换元法在初中数学中的应用

换元法在初中数学中的应用
换元法在初中数学中的应用

换元法在初中数学中的应用

换元法是数学中的一种常用的方法,它能起到化难为易.以简驭繁的目的,在初中数学中有广泛的应用.现将具体应用列举如下.

1.因式分解

例1 将(x2+2x+4)(x2+2x+6)-8分解因式.

解设x2+2x+4=y,

则x2+2x+6=y+2.

原式=y(y+2)-8=y2+2y-8

=(y+4)(y-2).

把y=x2+2x+4代入上式

原式=(x2+2x +4+4)(x2+2x+4-2)

=(x2+2x+8)(x2+2x+2).

说明:利用换元法,可将原式转化为二次三项式,从而可用因式分解法分解.

2.一元二次方程

例2 解方程144x2+6x-5=0.

解设6x=y,则原方程可化为

说明:利用换元法,可将系数的绝对值化小.从而使题目简单化.

3.分式方程

说明:利用换元法,可将分式方程化为整式方程或较为简单的分式方程.

4.无理方程

∴原方程可化为:k2-8+k=64

解得k1=8.k2=-9(舍去)

∴x2+x+8=64 ∴x1=7,x2=-8

说明:利用换元法可将无理方程化为有理方程.

5.高次方程

例5 解方程

(x2+5x+4)(x2+5x+6)-8=0

解设x2+5x+4=y

则原方程可化为y(y+2)- 8=0

解得y1=-4,y2=2

∴x2+5x+4=-4或x2+5x+4=2

解得

说明:通过换元法可将高次方程进行降次,使之转化为一元二次方程.

6.方程组

后两组不合题意舍去,解得

说明:通过换元,可使无理方程组或分式方程组化为有理方程组或整式方程组.

初三数学换元法专练

利用换元法解分式方程的四种常见类型 一、直接换元 例1 解方程015)1 (2)1(2=----x x x x . 解:设 y x x =-1 ,则原方程可化为01522=--y y . 解得 5,321=-=y y . 当3-=y 时,31 -=-x x ,解得 43=x ; 当5=y 时,51=-x x ,解得 45 =x . 经检验,4 5 ,4321==x x 是原方程的根. 二、配方换元 例2 解方程 1)1 (3)1(22 2 =+-+ x x x x . 解:原方程配方,得 05)1 (3)1(22=-+-+x x x x . 设,1y x x =+则05322 =--y y . 解得 25 ,121=-=y y . 当1-=y 时,,11-=+x x 即012 =++x x . 因为0311412 <-=??-=?, 所以方程012 =++x x 无实数根. 当25=y 时,,2 51=+x x 即02522 =+-x x . 解得 21 ,221==x x . 经检验,2 1 ,221==x x 是原方程的根. 三、倒数换元 例3 解方程 031 ) 1(21122=-+++++x x x x . 解:设 y x x =++1 12,则原方程可化为032 =-+y y .

去分母,整理,得0232 =+-y y ,解得 2,121==y y . 当1=y 时, 11 1 2=++x x ,即02=-x x . 解得 1,021==x x . 当2=y 时, 21 1 2=++x x ,即0122=--x x . 解得 21,2143-=+=x x . 经检验,,1,021==x x 21,2143-=+=x x 都是原方程的根. 四、变形换元 例4 解方程12 22 242 2 =+-+ -x x x x . 解:原方程可变形为052 22 )22(22 2 =-+-+ +-x x x x . 设y x x =+-222 ,则原方程可化为052 2=-+ y y . 去分母,整理,得02522 =+-y y . 解得 2 1,221= =y y . 当2=y 时,2222 =+-x x ,即022 =-x x . 解得 2 1,021==x x . 当21= y 时,2 1222 =+-x x ,即03242=+-x x . 因为044344)2(2 <-=??--=?, 所以方程03242 =+-x x 无实数根. 经检验,2 1 ,021= =x x 是原方程的根. 例1 解方程 分析 括号里的分式相同,由这个特点,知可用换元法来解。

初中数学中的解方程.doc

代数部分 第三章:方程和方程组 基础知识点: 一、方程有关概念 1、方程:含有未知数的等式叫做方程。 2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。 3、解方程:求方程的解或方判断方程无解的过程叫做解方程。 4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。 二、一元方程 1、一元一次方程 ( 1)一元一次方程的标准形式: ax+b=0 (其中 x 是未知数, a 、b 是已知数, a ≠ 0) ( 2)一元一次方程的最简形式: ax=b (其中 x 是未知数, a 、 b 是已知数, a ≠ 0) ( 3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为 1。 ( 4)一元一次方程有唯一的一个解。 例题 :.解方程: ( 1) 1 x 1 x 2 x 1 x x 3 3 ( 2) 3 2 2 解: 解: ( 3)【05 湘潭】 关于 x 的方程 mx+4=3x+5 的解是 x=1 ,则 m= 。 2、一元二次方程 ( ) 一般形式: 2 bx c 0 a 1 ax ( 2) 解法:直接开平方法、因式分解法、配方法、公式法 求根公式 ax 2 bx c 0 a 0 x bb 2 4ac b 2 4ac 0 2a 错误 !未找到引用源。 、 解下列方程: ( 1) x 2 -2x = 0; (2)45-x 2=0; ( 3) (1-3x)2=1; ( 4) (2x + 3)2-25=0. ( 5)(t -2)(t+1) =0; (6)x 2+8x -2=0 (7 )2x 2 -6x -3=0; (8)3(x - 5) 2 =2(5-x ) 解: 错误 !未找到引用源。 填空: ( 1) x 2 +6x +( )=( x + )2 ; ( 2) x 2 -8x +( )=( x - )2 ; ( 3) x 2 + 3 x +( )=( + )2 x 2

初中数学因式分解中的换元法学法指导

初中数学因式分解中的换元法学法指导 徐卫东 刘建英 因式分解是初中数学的重要内容之一,是多项式乘法的逆运算,在代数式的化简、求值、解方程等领域中都有着广泛、直接的应用。但当一个多项式的项数、字母较多,次数较高或还含有代数式乘积的项时,结构复杂,容易造成思路混乱,这时可对多项式中某些相同的部分设辅助元代换,达到减少项数、降低次数,便于分解因式。把复杂、繁难的问题变得简单、容易的目的。举例简解如下。 一、整体换元 例1 因式分解.2)1x x ()1x x (2424--++-+ 解:设A 1x x 24=-+,原式)1x x )(2x x ()2A )(1A (2A A 24242++-+=+-=-+= ). 1x x )(1x x ()2x )(1x )(1x (]x )1x )[(2x )(1x ()x 1x 2x )(2x x (2222222222424+-+++-+=-++-=-++-+= 例2 若βα、是方程0c bx x 2=++的两根。因式分解.c ]c x )1b (x [b ]c x )1b (x [222++++++++ 解:因为βα、是方程0c bx x 2=++的两根,所以.c ),(b αβ=β+α-= 设A c x )1b (x 2=+++,原式).A )(A (A )(A c bA A 22β-α-=αβ+β+α-=++= 但-αβ+β-α-+=α-αβ+β-α-+=α-+++=α-x x x x x )1(x c x )1b (x A 222 ),x )(1()1x ()1x (x )x ()x x x (2α-+β-α=+β-α-+β-=α+αβ-α-+β-=α 同理),x )(1x (A β-+α-=β- 所以原式).1x )(1x )(x )(x (+β-+α-β-α-= 二、局部换元 例3 因式分解.14)8x 5x )(5x 5x (22-++-+ 解:设,A x 5x 2=+ 原式14)8A )(5A (-+-= ). 9x 5x )(6x )(1x () 9x 5x )(6x 5x () 9A )(6A (54 A 3A 2222+++-=++-+=+-=-+= 例4 因式分解.x )6x 5x )(6x 7x (222+++++ 解:设A 6x 5x 2=++,原式.)6x 6x ()x A (x Ax 2A x )x 2A (A 222222++=+=++=++= 三、局部分解后,重组再换元 例5 因式分解.91)9x )(35x 4x 4(22---- 解:原式91)]3x )(5x 2[()]3x )(7x 2[(91)3x )(3x )(5x 2)(7x 2(--+?+-=--++-= ,A 21x x 291)15x x 2)(21x x 2(222=-------=设原式91A 6A 91)6A (A 2-+=-+= )8x x 2)(7x 2)(4x ()8x x 2)(28x x 2()13A )(7A (222--+-=----=+-=

数学解题方法换元法详解

二、换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =x +1-x 的值域时,易发现x ∈[0,1],设x =sin 2α ,α∈[0,π2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x 、y 适合条件x 2+y 2=r 2(r>0) 时,则可作三角代换x =rcos θ、y =rsin θ化为三角问题。 均值换元,如遇到x +y =S 形式时,设x =S 2+t ,y =S 2 -t 等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和α∈[0,π2 ]。 例1. 实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求 1S m a x +1S min 的值。(93年全国高中数学联赛题) 【分析】 由S =x 2+y 2联想到cos 2α+sin 2 α=1,于是进行三角换元,设x S y S ==???? ?cos sin αα代入①式求S max 和S min 的值。 【解】设x S y S ==?????cos sin αα 代入①式得: 4S -5S ·sin αcos α=5 解得 S =10852-sin α ;

【初中】初中数学方程的解法及应用

【关键字】初中 第7讲方程组的解法及应用 ◆考点链接 1.理解二元一次方程(组)的定义;二元一次方程(组)的解的定义. 2.能灵活地运用代入消元法、加减消元法解二元一次方程组. 3.会解简单的三元一次方程组. *4.会解简单的二元二次方程组. 5.能利用方程组解应用题. 注:标有“*”号的是选讲内容. ◆典例精析 【例题1】已知的解,求a,b的值. 解题思路:根据解的定义可得到关于a,b的方程组. 答案:a=2,b=-3 【例题2】解方程组: (1) 解题思路:(1)题可先将方程组中的各方程化简,再用代入法或加减法解二元一次方程组.也可设x+y=a,x-y=b用换元法解.(2)题应首先由一次方程得x=2y再代入二次方程消去x. 答案:(1) 【例题3】求使方程组的解x、y都是正数m的取值范围. 解:由原方程组得,解得

4 000元.公司第一次改装了部分车辆后核算:?已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费的,公司第二次再改造同样多的车辆后,所有改造后的车辆每天的燃料费占剩下未改装车辆每天燃料费的. 问:(1)公司共改装了多少辆出租车??改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了多少? (2)若公司一次性将全部出租车改装,多少天后就可以从节约的燃料费中收回成本? 解题思路:抓住改装后的车辆每天的燃料费占未改装车辆每天燃料费的分率,建立方程组是解此题的关键. 解:设公司第一次改装了y辆出租车,?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降的百分数为x. 答:公司第一次改装了20辆出租车,改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了40%. (2)设公司一次性将全部出租车改装,m天后就可以从节约的燃料费中收回成本.则100×80×40%×m=4000×100,解得m=125. 答:125天后,就可以从节省的燃料费中收回成本. 【问题2】(枣庄)某水果批发市场香蕉的价格如下表: 张强两次共购买香蕉(第二次多于第一次),共付款264元,?请问张强第一次、第二次各购买香蕉多少千克? 解:设张强第一次购买香蕉x(kg),第二次购买香蕉y(kg),由题意,得040时,由题意,得 (不合题意,舍去) (3)当20

高中数学3(换元法)

第 7 讲 换元法(高中版) (第课时) 换元法? ??? ??? ???? ??? ???? ?? ??????? ????三角代换均值代换 整体代换策略化超越式为代数式化无理式为有理式化分式为整式降次复杂问题简单化非标准问题标准化 用途 重点:1.;2.;3.。 难点:1.;2.;3.;。 我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子。换元的关键是构造元和设元。 换元的实质是转化,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式。换元后要注意新变量的取值范围,它既不能缩小也不能扩大。 换元法在因式分解、化简求值、恒等式证明、条件等式证明、方程、不等式、函数、数列、三角、解析几何等问题中有广泛的应用。 换元的常用策略有:整体代换(有理式代换,根式代换,指数式代换,对数式代换、复变量代换)、三角代换、均值代换等。 整体代换:在条件或者结论中,某个代数式反复出现,那么我们可以用一个字母来代替它, 当然有时候要通过变形才能发现。例如解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角代换:如果把代数式换成三角式更容易求解时,可以利用代数式中与三角知识的联系进

行换元。例如求函数y =x +1-x 的值域时,易发现x ∈[0,1],设x =sin 2 α ,α∈[0, π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。又如变量x 、y 适合条件x 2 +y 2 =r 2 (r>0)时,则可作三角代换x =rcos θ、y =rsin θ化为三角问题。 均值代换:对两个类似的式子,可令其算术平均值为t 进行换元;如果遇到形如 S y x =+ 或 S y x =+2 2 这样的对称结构,可设 x =S 2+t ,y =S 2-t 或 t S x +=22 ,t S y +=2 2等等。 1.换元法在方程中的应用 我们知道,解分式方程时一般用“去分母”的方法,把分式方程化成整式方程来解;解无理方程一般用“两边乘方”的方法,将无理方程化成有理方程来解。然而利用这些常规的变形方法解题,有时会产生高次方程,解起来相当繁琐,甚至有时难于解得结果。对于某些方程,我们可以用新的变量来替换原有的变量,把原方程化成一个易解的方程。 例.(高二)如果关于x 的方程 0sin cos 22 2 4 =++θθx x 有相异的四实根,求θ的范围。 分析:此题已知条件的形式比较陌生,我们先看看能不能把它转化为我们所熟悉的形式。 令 t x =2 ,则原方程化为: 0sin cos 22 2=++θθt t ⑴ 使原方程有相异的四实根等价于使方程⑴有两不等正根。 由此得 ?? ? ? ?>>->-=?)4(0sin )3(0cos ) 2(0sin 4cos 4222θθθθ 即 ?? ? ??≠<>0sin 0cos 02cos θθθ 解之得 4 52432ππθππ+<<+ k k 且 )()12(J k k ∈+≠πθ 2.换元法在不等式中的应用 例.(高二)设对所于有实数x ,不等式x 2 log 241()a a ++2x log 221a a ++log 2()a a +142 2 >0 恒成立,求a 的取值范围。 分析:不等式中,log 241()a a +、 log 221a a +、log 2()a a +142 2 三项有何联系?对它们进 行变形后再实施换元法。 解: 设 log 2 21 a a +=t ,则 log 241()a a +=log 2812()a a +=3+log 2a a +12=3-log 221 a a +=3-t , log 2()a a +142 2 =2log 2 a a +12=-2t , 代入后原不等式简化为 (3-t )x 2 +2tx -2t>0 ,它对一切实数x 恒成立,

初中数学竞赛:换元法

初中数学竞赛:换元法 【内容提要】 1. 换元就是引入辅助未知数.把题中某一个(些)字母的表达式用另一个(些)字母的表达式来代换,这种解题方法,叫做换元法,又称变量代换法. 2.换元的目的是化繁为简,化难为易,沟通已知和未知的联系. 例如通过换元来降次,或化分式、根式为整式等.换元的关鍵是选择适当的式子进行代换. 3. 换元要注意新旧变元的取值范围的变化.要避免代换的新变量的取值范围被缩小;若新变量的取值范围扩大了,则在求解之后要加以检验. 4. 解二元对称方程组,常用二元基本对称式代换. 5. 倒数方程的特点是:按未知数降幂排列后,与首、末等距离的项的系数相等. 例如:一元四次的倒数方程ax 4+bx 3+cx 2 +bx+a=0. 两边都除以x 2,得a(x 2+2 1x )+b(x+x 1)+c=0. 设x+x 1=y, 那么x 2+21x = y 2-2, 原方程可化为ay 2+by+c -2=0. 对于一元五次倒数方程 ax 5+bx 4+cx 3+cx 2+bx+a=0, 必有一个根是-1. 原方程可化为 (x+1)(ax 4+b 1x 3+c 1x 2+b 1x+a)=0. ax 4+b 1x 3+c 1x 2+b 1x+a=0 ,这是四次倒数方程. 形如 ax 4-bx 3+cx 2+bx+a=0 的方程,其特点是: 与首、末等距离的偶数次幂项的系数相等,奇数次幂的系数是互为相反数. 两边都除以x 2, 可化为a(x 2+21x )-b(x -x 1)+c=0. 设x -x 1=y, 则x 2+21x =y 2+2, 原方程可化为 ay 2-by+c+2=0. 【例题】 例1. 解方程1112---++x x x =x.

初中数学中的解方程

基础知识点: 一、方程有关概念 1、方程:含有未知数的等式叫做方程。 2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。 3、解方程:求方程的解或方判断方程无解的过程叫做解方程。 4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。 二、一元方程 1、一元一次方程 (1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)(2)一元一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0) (3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。 (4)一元一次方程有唯一的一个解。 例题:.解方程:(1)(2) (3)关于x的方程mx+4=3x+5的解是x=1,则m= 。 2、一元二次方程 (1)一般形式: (2)解法:直接开平方法、因式分解法、配方法、公式法、十字相乘法求根公式 、解下列方程: (1)x2-2x=0;(2)45-x2=0; (3)(1-3x)2=1;(4)(2x+3)2-25=0. (5)(t-2)(t+1)=0;(6)x2+8x-2=0 (7 )2x2-6x-3=0;(8)3(x-5)2=2(5-x)(3)判别式△=b2-4ac的三种情况与根的关系 当时有两个不相等的实数根, 当时有两个相等的实数根 当时没有实数根。 当△≥0时有两个实数根 1、解下列方程: (1);(2);(3) 2、解下列方程: (1);(2) 3.若关于x的方程x2+2x+k=0有两个相等的实数根,则k满足 ( ) A.k>1 B.k≥1 C.k=1 D.k<1 4.关于的一元二次方程根的情况是() (A)有两个不相等实数根(B)有两个相等实数根 (C)没有实数根(D)根的情况无法判定 5.已知关于x的方程:有两个相等的实数根,求p的值。

8常用数学方法-配方法、待定系数法、换元法

第8讲 高考中常用数学的方法 ------配方法、待定系数法、换元法 一、知识整合 配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法. 配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可找到已知与未知之间的联系,促成问题的解决. 待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数. 换元法是一种变量代换,它是用一种变数形式去取代另一种变数形式,从而使问题得到简化,换元的实质是转化. 二、例题解析 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ). (A )32 (B )14 (C )5 (D )6 分析及解:设长方体三条棱长分别为x ,y ,z ,则依条件得: 2(xy +yz +zx )=11,4(x +y +z )=24.而欲求的对角线长为222z y x ++,因此需将对称式 222z y x ++写成基本对称式x +y +z 及xy +yz +zx 的组合形式,完成这种组合的常用手段是 配方法.故)(2)(2222xz yz xy z y x z y x ++-++=++=62-11=25 ∴ 5222=++z y x ,应选C . 例2.设F 1和F 2为双曲线14 22 =-y x 的两个焦点,点P 在双曲线上且满足∠ F 1PF 2=90°,则ΔF 1PF 2的面积是( ). (A )1 (B ) 2 5 (C )2 (D )5 分析及解:欲求||||2 1 2121PF PF S F PF ?= ? (1),而由已知能得到什么呢? 由∠F 1PF 2=90°,得20||||2221=+PF PF (2), 又根据双曲线的定义得|PF 1|-|PF 2|=4 (3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即

中考数学解方程(组)测试题

中考数学解方程(组)测试题 1.已知3是关于x 的方程12=-a x 的解,则a 的值是( ) A .5- B .5 C .7 D .2 【答案】B 2.下列方程组中是二元一次方程组的是( ) A .???=+=21y x xy B .?????=+=-31325y x y x C .?????=-=-51302y x z x D .?????=+=+73 25 y x y x 【答案】D 3.二元一次方程12=-y x 有无数多个解,下列四组值中不是.. 该方程的解的是( ) A .?? ? ??-==210 y x B .?? ?==11y x C .???==01y x D .???-=-=11y x 【答案】B 4.若? ? ?==21 y x 是关于x 、y 的二元一次方程13=-y ax 的解,则a 的值为( ) A .5- B .1- C .2 D .7 【答案】D 5.方程组? ? ?=+=-422 y x y x 的解是( ) A .???==21y x B .???==13y x C .? ??-==20y x D .???==02y x 【答案】D 6.下列方程中是关于x 的一元二次方程的是( ) A .2 21 0x x += B .20ax bx c ++= C .(1)(2)1x x -+= D .223250x xy y --= 【答案】C 7.用配方法解方程0522 =--x x 时,原方程应变形为( ) A .()612 =+x B .()922 =+x C .()612 =-x D .()922 =-x 【答案】C

8.一元二次方程21 04 x x -+ =的根( ) A .121122x x ==-, B .1222x x ==-, C .1212x x ==- D .1212 x x == 【答案】D 9.关于x 的方程2220x mx m +-=的一个根为1,则m 的值为( ) A .1 B .21 C .1或21 D .1或2 1- 【答案】D 10.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .210x += B .2210x x -+= C .210x x ++= D .2 210x x +-= 【答案】D 11.若关于x 的方程022=+-m x x 的一个根为1-,则另一个根为( ) A .3- B .1- C .1 D .3 【答案】D 12.已知12x x 、是方程2 630x x ++=的两个实数根,则 21 12 x x x x +的值等于( ) A .6- B .6 C .10 D .10- 【答案】C 13.二次函数2 2y x x k =-++的部分图象如图所示,则关于x 的一元 二次方程220x x k -++=的一个解13x =,另一个解=2x ( ) A .1 B .1- C .2- D .0 【答案】B 14.下面是四位同学解方程 1112=-+-x x x 过程中去分母的一步,其中正确的是( ) A .12-=+x x B .12=-x C .x x -=+12 D .12-=-x x 【答案】D 15.对于非零的两个实数a 、b ,规定11 a b b a ?= -.若1(1)1x ?+=,则x 的值为( ) A . 23 B .31 C .21 D .2 1- 【答案】D

数学方法之换元法篇

数学方法之换元法篇 通过换元法可以把未知问题化为已知问题,把抽象问题化为具体问题,把较复杂的问题化为简单问题. 通过问题化为具体问题,把较复杂的问题化为简单问题. 通过换元可以清楚的认识问题的实质,迅速寻找和选择解决问题的途径的方法. 根据数式的特点常见的换元法有:(1)整体换元;(2)平均数换元法;(3)比值换元法;(4)三角代换法;(5)不等量换元法;(6)根式换元法;(7)倒数换元法;(8)相反数换元法;(9)坐标换元法等等. 一、整体换元 例1:求函数x x x x y cos sin cos sin ++=的最大值. 解析:设 ?? t x x ?y x x t .21 cos sin ),22(cos sin 2-=?≤≤-+=则 ? t t t y .1)1(2 12122-+=+-=故 当.22 1 ,2max +== ??y ?t 时 二、三角换元 例2:求函数2 5x x y -+=的值域. 解析:令????x ],2 ,2[,sin 5π πθθ- ∈=

). 4 sin(10cos 5sin 5|cos |5sin 5π θθθθθ+=+=+?=y 则 因为 2 2 π θπ ≤ ≤- ,所以 .4 34 4 π π θπ ≤ + ≤- 所以1)4 sin(22≤+≤- πθ,得 10 )4 sin(105≤+ ≤-π θ 所以函数的值域为[10 ,5?- ]. 三、平均数换元法 例3: 已知 正 数 .4 25 )1)(1(:,1,≥++=+y y x x ???y x y x?求证满足 证明:由题意可知x ,y 的平均数为2 1,令x =21+θ,y =21-θ(-21<θ<2 1), 则 .4 11625 23) 1)(1()1)(1(22422θθθ-+ += ++=++xy y x y y x x 显然分子 的值大于等于1625 , 分母的值大于0小于等于4 1,从而得证. 四、比值换元 例4:已知x ,y ,z 满足x -1=3 2 21-= +z y ,试问实数x ,y ,z 为何值时,x 2+y 2+z 2达到最

初中数学十大思想方法-换元法

初中数学思想与方法——换元法 一、内容提要 1. 换元就是引入辅助未知数.把题中某一个(些)字母的表达式用另一个(些)字母的表达式来代换,这种解题方法,叫做换元法,又称变量代换法. 2. 换元的目的是化繁为简,化难为易,沟通已知和未知的联系. 例如通过换元来降次,或化分式、根式为整式等.换元的关鍵是选择适当的式子进行代换. 3. 换元要注意新旧变元的取值范围的变化.要避免代换的新变量的取值范围被缩小;若新变量的取值范围扩大了,则在求解之后要加以检验. 4. 解二元对称方程组,常用二元基本对称式代换. 5. 倒数方程的特点是:按未知数降幂排列后,与首、末等距离的项的系数相等. 例如:一元四次的倒数方程ax 4+bx 3+cx 2+bx+a=0. 两边都除以x 2,得a(x 2+ 21x )+b(x+x 1)+c=0. 设x+x 1=y, 那么x 2+21x = y 2-2, 原方程可化为ay 2+by+c -2=0. 对于一元五次倒数方程 ax 5+bx 4+cx 3+cx 2+bx+a=0, 必有一个根是-1. 原方程可化为 (x+1)(ax 4+b 1x 3+c 1x 2+b 1x+a)=0. ax 4+b 1x 3+c 1x 2+b 1x+a=0 ,这是四次倒数方程. 形如 ax 4-bx 3+cx 2+bx+a=0 的方程,其特点是: 与首、末等距离的偶数次幂项的系数相等,奇数次幂的系数是互为相反数. 两边都除以x 2, 可化为a(x 2+21x )-b(x -x 1)+c=0. 设x -x 1=y, 则x 2+21x =y 2+2, 原方程可化为 ay 2-by+c+2=0. 二、例题 例1. 解方程1112---+ +x x x =x. 解:设11-++x x =y, 那么y 2=2x+212-x . 原方程化为: y - 21y 2=0 . 解得 y=0;或y=2.

初一数学解方程讲课稿

初一数学解方程

行船问题:流水问题是研究船在流水中的行程问题,因此,又叫行船问题。 流水问题有如下两个基本公式:顺水速度=船速+水速 (1)逆水速度=船速-水速 (2)水速=船速-逆水速度 (3)船速=逆水速度+水速 (4) 船速=(顺水速度+逆水速度)÷2 (5) 水速=(顺水速度-逆水速度)÷2 练习: 1. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行 需要2小时,逆水航行需要3小时,求两码头的之间的距离? 2.一艘船从A港到B港顺流行驶,用了5小时;从B港返回A港逆流而行,用 了7.5小时,已知水流的速度是3千米/时,求船在静水中的速度。 3.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船3小时, 已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,若A、C两 地距离为2千米,求A、B两地之间的距离。 4.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时 50分钟,逆风飞行需要3小时,求两城市间距离。 5.一架飞机在两城之间飞行,风速为24千米/小时。顺风飞行需要2小时50 分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程。 数字问题数字问题是常见的数学问题。 一元一次方程应用题中的数字问题多是整数,要注意数位、数位上的数字、数 值三者间的关系:任何数=∑(数位上的数字×位权),如两位数ab=10a+b; 三位数abc=100a+10b+c。在求解数字问题时要注意整体设元思想的运用。 例. 一个三位数,三个数位上的和是17,百位上的数比十位上的数大7,个位 上的数是十位上的数的3倍。求这个数。 例13. 一个六位数的最高位上的数字是1,如果把这个数字移到个位数的右 边,那么所得的数等于原数的3倍,求原数。讲评:这个六位数最高位上 的数移到个位后,后五位数则相应整体前移1位,即每个数位上的数字被扩大 10倍,可将后五位数看成一个整体设未知数。设除去最高位上数字1后的5位 数为x,则原数为10+x,移动后的数为10x+1,依题意有 10x+1=10+x ∴x = 42857 则原数为142857

高中数学 换元法(附答案)

二、换元法(课时10) 一、知识提要 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化, 这叫换元法. 换元的方法有:局部换元、三角换元、均值换元等. 二、例题讲解 例1.(1)已知:x x f l g )12(=+,求)(x f . (2)设实数x 、y 满足0122=-+xy x ,则y x +的取值范围是_________. (3)方程2)22(log )12(log 122=+?++x x 的解集是______________. 解:(1))1)(1lg(2lg )(>--=x x x f ; (2)设k y x =+,则1044,0122 2≥?≥-=?=+-k k kx x 或1-≤k ; (3)令)12(log 2+x =t ,可得原方程的解集为}0{. 例2.(1)函数223 ) 1(x x x y +-=的值域是_____________. (2)已知:数列}{n a 的11=a ,前n 项和为n S ,241+=+n n a S .求}{n a 的通项公式. 解:(1)令θta n =x ,)2,2(π πθ-∈,则θθθθθθsi n )ta n 1(cos )ta n 1(ta n ta n 23223-=+-=y θθθθθθθθ4sin 412cos cos sin )sin (cos sin cos 22= ?=-=, ∴]4 1,41[-∈y . (2)由241+=+n n a S ,知)2(241≥+=-n a S n n ,

∴)2)((411≥-=--+n a a S S n n n n ,即)2)((411≥-=-+n a a a n n n ∴)2)(2(2211≥-=--+n a a a a n n n n ,令n n n a a b 21-=+,则)2(21≥=-n b b n n ∵11=a ,52=a ,∴31=b ,123-?=n n b ,即n n n a a 22311+?=-+. 两边除以12+n 得:432211=-++n n n n a a ,令n n n a c 2=,则有431=-+n n c c , ∴)13(41-=n c n ,代入n n n a c 2 =得: 22)13(-?-=n n n a . 例3.实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求m a x 1 s +m in 1s 的值.(93年全国高中数学联赛题) 方法1:设?????==α αsin cos s y s x 代入①式得: 4S -5S ·sin αcos α=5 解得 S =α 2sin 5810- ; ∵ -1≤sin2α≤1 ∴ 3≤8-5sin2α≤13 ∴ 1013≤1085-sin α≤103 ∴ m ax 1 s +m in 1s =310+1310=1610=85 方法2:由S =x 2+y 2,设x 2=2s +t ,y 2=2 s -t ,t ∈[-S 2,S 2], 则224t s xy -±=代入①式得:4S ±522 4 t s -=5, 移项平方整理得 100t 2+39S 2-160S +100=0 . ∴ 39S 2-160S +100≤0 解得:1013≤S ≤103 ∴ m ax 1 s +m in 1s =310+1310=1610=85

初中数学—换元法

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 38文档收集于互联网,如有不妥请联系删除. 知识点拨 【知识提要】 1. 方程中变量的换元; 2. 三角换元; 3. 特殊换元。 【基本题型】 1. 解超过二次的方程,或解某些特殊的根式方程; 2. 证明某些不等式,或者某些量的取值范围; 3. 求某些难以直接求出来表达式的值。 【解题技巧】 1. 遇到可以整体代入的时候,可以考虑换元; 2. 解特殊的高次方程的时候,可以考虑换元; 3. 有时候甚至可以联想三角函数。 快乐热身 【热身】已知若有23y x =+成立,则有恒等式2223x x ay by c ++=++成立。求abc 的值。 【解析】分析 直接用待定系数法会很繁琐。有没有简单一些的方法呢? 解 因为23y x =+,所以32y x -=。 所以,22239232424y y y x x y -??++=+=-+ ??? 。 因此,119942432 abc ??=?-?=- ???。 热身完了,我们开始今天的课程吧! 例题精讲 【例 1】 求1 1111 11 1...++ ++(无穷多个)的值。 【解析】 分析 连分数化简为分数从最底下开始,但是这个是无限的,应该怎么办呢? 解 设原式x =,则11x x =+,也就是说210x x --=。 第五讲 换元法

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 39文档收集于互联网,如有不妥请联系删除. 解得12x += (负根舍去)。 说明 无限连分数和无限小数一样,都是极限。关于极限的概念,以后会学到。 【例 2】 解关于x 的一元四次方程:43210x ax bx ax ++-+=。 【解析】 分析 因为方程次数高,所以应当设法降次。 解 观察方程的系数,具有对称的特点,所以应当使用换元法。 显然0x =不是原方程的解,所以除以2x 后得到:2210a x ax b x x ++-+=。 设1y x x =- ,则有220y ay b +++=。 248a b ?=--。 ⑴若0?> ,则方程的解为1y = 2y =。 代回1y x x =- 得到1,2x = ,3,4 x =。 ⑵若0?=,则方程的解为 1,22a y =-,于是有1,3x = 2,4 x =。 ⑶若0?<,则方程无解。 【例 3】 1 =。 【解析】 分析 方程中含有三次根式,直接解出现困难,可以考虑换元。 解 a =b =,则有 将第一个式子立方后得到33 3()1a b ab a b +++=,再根据第二个式子,有 3()3ab a b +=,所以1ab =。 这样,a 和b 是关于y 的方程2 10y y -+=的两个根。但是,因为方程2 10y y -+=没有实根,所以这样的a 和b 不存在,也就是说原方程没有实根。 说明 如果不用换元法,而是直接立方,会出现这样的情况: 1=,(1)(3)1x x --=, 2440x x -+=,1,22x =。 代回去后发现是增根,但是涉及三次根式的题目为何会产生增根呢?以后到了高中学了更多知识的时候就会知道了。 【拓展】设x 【解析】 分析 同样地,可以用换元法将根式变为整式,再降次,求判别式。 解 a = b =t =。则有 331 a b t a b +=??+=?,将第一个式子立方后得到3333()a b ab a b t +++ =,再根据第二个式子,有 33 ()1ab a b t +=-,所以313t ab t -=。(注意,0t =>) 这样,a 和b 是关于y 的方程32103t y t t --+ =的两个根。其判别式321403t t t -?=-?≥,所以340t -≤,解得t 0t <,原方程就有解。

初中数学中的解方程

代数部分 第三章:方程与方程组 基础知识点: 一、方程有关概念 1、方程:含有未知数的等式叫做方程。 2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。 3、解方程:求方程的解或方判断方程无解的过程叫做解方程。 4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。 二、一元方程 1、一元一次方程 (1)一元一次方程的标准形式:ax+b=0(其中x 就是未知数,a 、b 就是已知数,a ≠0) (2)一元一次方程的最简形式:ax=b(其中x 就是未知数,a 、b 就是已知数,a ≠0) (3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项与系数化为1。 (4)一元一次方程有唯一的一个解。 例题:、解方程: (1) 3131=+- x x (2)x x x -=--+22 1 32 解: 解: (3)【05湘潭】 关于x 的方程mx+4=3x+5的解就是x=1,则m= 。 2、一元二次方程 (1) 一般形式:()002 ≠=++a c bx ax (2) 解法:直接开平方法、因式分解法、配方法、公式法 求根公式()002 ≠=++a c bx ax () 042422 ≥--±-= ac b a ac b b x ①、解下列方程: (1)x 2-2x =0; (2)45-x 2=0; (3)(1-3x )2=1; (4)(2x +3)2-25=0、 (5)(t -2)(t +1)=0; (6)x 2+8x -2=0 (7 )2x 2-6x -3=0; (8)3(x -5)2=2(5-x ) 解: ② 填空: (1)x 2+6x +( )=(x + )2; (2)x 2-8x +( )=(x - )2; (3)x 2+2 3 x +( )=(x + )2 (3)判别式△=b 2-4ac 的三种情况与根的关系 当0>?时有两个不相等的实数根 , 当0=?时有两个相等的实数根 当0

小学数学 换元法.教师版

对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.” 三、换元思想 解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简. 【例 1】计算: 1111111111 (1)()(1)() 2424624624 ++?++-+++?+ 【考点】换元法【难度】2星【题型】计算 【解析】令 111 1 246 a +++=, 111 246 b ++=,则: 原式 11 ()() 66 a b a b =-?-?- 11 66 ab b ab a =--+ 1 () 6 a b =- 11 1 66 =?= 【答案】1 6 【巩固】 11111111111111 (1)()(1)() 23423452345234 +++?+++-++++?++ 【考点】换元法【难度】2星【题型】计算 【解析】设 111 234 a=++,则原式化简为: 111 1(1 555 a a a a + (+)(+)-+)= 【答案】1 5 【巩固】计算: 621739458739458378621739458378739458 126358947358947207126358947207358947????????++?++-+++?+ ? ? ? ????????? 【考点】换元法【难度】2星【题型】计算 【解析】令621739458 126358947 a ++=; 739458 358947 b +=, 原式 378378 207207 a b a b ???? =?+-+? ? ? ???? ()3786213789 207126207 a b =-?=?= 【答案】9例题精讲 教学目标 换元法

相关文档
最新文档