曲线运动平抛和圆周运动专题

曲线运动平抛和圆周运动专题
曲线运动平抛和圆周运动专题

曲线运动

曲线运动包括平抛运动、类平抛运动,圆周运动等知识。 主干知识整合

一、曲线运动(曲线运动的速度方向一定改变,所以是变速运动.) 1.物体做曲线运动的条件: F 合与v 不在同一直线上。

2.做曲线运动的物体受的合力总是指向曲线凹的一侧。(或表述为轨迹必须夹在力和速度的夹角)

二、抛体运动

1.平抛运动:以一定的水平初速度将物体抛出,在只受重力的情况下,物体所做的运动。

平抛运动的规律:平抛运动的处理方法是将其分解为水平方向和竖直方向的两个分运动。

(1)水平方向:做匀速直线运动,v x = v 0,x = v o t ,

(2)竖直方向:做自由落体运动,v y = gt ,y = 12gt 2 (3)任意时刻位移

2

2y x x +=

2tan υθgt x y

==

(4)任意时刻速度:

2

20

22

)

(gt v v v v y

x

+=+=

tan y x

v gt

v υα=

=

2.平抛运动的两个重要推论

(1)做平抛(或类平抛)运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点;

(2)做平抛或类平抛运动的物体在任意时刻、任意位置处设其瞬时速度与水平方向的夹角为θ、位移与水平方向的夹角为φ,则有tan θ=2tan φ。

3.类平抛运动:以一定的初速度将物体抛出,如果物体受的合力恒定且与初速度方向垂直,则物体所做的运动为类平抛运动。 类平抛运动的公式:

三、圆周运动

物理量 大小

方向 物理意义 线速度 v =x t =2πr T 圆弧上各点的

切线方向 描述质点沿圆周运

动的快慢

角速度 ω=φt =2πT

中学不研究其

方向

周期、频率 T =1f =2πr v

无方向

向心加速度 a = = 时刻指向圆心

描述线速度方向改变

的快慢

相互关系

a = = = =

同一转轴物体上各点的角速度相等,皮带传动轮子边缘各点的线速度相等。

2、圆周运动及其临界问题

竖直面内圆周运动的两种临界问题的比较(v=

gr ------------------称为临界速度)

最高点无支撑

最高点有支撑

实例

球与绳连接、水流星、翻滚过山车

球与杆连接、车过拱桥、球过竖直管道、套在

圆环上的物体等

图示

在最高 点受力

重力、弹力F 弹向下或等于零,

mg +F 弹= m v 2

R

重力、弹力F 弹向下、向上或等于零,

mg ± F 弹 = m v 2

R

恰好过 最高点

F 弹=0,mg = m v 2

R

,v =Rg 即在最高点

速度不能为零

v =0,mg = F 弹在最高点速度可为零

3、向心力来源:向心力可以由重力、弹力、摩擦力等各种性质的力提供,也可以是各力的合力或某力的分力提供。

命名:向心力是按力的作用效果来命名的,故在分析做圆周运动的物体受力时,切不可在

性质力之外再添加一个向心力。

4、处理圆周运动的动力学问题的步骤:

①首先要明确研究对象; ②对其受力分析明确向心力的来源; ③确定其运动轨道所在的平面、圆心的位置以及半径;

④将牛顿第二定律应用于圆周运动,得到圆周运动中的动力学方程,有以下各种情况,F =

m v 2r = mr ω2

= mv ω = mr 4π2

T

2 = 4π2mrf 2。解题时应根据已知条件进行选择。

知识网络:

二、动能定理

1、内容:合外力对物体所做的功等于物体动能的该变量

2、公式:W

=mv 22/2-mv 21/2

3、关于动能定理

(1)动能定理求恒力或者变力做功;

(2)动能定理对应的是一个过程,并且它只涉及到物体初末状态的动能和整个过程中合外力的功,不涉及物体运动过程中的加速度、时间和中间状态的速度、动能,因此用它处理问题比较方便。

(3)一个物体所进行的复杂的运动往往是由若干个过程或阶段组合而成。对于一个多过程问题,若不需要计算过程与过程间的各物理量时,可优先考虑用整体的方法对全过程用动能定理。

(4)动能定理中的外力包含一切外力,含重力和弹簧弹力。外力总功的计算:

①先求出合外力,再利用cos W F s α=合计算功,此时α应是合外力与位移s 间的夹角。②先分别求出各个外力的功,再求各个外力功的代数和,即12W W W =++…n W +。 (5)动能是标量,只有大小,没有方向。

v

精选练习

1、如图8所示,空间有一水平匀强电场,在竖直平面内有初速度为V0的带电微粒,沿图中虚线由A 运动到B ,其能量变化情况是:( )

A .动能减少,重力势能增加,电势能减少;

B .动能减少,重力势能增加,电势能增加;

C .动能不变,重力势能增加,电势能减少;

D .动能增加,重力势能增加,电势能减少

2、如图所示,用绝缘细线拴住一带正电小球,在方向竖直向上的匀强电场中的竖直平面内做圆周运动,则正确的说法是( ) A .当小球运动到最高点a 时,线的张力一定最小 B .当小球运动到最低点b 时,小球的速度一定最大 C .小球可能做匀速圆周运动 D .小球不可能做匀速圆周运动

3、光滑的水平面上固定着一个螺旋形光滑水平轨道,俯视如图所示。一个小球以一定速度沿轨道切线方向进入轨道,以下关于小球运动的说法中正确的是( ) A .轨道对小球不做功,小球的角速度不断增大; B .轨道对小球做正功,小球的角速度不断增大; C .轨道对小球做正功,小球的线速度不断增大; D .轨道对小球不做功,小球的线速度不断增大。

4、图6中实线是一簇未标明方向的由点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a 、b 是轨迹上的两点。若带电粒子在运动中只受电场力作用,根据此图可作出正确判断的是( ) A.带电粒子所带电荷的符号;

B.带电粒子在a 、b 两点的受力方向;

C.带电粒子在a 、b 两点的速度何处较大;

D.带电粒子在a 、b 两点的电势能何处较大。

5、如图, 一很长的、不可伸长的柔软轻绳跨过光滑定滑轮, 绳两端各系一小球a 和b. a 球质量为m, 静置于地面; b 球质量为3m, 用手托住, 高度为h, 此时轻绳刚好拉紧. 从静止开始释放b 后, a 可能达到的最大高度为( )

A. h

B. 1.5h

C. 2h

D. 2.5h

【试题解析】b 到达地面时,由机械能守恒定律得:2)3(2

1

3v m m mgh mgh +=-,所以gh v =。B 落地后,a 仍继续上升,由机械能守恒定律又得:2

2

1mv h mg =',

故a 可能达到的最大速度为h h h 5.1='+。

【高考考点】机械能守恒定律的应用 竖直上抛运动 【易错提醒】不能正确分析b 球落地后,a 球的运动情况

曲线运动的综合问题

6、如图所示,水平屋顶高H=5m ,墙高h=3.2m ,墙到房子的距离L=3 m ,墙外马路宽s=10m ,小球从房顶水平飞出落在墙外的马路上,求小球离开屋顶时的速度。(取g=10m/s 2)

【解析】设球刚好越过墙时,此时球水平初速度为v1,则H-h=gt12/2.

∴t1= g h H /)(2-

L=v1t1 得v1=5m/s

设球越过墙刚好落在马路右边,此时球水平速度为v2,则H=gt22/2. ∴t2=g H /2

L+s=v2t2得v2=13m/s

∴小球离开屋顶时的速度5m/s ≤v ≤13m/s

7、如图,一小球自平台上水平抛出,恰好落在临近平台的一倾角为α =53°的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h=0.8m ,重力加速度g=10m/s 2,sin53° = 0.8,cos53° = 0.6,求 ⑴小球水平抛出的初速度v 0是多少? ⑵斜面顶端与平台边缘的水平距离s 是多少?

⑶若斜面顶端高H = 20.8m ,则小球离开平台后经多长时间t 到达斜面底端?

解析:(1)由题意可知:小球落到斜面上并沿斜面下滑,说明此时小球速度方向与斜面平行,否则小球会弹起,所以v y = v 0tan53° v y 2 = 2gh

代入数据,得v y = 4m/s ,v 0 = 3m/s

(2)由v y = gt 1得t 1 = 0.4s s =v 0t 1 = 3×0.4m = 1.2m (3)小球沿斜面做匀加速直线运动的加速度a =

mg sin53°

m

= 8m/s 2

初速度 υ = υ02 + υy 2 = 5m/s H sin53° =vt 2 + 1

2

a t 22

代入数据,整理得 4t 22 + 5t 2 - 26 = 0 解得 t 2 = 2s 或t 2 =

13

4

-

s (不合题意舍去) 所以t = t 1 + t 2 = 2.4s 8、在冬天,高为h=1.25m 的平台上,覆盖了一层冰,一乘雪橇的滑雪爱好者,从距平台边缘s=24m 处以一定的初速度向平台边缘滑去,如图所示,当他滑离平台即将着地时的瞬间,其速度方向与水平地面的夹角为θ=45°,取重力加速度g=10m/s2。求: (1)滑雪者着地点到平台边缘的水平距离是多大;

(2)若平台上的冰面与雪橇间的动摩擦因数为μ=0.05,则滑雪者的初速度是多大?

解析: (1)把滑雪爱好者着地时的速度vt 分解为如图所示的v0、vy 两个分量

221gt h =

解得t=0.5s 则 v y =gt=5m/s

υ0

h

53°

s

υ0

h

53°

s

υ0

υy

υ

h

s v

又vy=v0tan45° 解得 v0=5m/s

着地点到平台边缘的水平距离:x= v0t=2.5m

(2)滑雪者在平台上滑动时,受到滑动摩擦力作用而减速运动,由动能定理得

2

202121mv mv mgs -=

解得:v=7m/s

即滑雪者的初速度为7m/s 。

9.如图所示,位于竖直平面上的1/4圆弧光滑轨道,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止释放,最后落在水平地面上C 点处,不计空气阻力,求: (1)小球运动到轨道上的B 点时,对轨道的压力多大? (2)小球落地点C 与B 点水平距离s 是多少?

10(综合题)滑雪者从高坡雪道上的A 点由静止自由滑下,雪道的BC 段为水平,CE 段为倾角为37° 的斜坡,滑雪者滑下从C 点水平飞出后落在斜坡上。已知斜坡上C 、D 间距为l 1=12 m ,D 、E 间距为l 2=36 m ,从A 到C 克服摩擦力做功等于重力做功的K 倍,K =0.20,不计空气阻力,为了能落在坡上DE 之间,滑雪者开始滑下的A 点距BC 水平面的高度h 应满足什么条件?(答案要求保留二位有效数字,sin 37°=0.6 cos37°=0.8)

11 (能力题) 如图所示,ABC 和ABD 为两个光滑固定轨道,A 、B 、E 在同一水平面,C 、D 、E 在同一竖直线上,D 点距水平面的高度h ,C 点高度为2h ,一滑块从A 点以初速度v 0分别沿两轨道滑行到C 或D 处后水平抛出。

(1)求滑块落到水平面时,落点与E 点间的距离s C 和s D 。 (2)为实现s C <s D ,v 0应满足什么条件?

12(2004·北京、安徽春季)如图,abc 是光滑的轨道,其中ab 是水平的,bc 为与ab 相切的位于竖直平面内的半圆,半径R=0.30m 。质量m=0.20kg 的小球A 静止在轨道上,另一质量M=0.60kg 、速度5

.50=υm/s

的小球B 与小球A 正碰。已知相碰后小球A 经过半圆的最高点c 落到轨道上距b 点为R l 24=处,重力

加速度g=10m/s 2

,求:

R

A

B

a b

c

(1)碰撞结束时,小球A和B的速度的大小;

(2)试论证小球B是否能沿着半圆轨道到达c点。

13 如图1-3-4所示,小球沿水平面通过O点进入半径为R的半圆弧轨道后恰能通过最高点P,然后落回水平面。不计一切阻力。下列说法正确的是()

A.小球落地点离O点的水平距离为R

B.小球落地点离O点的水平距离为2R

C.小球运动到半圆弧最高点P时向心力恰好为零

D.若将半圆弧轨道上部的圆弧截去,其他条件不变,则小球能达到的最

大高度比P点高

14、(2005广东高考)如图4-2-6所示,半径R=0.40 m的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A.一质量m=0.10 kg的小球,以初速度v0=7.0 m/s在水平地面上向左做加速度a=3.0 m/s2的匀减速直线运动,运动4.0 m后,冲上竖直半圆环,最后小球落在C点.求A、C间的距离(取g=10 m/s2).

图4-2-6

解析:小球在水平地面向左匀减速运动4.0 m过程中,有v a2-v02=-2as ①

小球恰好能到最高点B应满足:

mg=m

R

v

m

2

解出v m=2 m/s ②

假设物体能到达圆环的最高点B,由机械能守恒:

2

1

mv A2=2mgR+

2

1

mv B2③

联立①③可得v B=3 m/s.

因为v B>v m,所以小球能通过最高点B.小球从B点做平抛运动,有2R=

2

1

gt2④

s AC=v B·t ⑤

由④⑤得:s AC=1.2 m.

答案:1.2 m

点评:本题是一道多物理过程的综合题,其中有匀减速直线运动、圆周运动以及平抛运动,对于此类问题,往往是先找出各个子过程并抓住衔接相邻子过程的物理状态,然后应用相关的知识求解.

15、如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质量均为m的小球A、B以不同的速度进入管内,A通过最高点C时,对管壁上部的压力为3mg,B通过最高点时,对管壁下部的压力为0.75mg,求A、B两球落地点间的距离.

【解析】本题是圆周运动动力学问题与平抛运动学问题及机械能守恒定律的综合。

B

A

A 通过最高点,所受合力为3mg+mg=m

R

v A

2

∴gR A

2=ν ①

B 通过最高点所受合力为mg-0.75mg=m

R

m B

2

∴gR B

5.0=ν ②

A 、

B 两球落地间的距离为两球从2R 高处作平抛运动水平射程之差 即x AB =(v A -v B )

g

R

22?=3R 【说明】 本题还可拓展到求A 、B 两球在半圆型管道最低点的速度;并可求出小球在C 处对管壁上部、下部有无压力的临界条件。是一个有一定综合性的曲线运动问题。

16、一内壁光滑的环形细圆管,固定于竖直平面内,环的半径为R (比细管的半径大得多).在圆管中有两个直径略小于细管内径相同的小球(可视为质点).A 球的质量为m 1,B 球的质量为m 2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v 0.设A 球运动到最低点时,B 球恰好运动到最高点,重力加速度用g 表示.

(1)若此时B 球恰好对轨道无压力,题中相关物理量满足何种关系? (2)若此时两球作用于圆管的合力为零,题中各物理量满足何种关系?

(3)若m 1=m 2=m ,试证明此时A 、B 两小球作用于圆管的合力大小为6mg ,方向竖直向下.

解析:设B 球经过最高点时速度为v

(1)B 球的重力提供向心力m 2g =m 2

R

v 2

根据机械能守恒R g m v m v m 22

12122

2202+=

得gR v 42

=

(2)因为A 设A 球受管的支持力为F A ,A 根据牛顿第二定律R

g m F A 0

1

1=-

R

v m g m F B 2

2

2=+

v m v m 2

12122202+=联立各式得 ()

(20

21

+-R

v

m m

(3)A 球受管的支持力为F A ,方向竖直向上;设B 球受管的弹力为F B ,取竖直向上为F B 的正方向,根据牛

顿第二定律R

v m

mg F A 20

=- R

v m

F mg B 2

=-

R mg mv mv 22

1212

20+= 两球受圆管的合力F 合=F A +B B ,方向竖直向上 联立以上各式得F 合=6mg ,方向竖直向上

根据牛顿第三定律,A 、B 两小球对轨道作用力的合力大小为6mg ,方向竖直向下.

17、有一个固定竖直放置的圆形轨道,半径为R ,由左右两部分组成。如图所示,右半部分AEB 是光滑的,左半部分BFA 是粗糙的。现在最低点A 给一质量为m 的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B ,小球在B 点又能沿BFA 回到A 点,到达A 点时对轨道的压力为4mg 。

⑴在求小球在A 点的速度v 0时,甲同学的解法是:由于小球恰好到达B 点,故在B 点小球的速度为零,

mgR mv 22

12

0=,所以gR v 20=。 ⑵在求小球由BFA 回到A 点的速度时,乙同学的解法是:由于回到A 点时对轨道的压力为4mg ,故

R

mv mg A

24=,所以gR v A 2=。 你同意两位同学的解法吗?如果同意请说明理由;若不同意,请指出他们的错误之处,并求出结果。 ⑶根据题中所描绘的物理过程,求小球由B 经F 回到A 的过程中克服摩擦力所做的功。 解析:不同意

⑴小球恰好到达B 点,在B 点小球的速度不为零。

小球由AEB 到B 点的速度时R

mv mg B

2=,gR v B =

由动能定理

R mg mv mv B 22

121202-=-,得gR v 50= ⑵由于回到A 点时对轨道压力为4mg ,小球受到的合力并不是4mg 。

根据牛顿定律:R

mv mg mg A

2

4=-,gR v A 3=

⑶小球由B 经F 回到A 的过程中, 由mgR mv W mgR A f 2

12122-=-和gR v A 3= (或W f =E 0-E A =

2202

121A mv mv -=mgR ) 得W f =mgR 。

18、一根内壁光滑的细玻璃管如图所示,放在竖直平面内,一小钢球自A 口的正上方距离A 口高h 处无初速释放。第一次小球恰能抵达B 点,第二次落入A 口后从B 射出,恰能再进入

A 口,则两次小球下落的高度之比为h 1:h 2= 。

19、如图所示在方向竖直向下的匀强电场中,一个带负电q ,质量为m 且重力大于所受电场力的小球,从光滑的斜面轨道的点A 由静止下滑,若小球恰能通过半径为R 的竖直圆形轨道的最高点B 而作圆周运动,问点A 的高度h 至少应为多少?(5R/2)

20、小球A 用不可伸长的细绳悬于O 点,在O 点的正下方有一固定的钉子B ,OB =d ,初始时小球A 与O 同水平面无初速度释放,绳长为L ,为使小球能绕B 点做完整的圆周运动,如图所示。试求d 的取值范围。

解析:为使小球能绕B 点做完整的圆周运动,则小球在D 对绳的拉力F 1应该大于或等于零,即有:

d

L v m

mg D

-≤2

根据机械能守恒定律可得

[])(2

12

d L d mg mv D --= 由以上两式可求得:L d L ≤≤5

3

21、如图所示,一水平圆盘绕过圆心的竖直轴转动,圆盘边缘有一质量m =1.0 kg 的小滑块。当圆盘转动的角速度达到某一数值时,滑块从圆盘边缘滑落,经光滑的过渡圆管进入轨道ABC 。已知AB 段斜面倾角为53°,BC 段斜面倾角为37°,滑块与圆盘及斜面间的动摩擦因数均μ=0.5,A 点离B 点所在水平面的高度h =1.2 m 。滑块在运动过程中始终未脱离轨道,不计在过渡圆管处和B 点的机械能损失,最大静摩擦力近似等于滑动摩擦力,取g =10 m/s 2

,sin37°=0.6,cos37°=0.8 ⑴若圆盘半径R =0.2 m ,当圆盘的角速度多大时,滑块从圆盘上滑落? ⑵若取圆盘所在平面为零势能面,求滑块到达B 点时的机械能。 ⑶从滑块到达B 点时起,经0.6 s 正好通过C 点,求BC 之间的距离。

解析:⑴滑块在圆盘上做圆周运动时,静摩擦力充当向心力,根据牛顿第二定律,可得:

μmg =mω2R

代入数据解得:/ 5 rad/s g R ω

μ==

⑵滑块在A 点时的速度:v A =ωR =1 m/s

R h

B

A

O

D d L

O m B C A

从A 到B 的运动过程由动能定理得:

mgh -μmg cos53°×h /sin53°=

22B A 1122

mv mv -

在B 点时的机械能为:2

1 4 J 2

B

B E mv mgh =

-=- ⑶滑块在B 点时的速度:v B =4 m/s

滑块沿BC 段向上运动时的加速度大小:a 1=g (sin37°+μcos37°)=10 m/s 2

返回时的加速度大小: a 2=g (sin37°-μcos37°)=2 m/s 2

BC 间的距离:22211

1()0.76 m 22B B BC

v v s a t a a =--= 点评: 比较复杂的物理过程,如能依照题意画出草图,确定好研究对象,逐一分析找出其中的联系就会变为简单问题,就能很好地解决问题。圆周运动与能量问题常联系在一起,在解这类问题时,除要对物体受力分析,运用圆周运动知识外,还要正确运用能量关系(动能定理、机械能守恒定律)。

22、如图,匀速转动的水平圆盘上,沿半径方向放置两个用细线相连的质量均为m 的小物体A、B,它们到转轴距离分别为

20=A r cm ,30=B r cm ,A、B与盘面间的最大静摩擦力均为重力的

0.4倍,试求:

(1)当细线上开始出现张力时,圆盘的角速度

0ω(2)当A 开始滑动时,圆盘的角速度ω

(3)当A 即将滑动时,烧断细线,A 、B 状态如何?

解答:(1)当细线上开始出现张力时,表明B 与盘间的静摩擦力已达到最大,设此时圆盘角速度为

ω,则

2

B kmg mr ω=

解得

9

.33

.0104.00==

=

?B

r kg ω(rad/s)

(2)当A 开始滑动时,表明A 与盘的静摩擦力也达到最大,设此时盘转动角速度为

ω

,线上拉力为

T F ,则

对A

2

ωA T f mr F F Am =- 对B

2

ωB T f mr F F Bm =+

以上两式中,

=Am f F kmg

F Bm f =

解以上三式得

4

3

.02.0104.022==

=

+??+B

A r r kg ω(rad/s)

(3)烧断细线,A 与盘的静摩擦力减小,继续随盘做半径为20=A r cm 的圆周运动,而B 由于m f F 不

足以提供必要的向心力而做离心运动。

点评:此题是典型的平面上的圆周运动问题,由静摩擦力提供向心力,但要注意线上开始出现张力以及A 开始滑动时向心力的大小及动力学方程。

o

o

A B

23(06重庆)如图,半径为R的光滑圆形轨道固定在竖直面内。小球A、B质量分别为m、βm(β为待定系数)。A球从工边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B

球能达到的最大高度均为,碰撞中无机械能损失。重力加速度为g。试求:

(1)待定系数β;(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;

(3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度。

解:(1)由mgR=+得β=3

(2)设A、B碰撞后的速度分别为v1、v2,则

设向右为正、向左为负,解得

v1=,方向向左v2=,方向向右

设轨道对B球的支持力为N,B球对轨道的压力为N /,方向竖直向上为正、向下为则N-βmg=

N /=-N=-4.5mg,方向竖直向下。

(3)设A、B球第二次碰撞刚结束时的速度分别为V1.V2,则

解得:V1=-,V2=0

(另一组:V1=-v1,V2=-v2,不合题意,舍去)

由此可得:

当n为奇数时,小球A、B在第n次碰撞刚结束时的速度分别与第一次碰撞刚结束时相同

当n为偶数时,小球A、B在第n次碰撞刚结束时的速度分别与第二次碰撞刚结束时相同。

型题:过山车模型

例题1:2007年高考题 如图所示,位于竖直平面内的光滑轨道,有一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R 。一质量为m 的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg (g 为重力加速度)。求物块初始位置相对于圆形轨道底部的高度h 的取值范围。

1.刚好能通过最高点:

2.压力为5mg 时:

解:设物块在圆形轨道最高点的速度为v ,由机械能守恒定律得

mgh =2mgR +mv 2

物块在最高点受的力为重力mg 、轨道的压力N 。重力与压力的合力提供向心力,有

mg +N =m ②

物块能通过最高点的条件是

N

0 ③ 由②③式得 V ≥

由①④式得

H ≥2.5R ⑤ 按题的需求,N =5mg ,由②式得 V <

由①⑥式得

h

5R ⑦

2

v

mg m R =2min 1(2)02

mg h R mv -=-2N v F mg m R

+=2max 1

(2)02mg h R mv -=-

h 的取值范围是2.5R ≤h ≤5R

变式类型1:直线运动和“过山车”的结合

R

1

R 2

R 3A

B

C

D

v 0

第一圈轨道

第二圈轨道

第三圈轨道

L

L

L 1

22

111011222

mgL mgR mv mv μ--=

-21

1

g v F m m

R +=22

2

v mg m

R =()22

133011222

mg L L mgR mv mv μ-+-=

-

例8某兴趣小组设计了如图所示的玩具轨道,其中“2008”,四个等高数字用内壁光滑的薄壁细圆管弯成,固定在竖直平面内(所有数宇均由圆或半圆组成,圆半径比细管的内径大得多),底端与水平地面相切。弹射装置将一个小物体(可视为质点)以v=5m/s 的水平初速度由a 点弹出,从b 点进人轨道,依次经过“8002 ”后从p 点水平抛出。小物体与地面ab 段间的动摩擦因数μ=0.3 ,不计其它机械能损失。已知ab 段长L=1 . 5m ,数字“0”的半径R=0.2m ,小物体质量m=0 .0lkg ,g=10m/s 2 。求: ( l )小物体从p 点抛出后的水平射程。

( 2 )小物体经过数字“0”的最高点时管道对小物体作用力的大小和方向。

解:( l )设小物体运动到p 点时的速度大小为v ,对小物体由 a 运动到p 过程应用动能定理得-μmgL -2Rmg=12mv2-1

2

mv02 ①

小物体自p 点做平抛运动,设运动时间为:t ,水平射程为:s 则

2R=1

2gt2 ②

s=vt ③ 联立①②③式,代人数据解得

s=0.8m ④

( 2 )设在数字“0”的最高点时管道对小物体的作用力大小为F .取竖直向下为正方向 F +mg=

mv2

R

⑤ 联立①⑤式,代人数据解得

F=0.3N ⑥ 方向竖直向下

直线运动,平抛运动与过山车

(2009年浙江卷)24.某校物理兴趣小组决定举行遥控塞车比赛。比赛路径如图所示,赛车从起点A 出发,沿水平直线轨道运动L 后,出B 点进入半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C 点,并能越过壕沟。已知赛车质量m =0.1kg ,通电后以额定功率ρ=1.5W 工作,进入竖直圆轨道前受到的阻值为0.3N ,随后在运动中受到的阻力均可不计。图中L =10.00m ,R=0.32m ,h =1.25m,S =1.50m 。问:要使赛车完成比赛,电动机至少工作多长时间?(取g =10 m/s2)

平抛运动与过山车

如图所示,是某公园设计的一种惊险刺激的娱乐设施,轨道除CD 部分粗糙外,其余均光滑。一挑战者质量为m,沿斜面轨道滑下,无能量损失的滑入第一个圆管形轨道,根据设计要求,在最低点与最高点各放一个压力传感器,测试挑战者对轨道的压力,并通过计算机显示出来。

挑战者到达A处时刚好对管壁无压力,又经过水平轨道CD滑入第二个圆管形轨道,在最高点B处挑战者对管的内侧壁压力为0.5mg,然后从平台上飞入水池内,水面离轨道的距离为h=2.25r.若第一个圆轨道的半径为R,第二个管轨道的半径为r, g取10m/s2,管的内径及人相对圆轨道的半径可以忽略不计。则

(1)挑战者若能完成上述过程,则他应从离水平轨道多高的地方开始下滑?

(2)挑战者从A到B的运动过程中克服轨道阻力所做的功?

(3)挑战者入水时的速度大小是多少?

A

B

C D

(自由落体运动与过山车)

如图所示,ABCDO是处于竖直平面内的光滑轨道,AB是半径为R=15m的圆周轨道,CDO 是直径为15m的半圆轨道。AB轨道和CDO轨道通过极短的水平轨道(长度忽略不计)平滑连接。半径OA处于水平位置,直径OC处于竖直位置。一个小球P从A点的正上方高H 处自由落下,从A点进入竖直平面内的轨道运动(小球经过A点时无机械能损失)。当小球通过CDO轨道最低点C时对轨道的压力等于其重力的23/3倍,取g为10m/s2。

(1)试求高度H的大小;

(2)试讨论此球能否到达CDO轨道的最高点O,并说明理由;

(3)求小球沿轨道运动后再次落回轨道上时的速度大小。

(电场与过山车)

轨道圆半径为0.5m,空间存在电场强度E=300v/m,方向竖直向下的匀强电场。假设斜面和水平所在处的电场被屏蔽,而圆轨道内存在电场,一电荷量为q=+0.1C的小球在光滑小球在斜面的某处静止释放滚入圆轨道,并始终在圆轨道内部运动。已知小球的质量为4kg,所有接触面是光滑,要是小球刚好能够通过最高点,则小球在斜面上释放的高度满足什么条件?(g=10m/s2)

?放置在竖直平面内的光滑绝缘轨道如图所示,其中BC为水平面,斜面AB与BC通过较小光滑圆弧连接,CDF是半径为R(R大小未知)的圆形轨道。一个质量为m、带电量为-q的小球,从距水平面BC高h处的P点由静止下滑,小球恰能通过竖直圆形轨道的最高点D而作圆周运动。试求:

?(1)圆形轨道半径R的大小;

?(2)现在竖直方向加方向竖直向下的足够大的匀强电场,且电场强度满足mg=2qE,若仍从P点由静止释放该小球,试判断小球能否通过圆形轨道的最高点D。若不能,说明理由;若能,求出小球在D点时对轨道的压力。

R

D

h

A

BE

C

F

P

例题:如图所示,在同一个竖直平面内的两个正对着的相同光滑半圆轨道,相隔一定的距离,虚线沿竖直方向,一个小球能在其间运动,今在其最高点和最低点各放一个压力传感器,测出小球对轨道的压力,并通过计算机显示出来,当轨道距离发生变化时,测得两点的压力差和距离X的关系图像如图。g=10m/s2,不计空气阻力。求

(1)小球的质量的多少?

(2)若小球在最低点B的速度是20m/s,为使小球能沿轨道运动,X 的最大值是多少?

曲线运动、平抛运动、圆周运动练习题.doc

《曲线运动》练习题 一选择题 1 . 关于运动的合成的说法中,正确的是() A.合运动的位移等于分运动位移的矢量和 B.合运动的时间等于分运动的时间之和 C.合运动的速度一定大于其中一个分运动的速度 D.合运动的速度方向与合运动的位移方向相同 2. 物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是() A.静止B.匀加速直线运动C.匀速直线运动D.匀速圆周运动 3 . 某质点做曲线运动时() A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间内,位移的大小总是大于路程 C.在某段时间里质点受到的合外力可能为零 D.速度的方向与合外力的方向必不在同一直线上 5. 一个质点在恒力 F 作用下,在 xOy 平面内从 O点运动到 A 点的轨迹如图所示,且在 A 点的速度方向与x 轴平行,则恒力 F 的方向不可能()y A. 沿 x 轴正方向 B. 沿 x 轴负方向 A C. 沿 y 轴正方向 D. 沿 y 轴负方向 O x 6 在光滑水平面上有一质量为2kg 的物体,受几个共点力作用做匀速直线运动。现突然将与速度反方向的2N 力水平旋转 90o,则关于物体运动情况的叙述正确的是() A. 物体做速度大小不变的曲线运动 B. 物体做加速度为在2 m/s2的匀变速曲线运动 C.物体做速度越来越大的曲线运动 D.物体做非匀变速曲线运动,其速度越来越大 7.做曲线运动的物体,在运动过程中一定变化的物理量是() A. 速度 B. 加速度 C.速率 D. 合外力 9 关于曲线运动,下面说法正确的是() A.物体运动状态改变着,它一定做曲线运动 B.物体做曲线运动,它的运动状态一定在改变 C.物体做曲线运动时,它的加速度的方向始终和速度的方向一致 D.物体做曲线运动时,它的加速度的方向始终和所受到的合外力方向一致 10 物体受到几个力的作用而处于平衡状态,若再对物体施加一个恒力,则物体可能做() A. 静止或匀速直线运动 B. 匀变速直线运动 C. 曲线运动 D. 匀变速曲线运动 14.关于物体的运动,下列说法中正确的是() A.物体做曲线运动时,它所受的合力一定不为零 B.做曲线运动的物体,有可能处于平衡状态 C.做曲线运动的物体,速度方向一定时刻改变 D.做曲线运动的物体,所受的合外力的方向有可能与速度方向在一条直线上 17.加速度不变的运动() A .可能是直线运动B.可能是曲线运动C.可能是匀速圆周运动D.一定是匀变速运动 18. 如图所示,蜡块可以在竖直玻璃管内的水中匀速上升,若在蜡块从 A 点开始匀速上升的同时,玻璃管从AB 位置 水平向右做匀加速直线运动,则蜡块的实际运动轨迹可能是图中的A.直线 P B.曲线 Q C .曲线 R D .三条轨迹都有可能B (C) Q P R A D

教科版小学科学新版三年级下册科学第一单元第3课 《直线运动和曲线运动》教案

教科版三下第一单元第3课教学设计

结论:过山车、老鹰的运动路线是一条曲线;台球、电梯、掉落的苹果的运动路线是一条直线。 击球感知物体的运动形式。 实验材料:蓝色球和红色球各一个,一条带槽的直线轨道、一条带槽的曲线轨道、平整的桌面。 实验步骤:(1)把蓝色球和红色球放在平整的桌面上,让二者之间有50 cm的距离(根据实际情况,距离可长、可短) ,然后用蓝色球去撞击红色球。 (2)把两个球放在带槽的直线轨道上,二者之间有50 cm的距离,用蓝色球去撞击红色球。 (3)把两个球放在带槽的曲线轨道上,二者之间有50 cm的距离,用蓝色球去撞击红色球。 (4)观察比较蓝色球在平整桌面、直线轨道和曲线轨道中运动路线有什么不同。 实验现象:蓝色球在平整桌面做直线运动,但很难击中红色球。蓝色球在直线轨道中做且线运动,在曲线轨道中做曲线运动,都比较容易击中红球。 实验记录:蓝色球的运动路线。 实验解析:带槽的轨道形状影响着蓝色球的运动方式,在直线轨道中蓝色球做直线运动,曲线轨道中蓝色球做曲线运动。实验结论:根据轨道形状的不同,蓝色球做直线运动或曲线运动。 观察小球在桌面上滚动时和冲出桌面后的运动路线。 实验材料:小球、实验桌、塑料桶和实验记录单。 实验步骤:(1)预测小球在桌面上滚动时的运动路线,并在记录单中画出小球可能的运动路线,与同学交流想法。 (2)预测小球冲出桌面后的运动路线,并在记录单中画出小球可能的运动路线,与同学交流想法。 (3)进行实验操作验证,把小球摆放在实验桌上,用手推出或用手指弹射小球,并认真观察小球的运动变化过程。 (4)画出或是修改实验记录单中的小球的运动路线。认识曲线 运动。 要求学生 在确定物 体运动路 线时,可 以先在物 体上确定 一个点, 再观察这 个点的运 动路线。 或者把蓝 球当着一 个点,画 出它的运 动路线。 小球的运动 轨迹会受到 力的影响。 当小球在桌 面上滚动 时,小球做 直线运动。 当冲出桌面

曲线运动知识点总结

曲线运动知识点总结 一、曲线运动 1 ?曲线运动的特征 (1) 曲线运动的轨迹是曲线。 (2) 由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。即使其速度大小保持恒定,由于其方向不断变化,所 以说:曲线运动一定是变速运动。 (3) 由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。(注意:合外力为零只有两种状态:静止和匀速直线运动。) 曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。 2 ?物体做曲线运动的条件 (1) 从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。 (2) 从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。 3?匀变速运动:加速度(大小和方向)不变的运动。 也可以说是:合外力不变的运动。 4. 质点运动性质的判断方法:根据加速度是否变化判断质点是做匀变速运动还是非匀变速运动;由加速度(合外力)的方向与速度的方向是否在同一直线上判断是直线运动还是曲线运动.质点做曲线运动时,加速度的效果是:在切线方向的分加速度改变速度的大小;在垂直于切线方向的分加速度改变速度的方向. (1) a(或F)跟v在同一直线上—直线运动:a恒定—匀变速直线运动;a变化—变加速直线运动. (2) a(或F)跟v不在同一直线上—曲线运动:a恒定—匀变速曲线运动;a变化—变加速曲线运动. 5?曲线运动的合力、轨迹、速度之间的关系 (1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。 (2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度 的方向 ①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。 ②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。 ③当合力方向与速度方向垂直时,物体的速率不变。(举例:匀速圆周运动) 二、抛体运动 1. 抛体运动的定义:将物体以一定的初速度向空中抛出,仅在重力的作用下物体所做的运动叫做抛体运动. 2. 抛体运动的条件: (1)有一定的初速度(v0工0); (2)仅受重力的作用(F合二G,不受其他力的作用). 3. 常见的抛体运动:

高中物理公式大全全集曲线运动

四、曲线运动 一、知识网络 二、画龙点睛 概念 1、曲线运动: ⑴曲线运动定义:曲线运动是一种轨迹是曲线的运动,其速度方向随时间不断变化 ⑵曲线运动中质点的瞬时速度方向:就是曲线的切线方向 ⑶曲线运动是一种变速运动,因为物体速度方向不断变化,所以曲线运动的物体总有加速度 【注意】曲线运动一定是变速运动,一定具有加速度;但变速运动或具有加速度的运动不一定是曲线运动 ⑷两种常见的曲线运动:平抛运动和匀速圆周运动 2、物体做曲线运动的条件: ⑴曲线运动的物体所受的合外力不为零,合外力产生加速度,使速度方向(大小)发生变化

⑵曲线运动的条件:物体所受的合外力F与物体速度方向不在同一条直线上 ⑶力决定了给定物体的加速度,力与速度的方向关系决定了物体运动的轨迹 F(或a)跟v在一直线上→直线运动:a恒定→匀变速直线运动; a变化→变加速直线运动。 F(或a)跟v不在一直线上→直线运动:a恒定→匀变速曲线运动; a变化→变加速曲线运动 ⑷根据质点运动轨迹大致判断受力方向:做曲线运动的物体所受的合外力必指向运动轨迹的内侧,也就是运动轨迹必夹在速度方向与合外力方向之间。 ⑸常见运动的类型有: ①a=0:匀速直线运动或静止。 ②a恒定:性质为匀变速运动,分为:①‘v、a同向,匀加速直线运动;②、v、a反向,匀减速直线运动;③’v、a成角度,匀变速曲线运动(轨迹在v、a之间,和速度v的方向相切,方向逐渐向a的方向接近,但不可能达到。) ③a变化:性质为变加速运动。如简谐运动,加速度大小、方向都随时间变化。 例题:如图所示,物体在恒力F作用下沿曲线从A运动到B,这时,突然使它所受力反向,大小不变,即由F变为-F。在此力作用下,物体以后运动情况,下列说法正确的是 A.物体不可能沿曲线Ba运动; B.物体不可能沿直线Bb运动; C.物体不可能沿曲线Bc运动; D.物体不可能沿原曲线由B返回A。 解析:因为在曲线运动中,某点的速度方向是轨迹上该点的切线方向,如图所示,在恒力作用下AB为抛物线,由其形状可以画出v A方向和F方向。同样,在B点可以做出v B和-F方向。由于v B和-F不在一条直线上,所以以后运动轨迹不可能是直线。又根据运动合成的知识,物体应该沿BC轨道运动。即物体不会沿Ba运动,也不会沿原曲线返回。 因此,本题应选A、B、D。 掌握好运动和力的关系以及物体的运动轨迹形状由什么决定是解好本题关键。 答案:A、B、D。 3、运动的合成和分解速度的合成和分解 ⑴合运动和分运动:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动;那几个运动叫做这个实际运动的分运动

曲线运动知识点详细归纳

第四章曲线运动 第一模块:曲线运动、运动的合成和分解 『夯实基础知识』 ■考点一、曲线运动 1、定义:运动轨迹为曲线的运动。 2、物体做曲线运动的方向: 做曲线运动的物体,速度方向始终在轨迹的切线方向上,即某一点的瞬时速度的方向,就是通过该点的曲线的切线方向。 3、曲线运动的性质 由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。 由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。 4、物体做曲线运动的条件 (1)物体做一般曲线运动的条件 物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。 (2)物体做平抛运动的条件 物体只受重力,初速度方向为水平方向。 可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方向垂直。 (3)物体做圆周运动的条件 物体受到的合外力大小不变,方向始终垂直于物体的速度方向,且合外力方向始终在同一个平面内(即在物体圆周运动的轨道平面内) 总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。 5、分类 ⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。 ⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。 ■考点二、运动的合成与分解 1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。 2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。 3、合运动与分运动的关系: ⑴运动的等效性(合运动和分运动是等效替代关系,不能并存); ⑵等时性:合运动所需时间和对应的每个分运动时间相等 ⑶独立性:一个物体可以同时参与几个不同的分运动,物体在任何一个方向的运动,都按其本身的规律进行,不会因为其它方向的运动是否存在而受到影响。

曲线运动第6讲 圆周运动(基础篇)

圆周运动(基础篇) 知识点梳理 一、基础知识点梳理 1、运动学 <1>线速度:<3>周期: <2>角速度:<4>频率 <5>向心加速度 2、动力学 <1>向心力 <2>向心力的表达式 二、本节重点 1、同环、同轨道上圆周运动运动学特点 2、圆周运动中的两种物理模型——“绳与杆”的爱恨情仇(上) <1>绳(内轨道)模型 说好的“杆”模型呢? 说好的天长地久呢? 下次见

r A O a C r B b B 方法突破之典型例题 题型一 圆周运动中的运动学 如图所示,a 、b 两轮靠皮带传动,A 、B 分别为两轮边缘上的点,C 与A 同在a 轮上,已知B A r r 2=,B r OC =,在传动时,皮带不打滑。求: (1)=B C ωω: ; (2)=B C v v : ; (3)=B C a a : 。 光说不练,等于白干 1.如图所示,有一皮带传动装置,A 、B 两点分别在两轮的边缘上,A 、B 两点到各自转轴的距离分别为R A 、R B ,已知R B =3 R ,若在传动过程中,皮带不打滑,则( ) A .A 与B 点的角速度大小相等 B .A 与B 点的线速度大小相等 C .A 与B 点的周期之比为3:1 D .A 与B 的向心加速度大小之比1:9 2.如图所示的皮带传动装置中,已知两轮半径的关系为r 1=2r 2,A 、B 分别为两轮边缘上的 点,C 为大轮的半径中点.若传动轮皮带不打滑,则A 、B 、C 三点的向心加速度之比为( ) A .2:1:1 B .2:4:1 C .4:2:1 D .1:4:2 3.如图为一皮带传动装置.左轮半径为4r ,右轮半径为r ,a 、b 分别是左右轮边缘上的点,c 点到左轮圆心的距离为2r ,若传动过程中皮带不打滑,则( ) A .a 、b 点的向心加速度大小相等 B .a 、b 点的角速度大小之比为4:1 C .a 、c 点的线速度大小相等 D .b 、c 点的向心加速度之比为8:1 4.如图所示,A 、B 为咬合传动的两齿轮,R A =2R B ,则A 、B 两轮边缘上两点的( ) A .角速度之比为2:1 B .向心加速度之比为1:2 C .周期之比为1:2 D .转速之比为2:1

曲线运动、平抛运动、圆周运动练习题

《曲线运动》练习题 一 选择题 1. 关于运动的合成的说法中,正确的是 ( ) A .合运动的位移等于分运动位移的矢量和 B .合运动的时间等于分运动的时间之和 C .合运动的速度一定大于其中一个分运动的速度 D .合运动的速度方向与合运动的位移方向相同 2. 物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物 体的运动情况可能是 ( ) A .静止 B .匀加速直线运动 C .匀速直线运动 D .匀速圆周运动 3.某质点做曲线运动时 ( ) A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间内,位移的大小总是大于路程 C.在某段时间里质点受到的合外力可能为零 D.速度的方向与合外力的方向必不在同一直线上 5.一个质点在恒力F 作用下,在xOy 平面内从O 点运动到A 点的轨迹如图所示,且在A 点的速度方向与x 轴平行, 则恒力F 的方向不可能( ) A.沿x 轴正方向 B.沿x 轴负方向 C.沿y 轴正方向 D.沿y 轴负方向 6在光滑水平面上有一质量为2kg 的物体,受几个共点力作用做匀速直线运动。现突然将与速度反方向的2N 力水平旋转90o,则关于物体运动情况的叙述正确的是( ) A. 物体做速度大小不变的曲线运动 B. 物体做加速度为在2m/s 2的匀变速曲线运动 C. 物体做速度越来越大的曲线运动 D. 物体做非匀变速曲线运动,其速度越来越大 7. 做曲线运动的物体,在运动过程中一定变化的物理量是( ) A.速度 B.加速度 C.速率 D.合外力 9 关于曲线运动,下面说法正确的是( ) A. 物体运动状态改变着,它一定做曲线运动 B. 物体做曲线运动,它的运动状态一定在改变 C. 物体做曲线运动时,它的加速度的方向始终和速度的方向一致 D. 物体做曲线运动时,它的加速度的方向始终和所受到的合外力方向一致 10 物体受到几个力的作用而处于平衡状态,若再对物体施加一个恒力,则物体可能做( ) A. 静止或匀速直线运动 B. 匀变速直线运动 C. 曲线运动 D. 匀变速曲线运动 14.关于物体的运动,下列说法中正确的是( ) A. 物体做曲线运动时,它所受的合力一定不为零 B. 做曲线运动的物体,有可能处于平衡状态 C. 做曲线运动的物体,速度方向一定时刻改变 D. 做曲线运动的物体,所受的合外力的方向有可能与速度方向在一条直线上 17.加速度不变的运动( ) A .可能是直线运动 B .可能是曲线运动 C .可能是匀速圆周运动 D .一定是匀变速运动 18.如图所示,蜡块可以在竖直玻璃管内的水中匀速上升,若在蜡块从A 点开始匀速上升的同时,玻璃管从AB 位置 水平向右做匀加速直线运动,则蜡块的实际运动轨迹可能是图中的) A .直线P B .曲线Q C .曲线R D .三条轨迹都有可能

圆周运动的实例分析、离心现象、曲线运动综合练习

圆周运动的实例分析、离心现象、曲线运动综合练习 二. 本周知识归纳与总结 1. 用向心力公式解题的一般方法: (1)明确研究对象,必要时要将它从转动系统中隔离出来; (2)找出物体圆周运动的轨道平面,从中找出圆心和半径; (3)对研究对象做受力分析,分析是哪些力提供了向心力 (4)建立正交坐标(以指向圆心方向为x 轴的正向),将力正交分解到坐标轴方向; ()()()5x 在轴方向,选用向心力公式向心 F m R m v R m T R m f R ====ωπ π2 22222 ==m n R y F y ()202π列方程求解,必要时再在轴方向按列方程求解合 注意:列方程时要注意力、速度、运动半径的对应关系;有些问题还需配合其他辅助手 段,需要具体问题具体分析。 2. 离心运动:做匀速圆周运动的物体,在合外力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。 3. 向心运动和离心运动产生的原因(如图所示,向心力用F n 表示)。 ()/12 当时,物体沿半径作匀速圆周运动;F mv R R n = ()/22 当时,物体将作向心运动,半径减小;F mv R R n > ()/32 当时,物体将作离心运动,半径增大;F mv R R n < (4)当F n =0时,即向心力消失时,半径R 趋于无限大,物体将沿切线方向飞出。 所以,向心运动和离心运动产生的原因是向心力多余和不足。 4. 离心运动的应用和防止: (1)洗衣机的脱水筒是利用离心运动把湿衣服甩干的。把湿衣服放在脱水筒里,筒转得慢时,水滴跟物体的附着力F 足以提供所需向心力F ;当筒转得比较快时,附着力F 不足以提供所需向心力F ,于是水滴做离心运动,穿过网孔,飞到筒外面。 (2)在水平公路上行驶的汽车,转弯时所需向心力是由车轮与路面间的静摩擦力提供的,如果转弯时速度过大,所需向心力F 大于最大静摩擦力,汽车将做离心运动而造成交通事故。 【典型例题】 例1. 如图所示,用细管弯成半径为r 的圆弧形轨道,并放置在竖直平面内,现有一小球在细管内运动,当小球通过轨道最高点时,若小球速度____________时,会对细管上部产生

曲线运动 平抛运动 专项练习-2021届高考物理二轮复习

课练11曲线运动平抛运动 ———[狂刷小题夯基础]——— 练基础小题 1.(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则() A.质点一定做匀变速直线运动B.质点可能做匀变速曲线运动 C.质点单位时间内速度的变化量相同 D.质点速度的方向总是与该恒力的方向相同 2. 如图所示,P、Q和M、N分别是坐标系x轴与y轴上的两点,Q为OP的中点,N为OM的中点,a、b、c表示三个可视为质点的物体做平抛运动的轨迹,a、b抛出点的位置相同,a、c落点的位置相同,以v a、v b、v c表示三个物体的初速度,t a、t b、t c表示三个物体做平抛运动的时间,则有() A.v a:v b=1:2 B.v b:v c=2:4 C.t a:t b=1: 2 D.t b:t c=2:1 3.如图所示,河水的流速保持不变,船在静水中的速度大小也一定,当船头的指向分别沿着图中4个箭头的方向,下列说法中正确的是() A.①方向小船一定向上游前进 B.②方向小船一定沿图中虚线前进 C.②方向和④方向小船不可能到达对岸的同一地点 D.③方向小船过河时间一定最短 4.

如图所示,一工人利用定滑轮和轻质细绳将货物提升到高处.已 知该工人拉着绳的一端从滑轮的正下方水平向右匀速运动,速度大小恒为v ,直至绳与竖直方向夹角为60°.若滑轮的质量和摩擦阻力均不计,则该过程( ) A .货物也是匀速上升 B .绳子的拉力大于货物的重力 C .末时刻货物的速度大小为v 2 D .工人做的功等于货物动能的增加量 5.如图所示,长为L 的直杆一端可绕固定轴O 无摩擦转动,另一端靠在以水平速度v 匀速向左运动、表面光滑的竖直挡板上,当直杆与竖直方向夹角为θ时,直杆端点A 的线速度为( ) A.v sin θ B .v sin θ C.v cos θ D .v cos θ 6. 如图所示,某一运动员从弧形雪坡上沿水平方向飞出后,又落到 斜面雪坡上,若斜面雪坡的倾角为θ,飞出时的速度大小为v 0,不计空气阻力,运动员飞出后在空中的姿势保持不变,重力加速度为g ,则( ) A .运动员落到雪坡时的速度大小是v 0cos θ B .运动员在空中经历的时间是2v 0tan θg C .如果v 0不同,则该运动员落到雪坡时的速度方向也就不同 D .不论v 0多大,该运动员落到雪坡时的速度方向与水平方向的夹角α=2θ

高中物理曲线运动平抛运动知识点梳理

一、 知识点梳理 曲线运动 平抛运动 一、曲线运动 1.曲线运动的条件:质点所受合外力的方向(或加速度方向)跟它的 速度方向 不在同一直线上。 当物体受到的合力为恒力(大小恒定、方向不变)时,物体作 匀变速曲线运动 ,如平抛运动。 ★注:曲线运动的基本概念中几个关键问题 ① 曲线运动的速度方向:曲线切线的方向。 ② 曲线运动的性质:曲线运动一定是变速运动,即曲线运动的加速度a ≠0。 ③ 物体做曲线运动的条件:物体所受合外力方向与它的速度方向不在同一直线上。 ④ 做曲线运动的物体所受合外力的方向指向曲线弯曲的一侧。 2.运动的合成与分解的意义、法则及关系 (1)合成与分解的目的在于将复杂运动转化为 简单 运动,将曲线运动转化为 直线 运动,以便于研究。 (2)由于合成和分解的物理量是矢量,所以运算法则为 平行四边形定则 。运动的合成与分解包括位移、速度、加速度的合成与分解,遵循平行四边形定则。 (3)合运动与分运动的关系: ①等时性 合运动的时间和对应的每个分运动时间相等; ②独立性 一个物体可以同时参与几个不同的分运动,各个分运动独立进行,互不影响; ③等效性 合运动与分运动的效果相同 。 (4)互成角度的两分运动合成的几种情况 ①两个匀速直线运动的合运动是 匀速直线运动 ②两个匀变速直线运动的合运动,一定是匀变速运动,但不一定是直线运动 a .两个初速度为零的匀加速直线运动的合运动是 匀加速直线运动 b .两个初速度不为零的匀加速直线运动的合运动可能是 匀变速直线 运动,也可能是匀变速曲线 运动。 ③两个直线运动的合运动,不一定是直线运动。 a .一个匀加速直线运动和一个匀速直线运动的合运动是 匀变速曲线运动(平抛运动) 3.船过河模型 (1)处理方法:小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动,即在静水中的船的运动(就是船头指向的方向),船的实际运动是合运动。 (2)若小船要垂直于河岸过河,过河路径最短,应将船头偏向上游,如图甲所示,此时过河时间: θ sin 1v d v d t == 合 当水船v v >时,船 水v v =αsin ,(α为合船与v v 的夹角)最短路程为河宽d ;

(完整版)曲线运动复习提纲及经典习题

《曲线运动》复习提纲 一、曲线运动 1.曲线运动速度方向:时刻变化; 曲线该点的切线方向。 2.做曲线运动的条件:物体所受合外力方向与它的速度方向不在同一直线上(即F(a)与v 不共线) 3.曲线运动的性质:曲线运动一定是变速运动,即曲线运动的加速度a ≠0。 ①做曲线运动的物体所受合外力的方向指向曲线弯曲的一侧(凹侧)。 ②轨迹在力和速度方向之间 4.曲线运动研究方法:运动合成和分解。(实际上是F 、a 、v 的合成分解) 遵循平行四边形定则(或三角形法则) 二、运动的合成与分解 物体实际运动叫合运动 物体同时参与的运动叫分运动 (1)合运动与分运动的关系: ①独立性。 ②等时性。 ③等效性。 (2)几个结论:①两个匀速直线运动的合运动仍是匀速直线运动。 ②一个匀速直线运动和一个匀变速直线运动的合运动,不一定是直线运动(如平抛运动)。 ③两个匀变速直线运动的合运动,一定是匀变速运动,但不一定是直线运动。 (3)典型模型:①船过河模型 1)处理方法:小船在有一定流速的水中过河时,实际 上参与了 两个方向的分运动:随水流的运动(水速),在静水中的船的运动 (就是船头指向的方向)。 船的实际运动是合运动。 2)若小船要垂直于河岸过河,过河路径最短,应将船头偏向上游,如图甲所示,此时过河时间: θsin 1v d v d t ==合 3)若使小船过河的时间最短,应使船头正对河岸行驶,此时过河时间1 v d t =(d 为河宽)。因为在垂直于 河岸方向上,位移是一定的,船头按这样的方向,在垂直于河岸方向上的速度最大。 ②绳(杆)端问题 船的运动(即绳的末端的运动)可看作两个分运动的合成: a)沿绳的方向被牵引,绳长缩短,绳长缩短的速度等于左端绳子伸长的速度。即为v ; b)垂直于绳以定滑轮为圆心的摆动,它不改变绳长。这样就可以求得船的速度为αcos v , 当船向左移动, α将逐渐变大,船速逐渐变大。虽然匀速拉绳子,但物体A 却在做变速运动。 三、平抛运动 1.运动性质 a)水平方向:以初速度v 0做匀速直线运动. b)竖直方向:以加速度a=g 做初速度为零的匀变速直线运动,即自由落体运动. 说明:在水平和竖直方向的两个分运动同时存在,互不影响,具有独立性.合运动是匀变速曲线运动.相等的时间内速度的变化量相等.由△v=gt ,速度的变化必沿竖直方向 2.平抛运动的规律 以抛出点为坐标原点,以初速度v 0方向为x 正方向,竖直向下为y 正 方向,如右图所示,则有: 分速度 gt v v v y x ==,0

高一物理曲线运动和平抛运动

第1讲曲线运动平抛运动 自主学习回顾 ☆知识梳理 1.运动特点 曲线运动的速度:曲线运动中速度的方向是在曲线上某点的方向,是时刻的,具有加速度,因此曲线运动一定是运动,但变速运动不一定是曲线运动. 2.物体做曲线运动的条件 (1)从动力学角度看,如果物体所受合外力方向跟物体的方向不在同一条直线上,物体就做曲线运动. (2)从运动学角度看,就是加速度方向与方向不在同一条直线上.经常研究的曲线运动有平抛运动和匀速圆周运动. 3.运动的合成与分解 已知分运动求合运动称为运动的;已知合运动求分运动称为运动的.两者互为逆运算.在对物体的实际运动进行分析时,可以根据分解,也可以采用正交分解. 4.遵循的法则 运动的合成与分解是指描述运动的各物理量,即、、的合成与分解,由于它们都是矢量,故遵循. ☆要点深化 1.物体做曲线运动的受力特点 物体所受合外力与速度方向不在一条直线上,且指向轨迹的凹侧. 3.合运动与分运动的关系 (1)等时性:合运动与分运动经历的时间相等,即合运动与分运动同时开始,同时结束.(2)独立性:物体在任何一个方向的运动,都按其本身规律进行,不会因为其他方向的运动是否存在而受影响.(如河水流速变化不影响渡河时间) (3)等效性:各分运动的规律叠加起来与合运动的规律有完全相同的效果.

☆针对训练 1.如图4-1-1所示,平面直角坐标系xOy 与水平面平行,在光滑水平面上一做匀速直线运动的质点以速度v 通过坐标原点O ,速度方向与x 轴正方向的夹角为α,与此同时给质点加上沿x 轴正方向的恒力Fx 和沿y 轴正方向的恒力Fy .则此后( ) A .因为有Fx ,质点一定做曲线运动 B .如果Fy <Fx ,质点相对原来的方向向y 轴一侧做曲线运动 C .如果Fy =Fx tan α,质点做直线运动 D .如果Fx >Fy cot α,质点相对原来的方向向x 轴一侧做曲线运动 ☆知识梳理 1.定义:水平方向抛出的物体只在 作用下的运动. 2.性质:平抛运动是加速度为g 的 曲线运动,其运动轨迹是 . 3.平抛物体运动条件:(1)v 0≠0,沿 ,(2)只受 作用. 4.研究方法 运动的合成与分解. 把平抛运动分解为水平方向的 运动和竖直方向的 运动. 5.运动规律 以抛出点为坐标原点,水平初速度v 0方向为x 轴正方向, ☆要点深化 1.平抛运动的主要特点有哪些? (1)平抛运动是匀变速曲线运动,故相等的时间内速度的变化量相等.由Δv =gt ,速度的变化必沿竖直方向,如图4-1-3所示. (2)物体由一定高度做平抛运动,其运动时间由下落高度决定,与初速度无关,由公式2 2 1gt y = ,可得g y t 2= t ;落地点距抛出点的水平距离x = v 0t ,由水平速度和下落时间共同决定. (3)水平方向和竖直方向的两个分运动同时存在,互不影响,具有独立性.

曲线运动题型整理

O x y A O x y B O x y C O x y D 第一节:运动的合成与分解 一、概念类题型 1、 曲线运动的性质:(与变速运动、变加速运动的辩证关系等) 例1、关于曲线运动性质的说法正确的是( ) A .变速运动一定是曲线运动 B .曲线运动一定是变速运动 C .曲线运动一定是变加速运动 D .曲线运动一定是加速度不变的匀变速运动 2、做曲线运动的条件:(强调受到与速度不在同方向的力,至于是恒力、变力并不需要强调) 例2.麦收时节,农用拖拉机牵拉震压器在麦场上打麦时,做曲线运动.关于震压器受到的牵引力F 和摩擦力F 1的方向,下面四个图中正确的是( ) 二、 研究物体的运动性质 1、 已知力和速度确定物体的运动性质、轨迹等 例3、红蜡块能在玻璃管的水中匀速上升,若红蜡块在A 点匀速上升的同时, 使玻璃管水平向右做匀加速直线运动,则红蜡块实际运动的轨迹是图中的: A .直线P B .曲线Q C .曲线R D .无法确定 例4、一物体由静止开始自由下落,一小段时间后突然受一恒定水平向右的风力的影响,但着地前一段时间风突然停止,则其运动的轨迹可能是图中的哪一个?(. ) 2、 已知物体的运动性质、轨迹确定物体的受力情况等 例5.质点仅在恒力F 的作用下,由O 点运动到A 点的轨迹如图所示,在A 点时速度的方向与x 轴平行,则恒力F 的方向可能沿( ) A .x 轴正方向 B .x 轴负方向 C .y 轴正方向 D .y 轴负方向 v

过A 、B 两点并与该轨迹相切的直线,虚线和实线将水平面划分为图示的5个区域.则关于对该施力物体位置的判断,下面说法中正确的是( ) A .如果这个力是引力,则施力物体一定在④区域 B .如果这个力是引力,则施力物体一定在②区域 C .如果这个力是斥力,则施力物体一定在②区域 D .如果这个力是斥力,则施力物体一定在③区域 3、研究两个分运动的合运动的性质 例7.关于运动的合成,下列说法中正确的是( ) A .两个直线运动的合运动一定是直线运动 B .两个匀速直线运动的合运动一定是直线运动 C .两个初速度为零的匀加速直线运动的合运动一定是直线运动 D .一个匀速直线运动和一个匀加速直线运动的合运动一定是曲线运动 例8.如图所示,在一次救灾工作中,一架沿水平直线飞行的直升机A 用悬索将 伤员B 吊起,直升A 和伤员B 以相同水平速度匀速运动的同时,悬索将伤员吊起, 在某一段时间内,A 、B 之间的距离l 与时间t 的关系为l =H -bt 2(式中l 表示 伤员到直升机的距离,H 表示开始计时时伤员与直升机的距离,b 是一常数,t 表 示伤员上升的时间),不计伤员和绳索受到的空气阻力,这段时间内从地面上观 察,下面判断正确的是 A .悬索始终保持竖直 B .伤员做直线运动 C .伤员做曲线运动 D .伤员的加速度大小、方向匀不变 4、待定系数法确定物体的运动性质 例9、如图所示,MN 为一竖直墙面,图中x 轴与MN 垂直.距墙面L 的 A 点固定一点光源.现从A 点把一小球以水平速度向墙面抛出,则小球在 墙面上的影子运动应是 A .自由落体运动 B .变加速直线运动 C .匀速直线运动 D .无法判定 三、 合运动与分运动的关系 1、 绳拉物体类问题 例10、如图示,在河岸上用细绳拉船,为了使船匀速靠岸,拉绳的速 度必须是( ) A .加速拉 B .减速拉 C .匀速拉 D .先加速后减速拉

高中物理必修二曲线运动平抛运动的规律教案讲义

二、抛体的位置 我们以平抛运动为例来研究抛体运动所共同具有的性质. 首先我们来研究初速度为V。的平抛运动的位置随时间变化的规律.用手把小球水平抛出,小球从离开手的瞬间(此时速度为v,方向水平)开始,做平抛运动.(我们以小球离开手的位置为坐标原点,以水平抛出的方向为x轴的方向,竖直向下的方向为y轴的方向,建立坐标系,并从这一瞬间开始计时.) 引导1:在抛出后的运动过程中,小球受力情况如何? 引导2:那么,小球在水平方向有加速度吗?它将怎样运动? 引导3:我们用函数表示小球的水平坐标随时间变化的规律将如何表示? 引导4:在竖直方向小球有加速度吗?若有,是多大?它做什么运动?它在竖直方向有初速度吗? 引导5:那根据运动学规律,请大家说出小球在竖直方向的坐标随时间变化的规律. 引导6:小球的位置能否用它的坐标(x,y)描述?能否确定小球在任意时刻t的位置? 三、抛体的轨迹 例题1、讨论物体以速度V水平抛出后的轨迹。(认真阅读教材p8,独立 完成下列问题)

四、抛体的速度 引导1:利用运动合成的知识,结合图6.4—2,求物体落地速度是多大? 落地速度与什么因素有关? 例2、一个物体以l0 m/s的速度从10 m的水平高度抛出,落地时速度与地面的夹角θ是多少(不计空气阻力)? 练习、在5 m高的地方以6 m/s的初速度水平抛出一个质量是10 kg的物体,则物体落地的速度是多大? (忽略空气阻力,取g=10m/s2) 任务二合作探究 (认真阅读教材p2-p3,独立完成下列问题) 引导1:由于运动的等时性,那么大家能否根据前面的结论得到物体做平抛运动的时间? 平抛运动的物体在空中运动的时间仅取决于下落的什么? 引导2:那么落地的水平距离是多大? 平抛运动的水平位移不仅与初速 度有关系,还与物体的下落高度有关. 任务三达标提升 1.平抛物体的运动可以看成( ) A.水平方向的匀速运动和竖直方向的匀速运动的合成 B.水平方向的匀加速运动和竖直方向的匀速运动的合成 C.水平方向的匀加速运动和竖直方向的匀加速运动的合成 D.水平方向的匀速运动和竖直方向的自由落体运动的合成 2.物体做平抛运动时,描述物体在竖直方向的分速度v y(取向下为正)随时间变化的图线是( ) 3.一小球在高0.8m的水平桌面上滚动,离开桌面后着地,着地点与桌边水平距离为1 m,求该球离开桌面时的速度. 4、在5m高处以8m/s的初速度水平抛出—个质量为12 kg的物体,空气阻力不计,g取10m/s2:,试求: (1)物体落地的速度的大小; (2)物体从抛出到落地发生的水平位移.

曲线运动与圆周运动

曲线运动 一、基础过关题: 1.1、如图所示,物体在恒力F 作用下沿曲线从A 运动到B ,这时突然使它所受的力反向而大小不变(即由F 变为-F ).在此力作用下,对于物体以后的运动情况,下列说法正确的是( ) A .物体可能沿曲线Ba 运动 B .物体可能沿曲线Bb 运动 C .物体可能沿曲线Bc 运动 D .物体可能沿原曲线由B 返回A 1.2、小船在200m 宽的河中渡河,水流速度是4m/s , (1)若船在静水中的航速是5m/s ,要使小船渡河耗时最小,应如何航行?渡河最短时间为多少?要使小船航程最短,应如何航行?最短航程为多少? (2)若船在静水中的航速是2m/s ,要使小船渡河耗时最小,应如何航行?渡河最短时间为多少?要使小船航程最短,应如何航行?最短航程为多少? (3)若要使小船到达对岸下游150m 处,则船在静水中的航速最小为多少? 1.3、如图所示,汽车甲以速度v 1拉汽车乙前进,乙的速度为v 2,甲、乙都在水平面上运动,已知此时如图夹角为a ,求v 1∶v 2 2.1从倾角为45 的足够长的斜面的顶端以V 0=10米/秒的初速度水平抛出一小球,则物体从抛出到落至斜面需要多长时间?刚落至斜面时的速度为多大? 2.2以100m/s 的速度沿水平方向匀速飞行的飞机上,每隔2s 放下一个物体,当第7个物体离开飞机时,第1个物体刚 好着地,求此时第3个物体和第5个物体在空中的距离.(不计空气阻力,g =10m/s 2 ) 2.3已知网高H ,半场长L ,扣球点高h ,扣球点离网水平距离s 、求:水平扣球速度v 的取值范围。 A

2.4平抛小球的闪光照片如图。已知方格边长a 和闪光照相的频闪间隔T , 求:v 0、g 、v c 2.5、光滑斜面倾角为θ,长为L ,上端一小球沿斜面水平方向以速度v 0抛出,如图4-2-15所示,求小球滑到底端时,水 平方向的位移s 为多大? 3.1、如图所示装置中,三个轮的半径分别为r 、2r 、4r ,b 点到圆心的距离为r ,求图中a 、b 、c 、d 各点的线速度之比、角速度之比、加速度之比。 3.2、如图所示,杆长为L ,球的质量为m ,杆连球在竖直平面内绕轴O 自由转动,已知在最高点处,杆对球的弹力大小为F =mg ,求这时小球的瞬时速度大小。 3.3、如图所示,长为L 的细线,一端固定在O 点,另一端系一个球.把小球拉到与悬点O 处于同一水平面的A 点,并给小球竖直向下的初速度,使小球绕O 点在竖直平面内做圆周运动。要使小球能够在竖直平面内做圆周运动,在A 处小球竖直向下的最小初速度应为 D. 3.4、天桥行车的钢索长L=3m ,下面吊着质量M=3吨的工件一起以2m/s 的速度向前行驶,当突然刹车停止时,钢索拉力的大小为多少?

2019年高考物理一轮复习第四章曲线运动万有引力与航天第2讲平抛运动学案

第2讲 平抛运动 微知识1 平抛物体的运动 1.定义 将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动。 2.性质 平抛运动是加速度为g 的匀变速曲线运动,轨迹是抛物线。 微知识2 平抛运动的规律 以抛出点为原点,以水平方向(初速度v 0方向)为x 轴,以竖直向下的方向为y 轴建立平面直角坐标系,则 1.水平方向 做匀速直线运动,速度v x =v 0,位移x =v 0t 。 2.竖直方向 做自由落体运动,速度v y =gt ,位移y =12 gt 2 。 (1)合速度v =v 2 x +v 2 y =v 2 0+g 2t 2 ,方向与水平方向夹角为θ,则tan θ=v y v 0=gt v 0 。 (2)合位移s =x 2 +y 2 = v 0t 2 + 12 gt 22 ,方向与水平方向夹角为α,则tan α=y x = gt 2v 0 。 微知识3 斜抛运动 1.定义 将物体以一定的初速度沿斜向上或斜向下方向抛出,物体仅在重力作用下所做的运动叫做斜抛运动。 2.斜抛运动的性质 斜抛运动是加速度恒为重力加速度g 的匀变速曲线运动,轨迹是抛物线。 3.处理方法 斜抛运动可以看成是水平方向上的匀速直线运动和竖直方向上的竖直上抛或竖直下抛运动的合运动。 一、思维辨析(判断正误,正确的画“√”,错误的画“×”。) 1.平抛运动的轨迹是抛物线,速度方向时刻变化,加速度也时刻变化。(×) 2.做平抛运动的物体,在任意相等的时间内速度的变化相同。(√)

3.斜抛运动和平抛运动都是匀变速曲线运动。(√) 4.做平抛运动的物体初速度越大,水平位移越大。(×) 5.平抛运动的时间由下落高度决定。(√) 二、对点微练 1.(对平抛运动的理解)做平抛运动的物体,每秒的速度增量总是( ) A .大小相等,方向相同 B .大小不等,方向不同 C .大小相等,方向不同 D .大小不等,方向相同 解析 因为平抛运动的运动形式为匀变速曲线运动,其加速度是恒定不变的,即速度的变化率也恒定不变,再根据平抛运动的特点:水平方向做匀速运动,竖直方向做自由落体运动,合外力为重力,合加速度为重力加速度,故每秒速度的增量大小恒定不变,方向沿竖直方向,A 项正确。 答案 A 2.(对斜抛运动的理解)做斜上抛运动的物体,到达最高点时( ) A .速度为零,加速度向下 B .速度为零,加速度为零 C .具有水平方向的速度和竖直向下的加速度 D .具有水平方向的速度和加速度 解析 斜上抛运动可以分解为水平方向的匀速直线运动和竖直上抛运动。因物体只受重力,且方向竖直向下,所以水平方向的分速度不变,竖直方向上的加速度也不变,所以只有C 项正确。 答案 C 3.(平抛运动的规律)以速度v 0水平抛出一小球,不计空气阻力,从抛出时刻开始计时,经 t 1时间小球到达竖直分速度与水平分速度大小相等的A 点,经t 2时间小球到达竖直分位移与 水平分位移大小相等的B 点,下列判断正确的是( ) A .t 1、t 2的大小与v 0的大小无关 B .t 2=2t 1 C .A 、B 两点速度大小之比为1∶2 D .A 、B 两点的高度差为5v 2 02g 解析 到达A 点时,由v 0=gt 1可得t 1=v 0g ,到达B 点时,由v 0t 2=12gt 22可得t 2=2v 0 g ;v 0越大, t 1、t 2越大,且t 2=2t 1,A 项错误,B 项正确;v A =2v 0,v B =v 20+ v 0 2 =5v 0,C 项错 误;h 1=v 20 2g ,h 2=2v 20g ,则两点的高度差为3v 2 02g ,D 项错误。 答案 B 见学生用书P056 微考点 1 平抛运动的规律和应用 核|心|微|讲

曲线运动--平抛和圆周运动专题

曲线运动 曲线运动包括平抛运动、类平抛运动,圆周运动等知识。 主干知识整合 一、曲线运动(曲线运动的速度方向一定改变,所以是变速运动.) 1.物体做曲线运动的条件: F 合与v 不在同一直线上。 2.做曲线运动的物体受的合力总是指向曲线凹的一侧。(或表述为轨迹必须夹在力和速度的夹角) 二、抛体运动 1.平抛运动:以一定的水平初速度将物体抛出,在只受重力的情况下,物体所做的运动。 平抛运动的规律:平抛运动的处理方法是将其分解为水平方向和竖直方向的两个分运动。 (1)水平方向:做匀速直线运动,v x = v 0,x = v o t , (2)竖直方向:做自由落体运动,v y = gt ,y = 12gt 2 (3)任意时刻位移 2 2 y x x += 0 2tan υθ gt x y = = (4)任意时刻速度: 2 20 22 ) (gt v v v v y x +=+= tan y x v gt v υα= = 2.平抛运动的两个重要推论 (1)做平抛(或类平抛)运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点; (2)做平抛或类平抛运动的物体在任意时刻、任意位置处设其瞬时速度与水平方向的夹角为θ、位移与水平方向的夹角为φ,则有tan θ=2tan φ。 3.类平抛运动:以一定的初速度将物体抛出,如果物体受的合力恒定且与初速度方向垂直,则物体所做的运动为类平抛运动。 类平抛运动的公式:

三、圆周运动 同一转轴物体上各点的角速度相等,皮带传动轮子边缘各点的线速度相等。 2、圆周运动及其临界问题 竖直面内圆周运动的两种临界问题的比较(v= gr ------------------称为临界速度) 3、向心力来源:向心力可以由重力、弹力、摩擦力等各种性质的力提供,也可以是各力的合力或某力的分力提供。 命名:向心力是按力的作用效果来命名的,故在分析做圆周运动的物体受力时,切不可在 性质力之外再添加一个向心力。 4、处理圆周运动的动力学问题的步骤: ①首先要明确研究对象; ②对其受力分析明确向心力的来源; ③确定其运动轨道所在的平面、圆心的位置以及半径; ④将牛顿第二定律应用于圆周运动,得到圆周运动中的动力学方程,有以下各种情况,F = m v 2r = mr ω2 = mv ω = mr 4π2 T 2 = 4π2mrf 2。解题时应根据已知条件进行选择。

相关文档
最新文档