振器。理论上来说,只要参数确定,选任何一种型号都是可以正常使用的。例如49U和49S替换,49S和圆柱以及和贴片替换,都是没有问题的。但在实际

选择中会根据电路特点,成本以及便利性来考量和选择。一般来说,简单的应用中主要都是从成本在考虑。但是有些产品或者电路会对晶振的等效电阻,激励功率等等提出要求,所以就会在不同的型号中加以选择。另外,贴片则主要是为了适应产品日益小型化和提高生产效率的要求。听到有些采购朋友说,只能选49S而不能用49U或者反之,这是一个小误区。呵呵。

压控晶振原理

压控晶振原理 压控晶体振荡器简介 压控晶体振荡器全称:电压控制晶体振荡器(Voltage Controlled Crystal Oscillator),是一种与晶体谐振器串联插入变容二极管,根据外部加入的电压使二极管的容量发生变化,来达到输出频率可根据晶体谐振器的负载电容特性变化的晶体振荡器。 VCXO主要由石英谐振器、变容二极管和振荡电路组成,其工作原理是通过控制电压来改变变容二极管的电容,从而“牵引”石英谐振器的频率,以达到频率调制的目的。VCXO大多用于锁相技术、频率负反馈调制的目的。 石英晶体振荡器是由品质因素极高的石英晶体振子(即谐振器和振荡电路组成。晶体的品质、切割取向、晶体振子的结构及电路形式等,共同决定振荡器的性能。压控晶体振荡器具有以下特点: (1)低抖动或低相位噪声:由于电路结构、电源噪声以及地噪声等因素的影响,VCO的输出信号并不是一个理想的方波或正弦波,其输出信号存在一定的抖动,转换成频域后可以看出信号中心频率附近也会有较大的能量分布,即是所谓的相位噪声。VCO输出信号的抖动直接影响其他电路的设计,通常希望VCXO的抖动越小越好。 (2)宽调频范围:VCO的调节范围直接影响着整个系统的频率调节范围,通常随着工艺偏差、温度以及电源电压的变化,VCXO的锁定范围也会随着变化,因此要求VCXO有足够宽的调节范围来保证VCXO的输出频率能够满足设计的要求。 (3)稳定的增益:VCO的电压——频率非线性是产生噪声的主要原因之一,同时,这种非线性也会给电路设计带来不确定性,变化的VCXO增益会影响环路参数,从而影响环路的稳定性。因此希望VCXO的增益变化越小越好。 1.频率大小:频率越高一般价格越高。但频率越高,频差越大,从综合角度考虑,一般工程师会选用频率低但稳定的晶振,自己做倍频电路。总之频率的选择是根据需要选择,并不是频率越大就越好。要看具体需求。比如基站中一般用10MHz的恒温晶振(OCXO),因其有很

声卡各引脚定义

声卡电路 一.声卡的工作原理 麦克风和喇叭所用的都是模拟信号,而电脑所能处理的都是数字信号。声卡的作用就是实现 两者的转换。从结构上分,声卡可以分为模数转换电路和数模转换电路两部分,模数转换电 路负责将麦克风等声音输入设备采集到的模拟信号转换为电脑所能处理的数字信号,而数模 转换电路负责将电脑使用的数字声音信号转换为喇叭等设备能使用的模拟信号。 ALC268声卡常见信号定义 引脚 号 引脚名称引脚功能备注 1 DVDD 供电 5 ACZ_SDATAOUT 串行数据输出由南桥发出数据到Codec(解码器,即可以理解为声卡 6 ACZ_BITCLK 时钟输入这是一个由声卡解码器产生一个12.288MHZ串行数据时桥 8 ACZ_SDATAIN 串行数据输入由Codec发出数据到南桥 10 ACZ_SYNC 同步信号这个信号是由南桥发出一个固定的24MHZ的频率给声 11 ACZ_RST# 复位信号这个讯号用于南桥驱动,对声卡芯片进行初始化 13 Sense A 切换信号用来切换内外置喇叭和内外置MIC切换(2V) SA_A# 内外置喇叭切换切换时R254电阻上所通过的电流为0.07mA SA_B# 内外置MIC切换切换时R259电阻上所通过的电流为0.13mA 21 MIC1_L MIC左声道输入 2.5V 22 MIC1_R MIC右声道输入 2.5V 25 AVDD1 供电 4.75VAVDD 27 VREF 参考电压 2.5V(此电压不良,耳机喇叭单声道,有时无声音) 33 NC 空脚在SW8主板中接一个拉电阻,上拉电压为4.75V 35 LINE_OUT_L 左声道线路输出端 2.5V 36 LINE_OUT_R 右声道线路输出端 2.5V 38 AVDD2 供电 4.75VAVDD 39 HP_OUT_L 左声道耳机输出端 2.5V 40 JDREF 参考电压 2.0V 41 HP_OUT_R 右声道耳机输出端 2.5V 46 DMIC_CLK 麦克风时钟 2.048MHZ 2 GPIO0_DMIC_12 屏上麦克风输入信号信号输入时有1.024MHZ波形跳动

LDO的工作原理详细分析

LDO的工作原理详细分析 [导读]由于便携式设备的发展,人们对电源的要求越来越高,因次以前一直用开的电源目前来说不够用了,这就促使LDO的迅猛发展,今天给大家介绍一下LDO的工作原理。 随着便携式设备(电池供电)在过去十年间的快速增长,象原来的业界标准 LM340 和 LM317 这样的稳压器件已经无法满足新的需要。这些稳压器使用NPN 达林顿管,在本文中称其为NPN 稳压器(NPN regulators)。预期更高性能的稳压器件已经由新型的低压差 (Low-dropout)稳压器(LDO)和准LDO稳压器(quasi-LDO)实现了。 NPN 稳压器(NPN regulators) 在NPN稳压器(图1:NPN稳压器内部结构框图)的内部使用一个 PNP管来驱动 NPN 达林顿管(NPN Darlington pass transistor),输入输出之间存在至少1.5V~2.5V的压差(dropout voltage)。这个压差为: Vdrop = 2Vbe +Vsat(NPN 稳压器)(1) 图1 LDO 稳压器(LDO regulators) 在LDO(Low Dropout)稳压器(图2:LDO稳压器内部结构框图)中,导通管是一个PNP管。LDO的最大优势就是PNP管只会带来很小的导通压降,满载(Full-load)的跌落电压的典型值小于500mV,轻载(Light loads)时的压降仅有10~20mV。LDO的压差为:

Vdrop = Vsat (LDO 稳压器)(2) 图2 准LDO 稳压器(Quasi-LDO regulators) 准LDO(Quasi-LDO)稳压器(图3:准 LDO 稳压器内部结构框图)已经广泛应用于某些场合,例如:5V到3.3V 转换器。准LDO介于 NPN 稳压器和 LDO 稳压器之间而得名,导通管是由单个PNP 管来驱动单个NPN 管。因此,它的跌落压降介于NPN稳压器和LDO之间: Vdrop = Vbe +Vsat (3) 图3 稳压器的工作原理(Regulator Operation) 所有的稳压器,都利用了相同的技术实现输出电压的稳定(图4:稳压器工作原理图)。输出电压通过连接到误差放大器(Error Amplifier)反相输入端(Inverting Input)的分压电阻(Resistive Divider)采样(Sampled),误差放大器的同相输入端(Non-inverting Input)连接到一个参考电压Vref。参考电压由IC内部的带隙参考源(Bandgap Reference)

晶振电路原理介绍

晶体振荡器,简称晶振。在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。 晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。 一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。 一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。 晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。 谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。

晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。 石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。如在极板间所加的是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场。一般来说,这种机械振动的振幅是比较小的,其振动频率则是很稳定的。但当外加交变电压的频率与晶片的固有频率(决定于晶片的尺寸)相等时,机械振动的幅度将急剧增加,这种现象称为压电谐振,因此石英晶体又称为石英晶体谐振器。其特点是频率稳定度很高。 石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件。石英晶体振荡器是利用石英晶体的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC来共同作用来工作的。振荡器直接应用于电路中,谐振器工作时一般需要提供3.3V电压来维持工作。振荡器比谐振器多了一个重要技术参数为:谐振电阻(RR),谐振器没有电阻要求。RR 的大小直接影响电路的性能,也是各商家竞争的一个重要参数。 概述 微控制器的时钟源可以分为两类:基于机械谐振器件的时钟源,如晶振、陶瓷谐振槽路;基于相移电路的时钟源,如:RC (电阻、电容)振荡器。硅振荡器通常是完全集成的RC振荡器,为了提高稳定性,包含有时钟源、匹配电阻和电容、温度补偿等。图1给出了两种时钟源。图1给出了两个分立的振荡器电路,其中图1a为皮尔斯振荡器配置,用于机械式谐振器件,如晶振和陶瓷谐振槽路。图1b为简单的RC反馈振荡器。 机械式谐振器与RC振荡器的主要区别 基于晶振与陶瓷谐振槽路(机械式)的振荡器通常能提供非常高的初始精度和较低的温 度系数。相对而言,RC振荡器能够快速启动,成本也比较低,但通常在整个温度和工作电源电压范围内精度较差,会在标称输出频率的5%至50%范围内变化。图1所示的电路能产生可靠的时钟信号,但其性能受环境条件和电路元件选择以及振荡器电路布局的影响。需认真对待振荡器电路的元件选择和线路板布局。在使用时,陶瓷谐振槽路和相应的负载电容必须根据特定的逻辑系列进行优化。具有高Q值的晶振对放大器的选择并不敏感,但在过驱动时很容易产生频率漂移(甚至可能损坏)。影响振荡器工作的环境因素有:电磁干扰(EMI)、机械震动与冲击、湿度和温度。这些因素会增大输出频率的变化,增加不稳定性,并且在有些情况下,还会造成振荡器停振。 振荡器模块 上述大部分问题都可以通过使用振荡器模块避免。这些模块自带振荡器、提供低阻方波

8253的基本工作原理和编程方法

微机原理与接口技术实验报告 实验名称:8253的基本工作原理和编程方法 姓名: 学号: 专业班级: 指导老师: 实验日期:

一:实验目的 掌握8253的基本工作原理和编程方法。 二:实验内容 按下图虚线连接电路,将计数器0设置为方式0,计数器初值为N(N≤0FH),用手动逐个输入单脉冲,编程使计数值在屏幕上显示,并同时用逻辑笔观察OUT0电平变化(当输入N+1个脉冲后OUT0变高电平)。 三:硬件电路 四:源程序 汇编程序 ioport equ 0d400h-0280h io8253a equ ioport+283h io8253b equ ioport+280h code segment assume cs:code start: mov al,14h ;设置8253通道0为工作方式2,二进制计数mov dx,io8253a out dx,al mov dx,io8253b ;送计数初值为0FH mov al,0fh out dx,al lll: in al,dx ;读计数初值 call disp ;调显示子程序 push dx mov ah,06h

mov dl,0ffh int 21h pop dx jz lll mov ah,4ch ;退出 int 21h disp proc near ;显示子程序 push dx and al,0fh ;首先取低四位 mov dl,al cmp dl,9 ;判断是否<=9 jle num ;若是则为'0'-'9',ASCII码加30H add dl,7 ;否则为'A'-'F',ASCII码加37H num: add dl,30h mov ah,02h ;显示 int 21h mov dl,0dh ;加回车符 int 21h mov dl,0ah ;加换行符 int 21h pop dx ret ;子程序返回 disp endp code ends end start 五:实验难点与重点 8253的工作方式有六种,如何理解和运用这六种工作方式是个难点。8253具有3个独立的计数器,每个计数器必须单独编程进行初始化后才能使用,使用时有时会忘记初始化。 程序流程图:

石英晶体振荡器原理

石英晶体振荡器的基本工作原理及作用 (1)石英晶体振荡器(简称晶振)的结构石英晶体振荡器是利用石英晶体(二氧化矽的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑胶封装的。(2)压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐 振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 (3)符号和等效电路石英晶体谐振器的符号和等效电路如图所示。当晶体不振动时,可把它看 成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个pF到几十pF。当晶体振荡时,机械振动的惯性可用电感L來等效。一般L的值为几十mH到几 百mH。晶片的弹性可用电容C來等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因 摩擦而造成的损耗用R來等效,它的數值约为100Ω。由于晶片的等效电感很大,而C很小, R也小,因此回路的品质因數Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只 与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定性。

计算机的组成及工作原理

计算机的组成及工作原理 在电脑已经全面普及的今天,几乎每个家庭或者是每个人都有了自己的电脑了,不管是台式电脑还是笔记本电脑。我们对电脑的认识应该是再熟悉不过了。但是如果突然需要你讲述一些关于计算机的一些认识,你是不是都讲不出来了呢?今天就来讲解一些关于计算机的组成及工作原理的内容。现在跟着小编一起来看吧。 计算机的组成: 1、CPU:就是我们常说的计算机的中央处理器,是整部计算机的'核心。 2、内存:内存就是RAM,就是一种存储器,内存可以进行读取硬盘数据供Cpu使用。因此内存是硬盘与cpu之间的桥梁。 3、主板:计算机的主板是计算机尤为关键的部分,它可以进行连接各个硬件,使其能相互通讯。 4、硬盘:硬盘简单点说是电脑主要的存储媒介之一,用于存储操作系统及用户资料。 5、显卡:显卡又称为显示适配器,一个好的显卡可以提升计算机的运行操作的流畅性。它的功能是将计算机需要的信息,输出到显示器上面。 6、声卡:声卡也叫音频卡,实现声波输出的一个设备。 7、网卡:网卡是计算机能否使用网络的重要装备,可以实现接入网络,与其它设备进行通讯。 8、鼠标、键盘、显示器、主机等外部装备,直接与使用者连接的一些设备。 计算机的工作原理: 计算机的工作原理是相对比较复杂化的,在计算机运行的时候,计算机首先先从内存中取出一条指令,一般的指令就是一些代码了。然后计算机通过控制器的对这些代码进行翻译,翻译成功后,计算机按照指令的要求,进行指定的运算和逻辑操作等加工,最后将加工后的指令再次输送到内存上。接着计算机再取出第二条指令,同理,在控制器的指挥下完成翻译与输送,依此进行下去,计算机实现自动地完成指令。这个原理也是由美籍匈牙利数学家冯.诺依曼于提出来的,故也称为冯.诺依曼原理。

片梭织机工作原理解析

第一节片梭织机机构作用及常见故障 片梭织机以投梭时间(110°)作为其它运动的标准参考时间。 一、原动部分 1、织机是由装在右墙板外侧上的电动机为动力源,由电动机皮带轮、离合器机构、开关机构、制动机构及防逆转机构组成。 2、电动机启动时间的调整、离合压力的调整、制动调整。 3、该机构常出现的故障及造成布面的疵点。 二、开口部分 1、片梭织机采用共轭凸轮开口机构,它是最为简单可靠的开口机构,它的最大综框数为10页,最大纬循环为8纬,因此,凸轮开口机构只能适于组织较为简单的织物。它配有寻断纬装置,方便车工处理纬停和机械调整,平综装置(自动)有利于减少开车痕的产生,同样也方便车工操作。 2、凸轮与转子间隙调整:0.15-0.30mm。 3、凸轮传动链条力的调整及故障。 力应适当,过紧损坏链条及轴承,过松直接影响开口机构的稳定,如开口时间变化,横档。 三、引纬部分 无梭织机效率与引纬的可靠性有重要的关系。由于片梭织机采用积极式引纬,因纬纱引不到全幅而发生停机的机会较少,即使梭口略有不清晰,纬纱仍可被引纬成功。采用消极引纬的喷气、喷水织机可靠性差,只有当梭口十分清晰时才能发挥较高的效率。 引纬部分主要由投梭机构、纬纱交接机构、接梭装置与回梭链以及供纬、纬纱力控制机构组成。 (一)投梭机构 采用扭轴投梭机构,机械加扭蓄能,破坏死点释能推动片梭飞行,这种机构具有十分良好的运转稳定性。 1、片梭 a D1型适用于大部分常见织物 b 表面光洁,梭亮,尾部击梭点应平整完好 c 每台车所有片梭厚度差异﹤0.02mm,梭夹夹持力 2、扭力轴投梭机构 扭轴有300°加扭蓄能时间,采用破坏连杆死点使扭轴中积聚的能量突然释放,推动片梭飞行,其能量释放时间十分急促,相当于主轴回转8°,以液压缓冲机构吸收余能,投梭时间:冷车108°-110°,热车110°-112°。 3、投梭靴的调整 投梭靴与投梭杆间隙居中,投梭靴与片梭间隙0.15-0.30mm。

8253定时器(微机原理)1

接口实验三 8253定时器 / 计数器 一、实验目的 ⒈学会8253芯片和微机接口的原理和方法。 ⒉. 掌握8253定时器/计数器的工作方式和编程原理。 二、实验内容 1. 用8253的0通道产生周期为30毫秒的方波,去控制发光二极管的亮和灭。 2.用8253的0通道和1通道级联的工作方式,产生周期为20秒的方波,去控制发光二极管的亮和灭。 3. 用8253的0通道产生1、2、3、4、5、6、7、8(1的高音)这八个音阶频率的方波信号,送到小喇叭去控制其发声。 三、实验接线图 图1

图2 图3 图6-5 四、实验原理 对8253编程,使OUT1输出周期为2MHZ(周期为0.5μS)的时钟直接加到CLK1,则OUT1输出的脉冲周期最大只有0.5μS*65536=32768μS=32.768MS,达不到20秒的延时要求,为此,需用几个通道级连的方案来解决这个问题。 设N0=5000,工作于方式2,则从OUT0端可得到序列负脉冲,频率为2MHZ/5000=400HZ,周期为2.5MS。再把该信号连到CLK1,并使通道1工作于方式3,使OUT1输出周期为20秒(频率为1/20=0.05HZ)的方波即可,应取时间常数N1=400HZ/0.05HZ=8000。

分频电路由一片74LS393组成, T0-T7为分频输出插孔。该计数器在加电时由RESET信号清零。当脉冲输入为8.0MHZ时,T0-T7输出脉冲频率依次为4.0MHZ,2.0MHZ,1.0MHZ,500KHZ,250KHZ,125KHZ,62500HZ,31250HZ。 五、编程指南 ⒈8253芯片介绍 8253是一种可编程定时/计数器,有三个十六位计数器,其计数频率范围为0-2MHz,用+5V单电源供电。 8253的功能用途: ⑴延时中断⑸实时时钟 ⑵可编程频率发生器⑹数字单稳 ⑶事件计数器⑺复杂的电机控制器 ⑷二进制倍频器 2,8253的六种工作方式: ⑴方式0:计数结束中断⑷方式3:方波频率发生器 ⑵方式l:可编程频率发生⑸方式4:软件触发的选通信号 ⑶方式2:频率发生器⑹方式5:硬件触发的选通信号 六、实验程序框图 七、实验步骤 ⒈按图1连好实验线路 ⑴8253的GATE0接+5V。

晶振的工作原理

晶振的工作原理 一、什么是晶振? 晶振是石英振荡器的简称,英文名为Crystal,它是时钟电路中最重要的部件,它的主要作用是向显卡、网卡、主板等配件的各部分提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题。 晶振还有个作用是在电路产生震荡电流,发出时钟信号. 晶振是晶体振荡器的简称。它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。 晶振在数字电路的基本作用是提供一个时序控制的标准时刻。数字电路的工作是根据电路设计,在某个时刻专门完成特定的任务,如果没有一个时序控制的标准时刻,整个数字电路就会成为“聋子”,不知道什么时刻该做什么事情了。 晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。 晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。

电路中,为了得到交流信号,可以用RC、LC谐振电路取得,但这些电路的振荡频率并不稳定。在要求得到高稳定频率的电路中,必须使用石英晶体振荡电路。石英晶体具有高品质因数,振荡电路采用了恒温、稳压等方式以后,振荡频率稳定度可以达到10^(-9)至10 ^(-11)。广泛应用在通讯、时钟、手表、计算机……需要高稳定信号的场合。 石英晶振不分正负极, 外壳是地线,其两条不分正负 二、晶振的使用 晶振,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。 晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。 一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容

(完整版)音频基础知识及编码原理

一、基本概念 1 比特率:表示经过编码(压缩)后的音频数据每秒钟需要用多少个比特来表示,单位常为kbps。 2 响度和强度:声音的主观属性响度表示的是一个声音听来有多响的程度。响度主要随声音的强度而变化,但也受频率的影响。总的说,中频纯音听来比低频和高频纯音响一些。 3 采样和采样率:采样是把连续的时间信号,变成离散的数字信号。采样率是指每秒钟采集多少个样本。 Nyquist采样定律:采样率大于或等于连续信号最高频率分量的2倍时,采样信号可以用来完美重构原始连续信号。 二、常见音频格式 1. WAV格式,是微软公司开发的一种声音文件格式,也叫波形声音文件,是最早的数字音频格式,被Windows平台及其应用程序广泛支持,压缩率低。 2. MIDI是Musical Instrument Digital Interface的缩写,又称作乐器数字接口,是数字音乐/电子合成乐器的统一国际标准。它定义了计算机音乐程序、数字合成器及其它电子设备交换音乐信号的方式,规定了不同厂家的电子乐器与计算机连接的电缆和硬件及设备间数据传

输的协议,可以模拟多种乐器的声音。MIDI文件就是MIDI格式的文件,在MIDI文件中存储的是一些指令。把这些指令发送给声卡,由声卡按照指令将声音合成出来。 3. MP3全称是MPEG-1 Audio Layer 3,它在1992年合并至MPEG规范中。MP3能够以高音质、低采样率对数字音频文件进行压缩。应用最普遍。 4. MP3Pro是由瑞典Coding科技公司开发的,其中包含了两大技术:一是来自于Coding 科技公司所特有的解码技术,二是由MP3的专利持有者法国汤姆森多媒体公司和德国Fraunhofer集成电路协会共同研究的一项译码技术。MP3Pro可以在基本不改变文件大小的情况下改善原先的MP3音乐音质。它能够在用较低的比特率压缩音频文件的情况下,最大程度地保持压缩前的音质。 5. MP3Pro是由瑞典Coding科技公司开发的,其中包含了两大技术:一是来自于Coding 科技公司所特有的解码技术,二是由MP3的专利持有者法国汤姆森多媒体公司和德国Fraunhofer集成电路协会共同研究的一项译码技术。MP3Pro可以在基本不改变文件大小的情况下改善原先的MP3音乐音质。它能够在用较低的比特率压缩音频文件的情况下,最大程度地保持压缩前的音质。 6. WMA (Windows Media Audio)是微软在互联网音频、视频领域的力作。WMA格式是以减少数据流量但保持音质的方法来达到更高的压缩率目的,其压缩率一般可以达到1:18。此外,WMA还可以通过DRM(Digital Rights Management)保护版权。 7. RealAudio是由Real Networks公司推出的一种文件格式,最大的特点就是可以实时传输音频信息,尤其是在网速较慢的情况下,仍然可以较为流畅地传送数据,因此RealAudio 主要适用于网络上的在线播放。现在的RealAudio文件格式主要有RA(RealAudio)、RM (RealMedia,RealAudio G2)、RMX(RealAudio Secured)等三种,这些文件的共同性在于随着网络带宽的不同而改变声音的质量,在保证大多数人听到流畅声音的前提下,令带宽较宽敞的听众获得较好的音质。 8. Audible拥有四种不同的格式:Audible1、2、3、4。https://www.360docs.net/doc/c87436056.html,网站主要是在互联网上贩卖有声书籍,并对它们所销售商品、文件通过四种https://www.360docs.net/doc/c87436056.html, 专用音频格式中的一种提供保护。每一种格式主要考虑音频源以及所使用的收听的设备。格式1、2和3采用不同级别的语音压缩,而格式4采用更低的采样率和MP3相同的解码方式,所得到语音吐辞更清楚,而且可以更有效地从网上进行下载。Audible 所采用的是他们自己的桌面播放工具,这就是Audible Manager,使用这种播放器就可以播放存放在PC或者是传输到便携式播放器上的Audible格式文件

8253芯片

8253-5的结构和功能 8253-5为具有三个独立的16位计数器,它可用程序设置成多种工作方式,按十进制计数或二进制计数,最高计数速率可达2.6MHz。8253-5能用于多种场合,例如作为可编程方波频率发生器、分频器、实时时钟、事件计数器以及程控单脉冲发生器等。 8253-5的结构框图及引脚排列如图7-17所示。 图7-17 8253-5的结构框图和引脚排列 (a)结构框图;(b)引脚图 24条引脚中,D 7~D 为8条双向数据线;为写输入信号;为读输入信号;为片 选输入信号;A 0、A 1 为片内寄存器地址输入信号。上述信号线都和CPU相接。三 个计数器中每一个都有三条信号线;计数输入CLK用于输入定时基准脉冲或计数脉冲;输出信号OUT以相应的电平指示计数的完成,或输出脉冲波形;选通输入(门控输入)GATE用于起动或禁止计数器的操作,以使计数器和计测对象同步。 每个计数器中有三个寄存器:①控制寄存器。初始化时,将控制字寄存器内容写入该寄存器;②计数初值寄存器。初始化时写入该计数器的初始值;③减1计数寄存器。计数初值由计数初值寄存器送入减1计数寄存器,当计数输入端输入一个计数脉冲时,减1计数寄存器内容减1,当减到零时,输出端输出相应信号表示计数结束。 8253-5的读写控制逻辑接受系统总线的输入信号,当接收到低电平时,8253-5根据和端的电平,控制本器件接受CPU的访问,双向三态的数据总线缓冲器根据指令接收或发送数据。这些数据是:编程8253工作方式的控制字;装入各计数器的初始值;读出各计数器的当前值。 用作寄存器选择的地址输入信号A 1和A 决定CPU访问的对象。8253-5内部寄存器 选择如表7-4所示。 表7-4 8253-5内部寄存器地址 8253-5内部有三个控制寄存器控制对应计数器的工作。它决定计数器的工作方式,

晶振的基本原理及特性

晶振的基本原理及特性 晶振一般采用如图1a的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路如图1b,其中Cv是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后如图1c。其中Co,C1,L1,RR是晶体的等效电路。 分析整个振荡槽路可知,利用Cv来改变频率是有限的:决定振荡频率的整个槽路电容C=Cbe,Cce,Cv 三个电容串联后和Co并联再和C1串联。可以看出:C1越小,Co越大,Cv变化时对整个槽路电容的作用就越小。因而能“压控”的频率范围也越小。实际上,由于C1很小(1E-15量级),Co不能忽略(1E-12量级,几PF)。所以,Cv变大时,降低槽路频率的作用越来越小,Cv变小时,升高槽路频率的作用却越来越大。这一方面引起压控特性的非线性,压控范围越大,非线性就越厉害;另一方面,分给振荡的反馈电压(Cbe上的电压)却越来越小,最后导致停振。 采用泛音次数越高的晶振,其等效电容C1就越小;因此频率的变化范围也就越小。 晶振的指标 总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最大偏差。 说明:总频差包括频率温度稳定度、频率老化率造成的偏差、频率电压特性和频率负载特性等共同造成的最大频差。一般只在对短期频率稳定度关心,而对其他频率稳定度指标不严格要求的场合采用。例如:精密制导雷达。 频率稳定度:任何晶振,频率不稳定是绝对的,程度不同而已。一个晶振的输出频率随时间变化的曲线如图2。图中表现出频率不稳定的三种因素:老化、飘移和短稳。

图2 晶振输出频率随时间变化的示意图 曲线1是用0.1秒测量一次的情况,表现了晶振的短稳;曲线3是用100秒测量一次的情况,表现了晶振的漂移;曲线4 是用1天一次测量的情况。表现了晶振的老化。 频率温度稳定度:在标称电源和负载下,工作在规定温度范围内的不带隐含基准温度或带隐含基准温度的最大允许频偏。 ft=±(f max-fmin)/(fmax+fmin) ftref =±MAX[|(fmax-fref)/fref|,|(fmin-fref)/fref|] ft:频率温度稳定度(不带隐含基准温度) ftref:频率温度稳定度(带隐含基准温度) fmax :规定温度范围内测得的最高频率 fmin:规定温度范围内测得的最低频率 fref:规定基准温度测得的频率 说明:采用ftref指标的晶体振荡器其生产难度要高于采用ft指标的晶体振荡器,故ftref指标的晶体振荡器售价较高。 开机特性(频率稳定预热时间):指开机后一段时间(如5分钟)的频率到开机后另一段时间(如1小时)的频率的变化率。表示了晶振达到稳定的速度。这指标对经常开关的仪器如频率计等很有用。 说明:在多数应用中,晶体振荡器是长期加电的,然而在某些应用中晶体振荡器需要频繁的开机和关机,这时频率稳定预热时间指标需要被考虑到(尤其是对于在苛刻环境中使用的军用通讯电台,当要求频率温度稳定度≤±0.3ppm(-45℃~85℃),采用OCXO作为本振,频率稳定预热时间将不少于5分钟,而采用MCXO只需要十几秒钟)。 频率老化率:在恒定的环境条件下测量振荡器频率时,振荡器频率和时间之间的关系。这种长期频率

8253工作方式以及应用举例

第27课 8253工作方式以及应用举例 8253的六种工作方式,8253的实际应用举例。本课主题: 教学目的:掌握8253六种工作方式的特点以及使用方法,通过实际应用举例强化8253的使用方法。 教学重点:8253的硬件连接和软件初始化方法。 教学难点:8253的在系统中的应用。 授课内容: 8253的每个通道都有6种不同的工作方式,下面分别进行介绍。 1.方式0--计数结束中断方式(Interrupt on Terminal Count) 2.方式1--可编程单稳态输出方式(Programmable One-short) 3.方式2--比率发生器(Rate Generator) 4.方式3--方波发生器(Square Wave Generator)

5.方式4--软件触发选通(Software Triggered Strobe) 6.方式5--硬件触发选通(Hardware Triggered Strobe) 由上面的讨论可知,6种工作方式各有特点,因而适用的场合也不一样。现将各种方式的主要特点概括如下: 对于方式0,在写入控制字后,输出端即变低,计数结束后,输出端由低变高,常用该输出信号作为中断源。其余5种方式写入控制字后,输出均变高。方式0可用来实现定时或对外部事件进行计数。 方式1用来产生单脉冲。 方式2用来产生序列负脉冲,每个负脉冲的宽度与CLK脉冲的周期相同。 方式3用于产生连续的方波。方式2和方式3都实现对时钟脉冲进行n分频。

方式4和方式5的波形相同,都在计数器回0后,从OUT端输出一个负脉冲,其宽度等于一个时钟周期。但方式4由软件(设置计数值)触发计数,而方式5由硬件(门控信号GATE)触发计数。 这6种工作方式中,方式0、1和4,计数初值装进计数器后,仅一次有效。如果要通道再次按此方式工作,必须重新装入计数值。对于方式2、3和5,在减1计数到0值后,8253会自动将计数值重装进计数器。 8.2 8253的应用举例 一、8253定时功能的应用例子 1(用8253产生各种定时波形 在某个以8086为CPU的系统中使用了一块8253芯片,通道的基地址为310H,所用的时钟脉冲频率为1MHz。要求3个计数通道分别完成以下功能: (1)通道0工作于方式3,输出频率为2kHz的方波; (2)通道l产生宽度为480us的单脉冲; (3)通道2用硬件方式触发,输出单脉冲,时间常数为26。 2.控制LED的点亮或熄灭 用8253来控制一个LED发光二极管的点亮和熄灭的例子,要求点亮10秒钟后再让它熄灭10秒钟,并重复上述过程。假设这是一个8086系统,8253的各端口地址为81H、83H、85H和87H。

【微机原理】8253

1 1、设8253的地址为40~43H ,CLK 输入频率为2.19MHz 。编写一个程序,使8253芯片通道2工作在方式2,产生1KHz 的定时触发信号。请给出有关参数的计算过程。 ★计数初值(Tc )与输入时钟频率(fCLK )及输出波形频率(fOUT )之间的关系为: Tc= fCLK / fOUT ★时间常数=2.19M/1K=2190 。 ★根据题目要求,工作方式控制字应为10110100=0B4H 。 通道2的地址为42H 。 参考程序: MOV AL ,0B4H OUT 43H ,AL ;8253初始化 MOV AX ,2190 OUT 42H ,AL ;输出时间常数 MOV AL ,AH OUT 42H ,AL HLT 2、设8253的地址为60~63H ,CLK 输入频率为1.19MHz 。编写一个程序,使8253 芯

片通道2工作在方式3,产生600Hz的方波信号。请给出有关参数的计算过程。 ★时间常数=1.19M/600=1983 。 根据题目要求,工作方式控制字应为10110110=0B6H。 通道2的地址为62H。 ★参考程序: MOV AL,0B6H OUT 63H,AL ;8253初始化 MOV AX,1983 OUT 62H,AL ;输出时间常数 MOV AL,AH OUT 62H,AL HLT 3.若8253A中GATE1为高,CLK1的输入是1000Hz的连续输入脉冲,问: ⑴要求设置计数初值后,计数器开始计数,当计数为0时,OUT1输出一个输入脉冲周期的负脉冲,此计数器的工作方式是什么方式? ⑵若要求每1秒钟输出一个信号,计数初值应为多少? ⑶此OUT1信号是否可以作为CPU的中断请求信号? ①计数器1的工作方式为方式4 ②Tc=f CLK/f OUT=1000 ③此OUT1 信号不能作为CPU 的中断请求信号。 4.某微机系统中8253A占用地址为100H~103H。初始化程序如下: 2

晶振的工作原理教学内容

晶振的工作原理:晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并 联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相 当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合 适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正 弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大, 这个振荡器的频率也不会有很大的变化。 晶振的参数:晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。 晶振的应用:一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。 一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p 的电容构成晶振的振荡电路就是比较好的选择。晶体振荡器也分为无源晶振和有源晶振两种 类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自 身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。 晶振的种类:谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。 晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。 石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两 个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的 方向上产生电场,这种现象称为压电效应。如在极板间所加的是交变电压,就会产生机械变

史上最完整的机器人工作原理解析

史上最完整的机器人工作原理解析 很多人一听到机器人这三个字脑中就会浮现外形酷炫、功能强大、高端等这些词,认为机器人就和科幻电影里的终结者一样高端炫酷。其实不然,在本文中,我们将探讨机器人学的基本概念,并了解机器人是如何完成它们的任务的。 一、机器人的组成部分从最基本的层面来看,人体包括五个主要组成部分: 当然,人类还有一些无形的特征,如智能和道德,但在纯粹的物理层面上,此列表已经相当完备了。 机器人的组成部分与人类极为类似。一个典型的机器人有一套可移动的身体结构、一部类似于马达的装置、一套传感系统、一个电源和一个用来控制所有这些要素的计算机大脑。从本质上讲,机器人是由人类制造的动物,它们是模仿人类和动物行为的机器。 仿生袋鼠机器人 机器人的定义范围很广,大到工厂服务的工业机器人,小到居家打扫机器人。按照目前最宽泛的定义,如果某样东西被许多人认为是机器人,那么它就是机器人。许多机器人专家(制造机器人的人)使用的是一种更为精确的定义。他们规定,机器人应具有可重新编程的大脑(一台计算机),用来移动身体。 根据这一定义,机器人与其他可移动的机器(如汽车)的不同之处在于它们的计算机要素。许多新型汽车都有一台车载计算机,但只是用它来做微小的调整。驾驶员通过各种机械装置直接控制车辆的大多数部件。而机器人在物理特性方面与普通的计算机不同,它们各自连接着一个身体,而普通的计算机则不然。 大多数机器人确实拥有一些共同的特性 首先,几乎所有机器人都有一个可以移动的身体。有些拥有的只是机动化的轮子,而有些则拥有大量可移动的部件,这些部件一般是由金属或塑料制成的。与人体骨骼类似,这些独立的部件是用关节连接起来的。

伺服电机的工作原理图

伺服电机的工作原理图? 伺服电机工作原理——伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 永磁交流伺服系统具有以下等优点:(1)电动机无电刷和换向器,工作可靠,维护和保养简单;(2)定子绕组散热快;(3)惯量小,易提高系统的快速性;(4)适应于高速大力矩工作状态;(5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2 交流永磁伺服系统的基本结构 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。

相关文档
最新文档