信号检测在雷达系统方面应用

信号检测在雷达系统方面应用
信号检测在雷达系统方面应用

信号检测与估计理论在雷达系统方面的应用

摘要:随着互联网应用的普及及发展,信号的检测与估计技术的应用也越来越受到人们的

关注。雷达中的信号检测是一个综合性问题,涉及多个学科,多领域知识,所以它是科学领域最为关注的问题。近年来已经开展了大量雷达系统信号实现方法相关的研究课题,其中回波信号的检测和估计是最为重要的方面。本论文就是针对雷达信号检测和估计的精确性问题加以展开的。

关键词:雷达系统,信号估计,信号检测

第一章雷达系统

1.1起源和发展

早期雷达用接收机、显示器并靠人眼观察来完成信号检测和信息提取的工作。接收机对目标的回波信号进行放大、变频和检波等,使之变成能显示的视频信号,送到显示器。人们在显示器的荧光屏上寻找类似于发射波形的信号,以确定有无目标存在和目标的位置。随着雷达探测距离的延伸,回波变弱,放大倍数需要增加。于是,接收机前端产生的噪声和机外各种干扰也随着信号一起被放大,而成为影响检测和估计性能的重要因素。这时,除了降低噪声强度之外,还要研究接收系统频带宽度对发现回波和测量距离精度的影响。这是对雷达检测理论的初期研究。后来,人们开始在各种干扰背景中对各种信号进行检测和估计的理论研究,其中有些结论,如匹配滤波理论,关于滤波、积累、相关之间等效的理论,测量精度极限的理论,雷达模糊理论等,已在实际工作中得到应用.

1.2雷达的概述

雷达的英文名字是radar,是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。

雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。

为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。根据电磁波的传播速度,可以确定目标的距离为:S=CT/2

其中S:目标距离;T:电磁波从雷达到目标的往返传播时间;C:光速

1.3雷达的工作原理

雷达是利用目标对电磁波的反射(或称为二次散射)现象来发现目标并测定其位置的空间任一目标所在位置可用下列三个坐标来确定:1>目标的斜距R;2>方位角a;3>仰角B。同时也就是说根据雷达接收到的信号检查是否含有目标反射回波,并从反射回波中测出有关目标状态的数据。

第二章雷达中的信号检测

雷达的基本任务是发现目标并测定其坐标通常目标的回波信号中总是混杂着噪声和各类干扰而噪声和各种干扰信号均具有随机持性在这种条件下发现目标的问题属于信号检测的范畴信号检测理论就是要解决判断信号是否存在的方法及其最佳处理方式。

2.1.雷达信号的最佳检测及基本概念

检测系统的任务是对输入信号进行必要的处理和运算然后根据系统的输出来判断输入是否有信号存在它可用门限检测来描述。

检测过程中,由于门限取值的不同产生的错把噪声检测成了目标,这类错误称之为虚警,出现的概率称为虚警概率;反之,错把信号当成了噪声,称为漏检或漏警,相应出现概率为漏检概率。

门限的确定与选择的最佳准则有关。在信号检测中常采用的最佳准则有贝叶斯准则最小错误概率准则最大后验概率准则极大极小化准则以及纽曼—皮尔逊准则等。

对于雷达信号的检测因预先并不知道目标出现的概率也很难确定—次漏检所造成的损失所以通常选择的准则是纽曼—皮尔逊准则即在保持某一规定的虚警概率下使漏检概率达到最小或使正确检测概率达到最大在这一准则约束下结合信号的概率密度函数概念我们可用推得以下结论:

雷达信号的最佳检测系统最佳接收系统是由一个似然比计算器和一个门限判决器组成,不同的准则体现在门限值不同。其中,似然比定义为:有信号时有噪声时的概率密度函数之比。并且对于相加性平稳高斯白噪声时的似然比计算器的核心就是匹配滤波器。

2.2雷达信号检测技术

雷达检测的背景随机过程主要有两种:①由天线接收进来的和由接收机前端产生的噪声,是功率谱密度为常数的平稳随机过程,称为白噪声;②发射信号受到带有随机起伏的物体,如地物、云雨、箔条等的反射而造成的杂波,由于起伏有相关性,其功率谱密度不是常数,称为非白噪声或色噪声。人为干扰依相对谱宽可分别归入上述两种。

一般检测理论所讨论的检测信号有三种:①完全已知的确定信号;②含未知参量的确定信号;③随机信号。雷达检测中,最简单的情况是理想点目标的反射信号,信号

幅度和相位均属未知。这就是上述第二种信号,称为不起伏信号。对于带有起伏的复杂目标,则要考虑随机起伏的相关性和分布。在脉冲搜索雷达中,着重研究各重复周期间完全不相关的和各天线扫描次数间完全不相关的两种情况,即快起伏信号和慢起伏信号。

在任一种噪声背景中发现任一种信号的检测系统,在原理上都可以划分成两个部分:①对接收到的可能含有回波的信号进行处理,获得统计量。这种处理可以是线性的,也可以是非线性的。②将所得统计量同一个门限电平相比较,按其大于还是小于门限电平作出有无目标的判断。这个门限可以是不变的,也可以是随信号性质而自动调整的。还有一种采用两个门限的序列检测法,即当统计量大于上门限时,判为有目标;当统计量小于下门限时,判为无目标;而当统计量处于两门限之间时,增加信号持续观察时间以获得新的统计量进行判决。

雷达检测的质量可用两种概率值表示。①发现概率P D:在有目标条件下系统报出“有目标”的概率,概率越大越好;②虚警概率P F:在无目标条件下系统报出“有目标”的概率,概率越小越好。如果检测系统的处理部分仅是线性的,输出信号-噪声比同上述概率具有直接的关系(图1)。对未知相位的单个脉冲进行检测时,若要保证

P D=0.9,P F =10-6,则信号峰值应比噪声均方根值强12倍(即16分贝)。

最佳线性处理由于输入信号和噪声的频谱形状不同,处理电路选择适当的频率特性,可使每个回波的输出信号-噪声比达到最大,从而使检测性能最佳。这样的线性电路称为最佳滤波器。白噪声中使信号-噪声比最大的最佳滤波器,具有同信号频谱共轭相似的频率特性,其脉冲响应是信号的共轭镜像,通常称为匹配滤波器。这时,最大的输出信-噪功率比等于输入信号能量同输入噪声功率谱密度之比,而与信号形状无关。色噪声中使信号-噪声比最大的最佳滤波器,可以用设想使色噪声变成白噪声(即所谓“白化”)的方法推导求得。它的频率特性应反比例于色噪声功率谱密度,正比例于信号频谱共轭。

对于接收信号,采用去多普勒频移后再同发射延迟波形求互相关(即相乘后积分)的方法,可以获得相当于匹配滤波的效果。相关接收适用于复杂的编码调制波形;而

滤波接收适用于线性调频波形。

当雷达接收到的回波脉冲数目不止一个时,可以利用各次信号中回波相关而噪声不相关的性质进行相加,以提高信-噪比。这种相加是线性的,称为积累。只要系统中没有非线性,对单个脉冲波形匹配滤波后积累N次完全等效于对N个脉冲波形匹配滤波的效果。

非线性处理早期雷达用以将中频信号变成视频信号的检波器,只检取幅度信息而丢弃相位信息,称为非相参检波,又称包络检波或幅度检波。这类检波的本质是非线性的。当输入信-噪比在零分贝以下,输出信-噪比会正比例于输入信-噪比的平方,从而破坏在检波后积累的效果,相当于引入了检波造成的信-噪比损失。现代雷达大多采用两个相参检波器,它们的参考信号相位差90°(图2)。两路视频信号代表复包络的实部与虚部,因而既含有幅度信息又含有相位信息。这种不丢失相位信息的方法称为正交视频处理或I、Q通道处理,又称为零中频处理。这种处理可以保证两通道内对视频信号的处理仍为线性。

恒虚警率在假设噪声背景分布已知的条件下设计出质量最好的检测方法,称为参量型最佳检测。采用参量检测常会使虚警概率随噪声背景的改变(如强度变化或分布不符假设条件)而变化。这不仅影响检测性能,更严重的是会使后面的数据处理机负载过大。保持检测系统虚警率恒定的措施有自适应门限法、非线性接收法和非参量型检测三类。①自适应门限法:假设噪声分布是若干个未知参数的函数,用被测单元前后的若干单元(称为邻近单元)中的数据估计出参数,用以确定维持虚警率不变所需要的门限值。实际工作时自动根据输入噪声的变化来调整门限以达到虚警率恒定的要求,这类方法中最简单的是邻近单元平均法,就是将若干邻近单元中的噪声数据平均值当作检测门限。②非线性接收法:利用接收机幅度特性上的非线性,使接收增益随输入噪声背景电平变化,以使输出起伏的均方根值不变,从而维持恒定的虚警率。这类方法有许多种,常见的有:对数特性加快速时间常数电路或脉冲展宽电路;宽-限-窄电路,即在宽频带中频放大器后接硬限幅器,再接窄频带中频放大器使噪声电平维

持一定。③非参量型检测:设输入噪声分布未知,仅作一些很弱的假设(如对称性、非负性、样本独立性等),通过非线性变换把无回波(仅有噪声)的信号变成服从已

知分布律的随机信号,然后对可能有回波的信号利用分布的变化检测出目标。这种检测器按输入端数目分为单输入和双输入两种,按变换的形式又分为秩值检测、符号检测、正态计分检测和极性重合检测等。

信息提取从雷达接收到的信号中可以获取有关目标状态的许多信息,通常有:①由时间延迟确定的距离数据;②由多普勒频移确定的径向速度数据;③由天线波束状态确定的角度数据。由于信号中混有噪声干扰,测得的数据必然同真实数据之间存在随机误差和系统误差。统计参数估计理论给出随机误差均方根值的极限公式,称为克莱莫-罗不等式。按此式即可求出测量各种数据的极限精度。

距离信息根据目标反射回波相对于发射信号的时间延迟,确定目标相对于雷达天线之间的距离。在脉冲雷达中,测量时延的方法主要有前后沿门限法和门波求积法两种。①前后沿门限法:把混有噪声的回波信号同门限电平相比较,利用回波前沿和后沿同门限相交的两点时刻平均值作为相对时延;②门波求积法:把混有噪声的回波信号同一个门波信号相乘后求面积。当门波对准目标反射回波时面积应为最大,利用面积值最大时的门波位置作为相对时延的测量值。门波求积法的精度优于前后沿门限法。测量时延的极限均方根误差为

式中ρ为信噪电压比;墹f为信号均方根频带宽度,即

s(f)为信号复包络的频谱(已按中心频率为零归一化)。

速度信息根据目标反射回波频谱相对于发射信号频谱的多普勒频移来确定目标同雷达天线之间的距离变化率(即径向速度)。在脉冲雷达中,测量多普勒频移的方法主要有锁频法和测向差分法两种。①锁频法:用锁频回路或锁相回路产生一个频率等于标准中频加目标多普勒频移的正弦波,测量正弦波的频率即可确定目标回波的多普勒频移;②测相差分法:用正交视频通道的两路信号值求出各周期的相位,测量相邻周期之间的相位差即可确定目标回波的多普勒频移。测量多普勒频移的极限均

方根误差为,式中ρ为信-噪电压比;墹t为信号均方根时间宽度,即

s(t)为信号复包络(已按中心时间为零归一化)。

角度信息测量目标回波入射方向角的方法有两类:①天线波束是运动的,如螺旋扫描,在方位上连续扫描或俯仰。根据回波同运动之间的关系确定角度数据,称为波束扫描法。②具有多个相对固定的天线波束,如多个馈源形成的重叠波束。根据同一时刻不同波束中收到的回波之间的强弱来确定角度数据,称为单脉冲法。测量角

度的极限均方根误差为

,式中ρ为信-噪电压比;λ为波长;墹ɑ为天线

一维有效均方根长度。

第三章 雷达信号估计

3.1杂波处理

为了消除地物杂波的影响通常采用动目标显示装置,但是动目标显示技术是利用目标具有一定的径向速度来区分目标与地物的如果目标的径向速度很小或为零例如飞机对雷达作切线飞行那就无法利用速度区分在这种情况下要能检测出目标仍然只能采用恒虚警率处理。

地物杂波和气象海浪杂波不同它沿距离或方位的变化十分剧烈使单元平均恒虚警率电路难于应用但是同距离方位单元里的地物杂波它的振幅随时间的起伏是很小的因而可采用“时间单元”平均恒虚警率的处理方法在时间上取平均值估值这时将 雷达周围的二维平面分成许多方位距离单元把方位距离单元的接收信号存入一个存储器中每个存储单元对应一个方位距离单元并且随着天线的扫描每个单元存储的信号进行递推更新这就得到幅度杂波图。

3.2运动目标的多普勒效应

多普勒效应是指当发射源和接收者之间有相对径向运动时接收到的信号载频相对于发射信号的载频产生一个频移的现象

Fd =λVr 2

fd ——多卜勒频移Hz ;

Vr ——雷达与目标之间的径向速度(m/s);

λ——载波波长(m)

最大不模糊多普勒频移为f dmax==fr λmax

2V

总结: 通过这次的学习不仅加固了信号检测和估计只是方面的学习,更是对目前雷达系统的发展有很深的认识。信号是信息的载体,信息的传输时离不开信号的,所以如何用信号更好更及时的传输有效信息是当前最为关注的问题,也是科学界一直研究有问题。为了实现信息的及时有效性,信号检测技术的改进还是需要在实验中加以研究和探讨的。总之今后在相关方面加以认真学习,努力奋斗!单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善

教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。教育革命的对策是手脑联盟,结果是手与脑的力量都可以大到不可思议。

信号检测论(再认)

不同材料对被试计算信号检测的辨别力的影响 1、引言 信号检测论是信号量论的一个重要分支,1954年,美国心理学W.P.Tanner 和J.A.Swets把它应用于人的知觉过程,使心理物理学方法发展到一个新的阶段。而现在已扩展到记忆、思维、个性等领域。最早把SDT用于再认实验的是Egar,在1958年提出的。 2.实验目的 2.1了解信号检测论可以用于再认实验; 2.2学会计算信号检测论的辨别力指标d′和反应偏向指标β和C。 3实验方法 3.1被试 被试为本小组成员,两名男生,两名女生 3.2仪器与材料 EP2004型心理实验台及EPT801速示仪,具体图形卡片、抽象图形卡片、文字图形卡片各50张。 3.3实验程序 3.3.1将主机与附机EPT801速示仪连接好,打开电源,按<运行/待机>键。 3.3.2主试根据显示屏内容设置:联机模式→信号检测论→学号→姓名→A视场(2秒) →间隔(7秒) →测试(25),主试把具体卡片中的“旧”卡片抽出随机排列好,把第1张插入A视场,讲完指导语后,按<确定>键,主机背后绿色指示灯亮,提示被试实验开始。实验时屏幕上“>”指着间隔时,主试依次将“旧”卡片插入A视场,直至测试暂停,鸣响。主试将看过的卡片与没有看过的“新”卡片混合,按卡片编号排列好,选再做一次设置中次数改为50次,其余不变,再次向被试呈现,直至做满50次,鸣响,黄色指示灯亮,第1材料实验结束。稍事休息3分钟,主试选再做一次,按上述相同方法测试抽象卡片和词卡片。 3.3.3被试见绿色指示灯后,眼睛靠近观察窗口,手按附机上的《确定》键,测试即开始,当同样材料第二次呈现时,被试根据指导语作出反应,直至做满50次,鸣响,黄色指示灯亮,实验结束。 4实验结果 4.1计算辨别力指标d′和反应偏向指标β和C。

信号检测论

Guangdong University of Education 实验报告 名称:信号检测论 课程名称:实验心理学 学号: 姓名: 年级: 专业名称:应用心理学

实验名称:信号检测论 摘要:本实验的目的在于通过重量鉴别,学习信号检测论实验的有无法;考察不同先定概率下被试的辨别力和判定标准;绘出受试者的操作特性曲线。 引言 随着阈限理论和近代科学技术的发展,一种新的心理物理法——信号检测论诞生了。信号检测论(或讯号侦察论、讯号觉察论)(signal detectiontheory,简称SDT)乃是信息论的一个分支,研究的对象是信息传输系统中信号的接受部分。它最早用于通讯工程中,即借助于数学的形式描述“接受者”在某一观察时间将掺有噪音的信号从噪音中辨别出来。 信号检测论的形成有一个发展过程。早在20世纪20年代末,就有人对信息传输的理论进行了讨论,引进信息量的概念,并取得初步的结果。到了40年代初,人们便清楚地认识到,由于接受的信息带有某种随机的性质,因此,系统本身的结构也必须适应于它所接收和处理的信息这种统计性质。1941~1942年,人们开始将统计方法应用于通讯系统研究中,从而建立了最佳线性滤波理论——维纳滤波理论(Wiener’s filter theory)。从最小均方差准则出发,得出了对线性滤波器最佳传输函数的要求。1943年,人们在雷达技术发展需要的推动下,在研究如何提高雷达检测能力时,提出了一种最佳线性滤波理论。人们在同噪音进行斗争中总结出来的各种方法,实质上都是有意识地利用信号与噪音的统计特性来尽可能抑制噪音,从而提取信号的。1946~1948年建立了基础信息论和潜在抗干扰理论。后者是用概率方法研究高斯噪音中接收信号的理想接收机问题,将那种能够使错误判断概率为最小的接收机称为理想接收机。申农(Shannon,1948)便认识到对消息的事先确定性这一点恰恰是在通信的对象的基础上建立起来了信息论的基础理论。几年以后,于1950年人们开始把信息量概念引用于雷达信号检测中来,提出一系列综合最佳雷达系统的新观念。其基本特点在于,理想接收机应当能从信号与噪音混合波形中提取最多的有用信号。从50年代起,人们在广泛运用现代数学工具基础上,建立了比较系统的信号检测理论。 信号检测理论除了对雷达、声纳、通讯、自动控制等技术的发展奠定了理论基础外,目前还在心理学、地震学、天文学、生物物理学以及其他科学领域里获得了广泛地应用和发展。同时,信号检测论在这些学科中的应用,又反过来推动了信号检测论不断完善和发展。 那么信号检测论为什么能用于心理学中呢?这是由于人的感官、中枢分析综合过程可看作一个信息处理系统(或讯息处理系统),因此有可能应用信号检测论中的一些概念和方法对它进行分析。信号检测论还可以从另一个侧面加深人们对感受系统的理解。通常把刺激变量看作是信号,把刺激中的随机物理变化或感知处理信息中的随机变化看作是噪音。这样,人作为一个接收者对刺激的辨别问题便可等效于一个在噪音中检测信号的问题。显然噪音的统计特性确定后,便可应用信号检测论处理心理学实验结果。于是,坦纳和斯韦茨(Tanner

雷达信号检测

科研报告 课程名称:信号检测与估值 题目:匹配滤波器在雷达信号中的应用院(系):信息与控制工程学院 专业方向:信号与信息处理 姓名:许娟 学号:1508210675 任课教师:毛力 2015 年1月14日

匹配滤波器在雷达信号中的应用 摘要 本文介绍了雷达系统及有关匹配滤波器的主要内容,着重介绍与分析了雷达系统信号处理的脉冲压缩(匹配滤波)现代雷达技术,雷达系统通过脉冲压缩解决解决雷达作用距离和距离分辨力之间的矛盾,最后实现对雷达目标的检测。关键词:雷达系统脉冲压缩

Abstract This paper introduces the radar system and the main content of the matched filter, this paper introduces and analyses emphatically the signal processing of the pulse compression radar system (matched filtering) of modern radar technology, by pulse compression radar system to solve the contradiction between the radar range and distance resolution,finally the realization of the radar target detection. Keywords:pulse compression radar system

微弱信号相关检测

微弱信号相关检测 前言 随着现代科学研究和技术的发展,人们越来越需要从强噪声中检测出有用的微弱信号,于是逐渐形成了微弱信号检测这门新兴的科学技术学科,其应用范围遍及光学、电学、磁学、声学、力学、医学、材料等领域。微弱信号检测技术是利用电子学、信息论、计算机及物理学的方法,分析噪声产生的原电子学、信息论、计算机及物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点与相关性,检测被噪声淹没的微弱有用信号,或用一些新技术和新方法来提高检测系统输出信号的信噪比,从而提取有用信号。微弱信号检测所针对的检测对象,是用常规和传统方法不能检测到的微弱量。对它的研究是发展高新技术,探索及发现新的自然规则的重要手段,对推动相关领域的发展具有重要的应用价值。 目前,微弱信号检测的原理、方法和设备已经成为很多领域中进行现代科学技术研究不可缺少的手段。显然,对微弱信号检测理论的研究,探索新的微弱信号检测方法,研制新的微弱信号检测设备是目前检测技术领域的一大热点。 1.概述 微弱信号是测量技术中的一个综合性技术分支,它利用电子学,信息论和物理论的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检测并恢复被背景噪声所掩盖的微弱信号,微弱信号的检测重点是如何从强噪声中提取有用信号,探测运用新技术和新方法来提高检测系统中的信噪比。 在检测淹没在背景噪声中的微弱信号时,必须对信号进行放大,然而由于微弱信号本身的涨落,背景和放大器噪声的影响,测量灵敏度会受到限制。因此,微弱信号的检测有以下三个特点:(1)需要噪声系数尽量小的前置放大器,并根据源阻抗与工作频率设计最佳匹配(2)需要研制适合微弱信号检测原理并能满

微弱信号检测技术 练习思考题

《微弱信号检测技术》练习题 1、证明下列式子: (1)R xx(τ)=R xx(-τ) (2)∣ R xx(τ)∣≤R xx(0) (3)R xy(-τ)=R yx(τ) (4)| R xy(τ)|≤[R xx(0)R yy(0)] 2、设x(t)是雷达的发射信号,遇目标后返回接收机的微弱信号是αx(t-τo),其中α?1,τo是信号返回的时间。但实际接收机接收的全信号为y(t)= αx(t-τo)+n(t)。 (1)若x(t)和y(t)是联合平稳随机过程,求Rxy(τ); (2)在(1)条件下,假设噪声分量n(t)的均值为零且与x(t)独立,求Rxy(τ)。 3、已知某一放大器的噪声模型如图所示,工作频率f o=10KHz,其中E n=1μV,I n=2nA,γ=0,源通过电容C与之耦合。请问:(1)作为低噪声放大器,对源有何要求?(2)为达到低噪声目的,C为多少? 4、如图所示,其中F1=2dB,K p1=12dB,F2=6dB,K p2=10dB,且K p1、K p2与频率无关,B=3KHz,工作在To=290K,求总噪声系数和总输出噪声功率。 5、已知某一LIA的FS=10nV,满刻度指示为1V,每小时的直流输出电平漂移为5?10-4FS;对白噪声信号和不相干信号的过载电平分别为100FS和1000FS。若不考虑前置BPF的作用,分别求在对上述两种信号情况下的Ds、Do和Di。 6、下图是差分放大器的噪声等效模型,试分析总的输出噪声功率。

7、下图是结型场效应管的噪声等效电路,试分析它的En-In模型。 8、R1和R2为导线电阻,R s为信号源内阻,R G为地线电阻,R i为放大器输入电阻,试分析干扰电压u G在放大器的输入端产生的噪声。 9、如图所示窄带测试系统,工作频率f o=10KHz,放大器噪声模型中的E n=μV,I n=2nA,γ=0,源阻抗中R s=50Ω,C s=5μF。请设法进行噪声匹配。(有多种答案) 10、如图所示为电子开关形式的PSD,当后接RC低通滤波器时,构成了锁定放大器的相关器。K为电子开关,由参考通道输出Vr的方波脉冲控制:若Vr正半周时,K接向A;若Vr 负半周时,K接向B。请说明其相敏检波的工作原理,并画出下列图(b)、(c)和(d)所示的已知Vs和Vr波形条件下的Vo和V d的波形图。

现代雷达信号检测及处理

现代雷达信号检测报告

现代雷达信号匹配滤波器报告 一 报告的目的 1.学习匹配滤波器原理并加深理解 2.初步掌握匹配滤波器的实现方法 3.不同信噪比情况下实现匹配滤波器检测 二 报告的原理 匹配滤波器是白噪声下对已知信号的最优线性处理器,下面从实信号的角度 来说明匹配滤波器的形式。一个观测信号)(t r 是信号与干扰之和,或是单纯的干扰)(t n ,即 ? ??+=)()()()(0t n t n t u a t r (1) 匹配滤波器是白噪声下对已知信号的最优线性处理器,对线性处理采用最大信噪比准则。以)(t h 代表线性系统的脉冲响应,当输入为(1)所示时,根据线性系统理论,滤波器的输出为 ?∞ +=-=0)()()()()(t t x d h t r t y ?τττ (2) 其中 ?∞ -=0 0)()()(τττd h t u a t x , ?∞ -=0 )()()(τττ?d h t n t (3) 在任意时刻,输出噪声成分的平均功率正比于 [ ] ??∞∞=?? ? ???-=0 20202 |)(|2)()(|)(|τττττ?d h N d h t n E t E (4) 另一方面,假定滤波器输出的信号成分在0t t =时刻形成了一个峰值,输出信 号成分的峰值功率正比于 2 02 2 0)()()(? ∞ -=τττd h t u a t x (5) 滤波器的输出信噪比用ρ表示,则

[ ] ?? ∞ ∞ -= = 2 02 02 2 20|)(|2)()(| )(|) (τ ττ ττ?ρd h N d h t u a t E t x (6) 寻求)(τh 使得ρ达到最大,可以用Schwartz 不等式的方法来求解.根据Schwartz 不等式,有 ??? ∞ ∞ ∞ -≤-0 20 2 02 0|)(||)(|)()(τττττ ττd h d t u d h t u (7) 且等号只在 )()()(0*τττ-==t cu h h m (8) 时成立。由式(1)可知匹配滤波器的脉冲响应由待匹配的信号唯一确定,并且是该信号的共轭镜像。在0=t t 时刻,输出信噪比SNR 达到最大。 在频域方面,设信号的频谱为 ,根据傅里叶变换性质可知,匹配滤 波器的频率特性为 (9) 由式(9)可知除去复常数 c 和线性相位因子 之外,匹配滤波器的频率 特性恰好是输入信号频谱的复共轭。式 (2)可以写出如下形式: (10) (11) 匹配滤波器的幅频特性与输入信号的幅频特性一致,相频特性与信号的相位谱互补。匹配滤波器的作用之一是:对输入信号中较强的频率成分给予较大的加权,对较弱的频率成分给予较小的加权,这显然是从具有均匀功率谱的白噪声中过滤出信号的一种最有效的加权方式;式(11)说明不管输入信号有怎样复杂的非线性相位谱,经过匹配滤波器之后,这种非线性相位都被补偿掉了,输出信号仅保留保留线性相位谱。这意味着输出信号的各个频率分量在时刻达到同相位,同相相加形成输出信号的峰值,其他时刻做不到同相相加,输出低于峰值。 匹配滤波器的传输特性 ,当然还可用它的冲激响应 来表示,这时有:

微弱信号检测放大的原理及应用

《微弱信号检测与放大》 摘要:微弱信号常常被混杂在大量的噪音中 ,改善信噪比就是对其检测的目的,从而恢复信号的幅度。因为信号具备周期性、相关性,而噪声具有随机性,所以采用相关检测技术时可以把信号中的噪声给排除掉。在微弱信号检测程中,一般是通过一定的传感器将许多非电量的微小变化变换成电信号来进行放大再显示和记录的。由于这些微小变化通过传感器转变成的电信号也十分微弱,可能是VV甚至V或更少。对于这些弱信号的检测时,噪声是其主要干扰,它无处不在。微弱信号检测的目的是利用电子学的、信息论的和物理学的方法分析噪声的原因及其统计规律研究被检测量信号的特点及其相干性利用现代电子技术实现理论方法过程,从而将混杂在背景噪音中的信号检测出来。 关键词:微弱信号;检测;放大;噪声 1前言 测量技术中的一个综合性的技术分支就是微弱信号检测放大,它利用电子学、信息论和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检出并恢复被背景噪声掩盖的微弱信号。这门技术研究的重点是如何从强噪声中提取有用信号,从而探索采用新技术和新方法来提高检测输出信号的信噪比。 微弱信号检测放大目前在理论方面重点研究的内容有: a.噪声理论和模型及噪声的克服途径; b.应用功率谱方法解决单次信号的捕获; c.少量积累平均,极大改善信噪比的方法; d.快速瞬变的处理; e.对低占空比信号的再现; f.测量时间减少及随机信号的平均; g.改善传感器的噪声特性; h.模拟锁相量化与数字平均技术结合。 2.微弱信号检测放大的原理 微弱信号检测技术就是研究噪声与信号的不同特性,根据噪声与信号的这些特性来拟定检测方法,达到从噪声中检测信号的目的。微弱信号检测放大的关键在于抑制噪声恢复、增强和提取有用信号即提高其信噪改善比SNIR 。根据下式信噪改善比(SNIR)定义

微弱信号检测技术概述

1213225 王聪 微弱信号检测技术概述 在自然现象和规律的科学研究和工程实践中, 经常会遇到需要检测毫微伏量级信号的问题, 比如测定地震的波形和波速、材料分析时测量荧光光强、卫星信号的接收、红外探测以及电信号测量等, 这些问题都归结为噪声中微弱信号的检测。在物理、化学、生物医学、遥感和材料学等领域有广泛应用。微弱信号检测技术是采用电子学、信息论、计算机和物理学的方法, 分析噪声产生的原因和规律, 研究被测信号的特点和相关性, 检测被噪声淹没的微弱有用信号。微弱信号检测的宗旨是研究如何从强噪声中提取有用信号, 任务是研究微弱信号检测的理论、探索新方法和新技术, 从而将其应用于各个学科领域当中。微弱信号检测的不同方法 ( 1) 生物芯片扫描微弱信号检测方法 微弱信号检测是生物芯片扫描仪的重要组成部分, 也是生物芯片技术前进过程中面临的主要困难之一, 特别是在高精度快速扫描中, 其检测灵敏度及响应速度对整个扫描仪的性能将产生重大影响。 随着生物芯片制造技术的蓬勃发展, 与之相应的信号检测方法也迅速发展起来。根据生物芯片相对激光器及探测器是否移动来对生物芯片进行扫读, 有扫描检测和固定检测之分。扫描检测法是将激光器及共聚焦显微镜固定, 生物芯片置于承片台上并随着承片台在X 方向正反线扫描和r 方向步进向前运动, 通过光电倍增管检测激发荧光并收集数据对芯片进行分析。激光共聚焦生物芯片扫描仪就是这种检测方法的典型应用, 这种检测方法灵敏度高, 缺点是扫描时间较长。 固定检测法是将激光器及探测器固定, 激光束从生物芯片侧向照射, 以此解决固定检测系统的荧光激发问题, 激发所有电泳荧光染料通道, 由CCD捕获荧光信号并成像, 从而完成对生物芯片的扫读。CCD 生物芯片扫描仪即由此原理制成。这种方法制成的扫描仪由于其可移动, 部件少, 可大大减少仪器生产中的失误, 使仪器坚固耐用; 但缺点是分辨率及灵敏度较低。根据生物芯片所使用的标记物不同, 相应的信号检测方法有放射性同位素标记法、生物素标记法、荧光染料标记法等。其中放射性同位素由于会损害研究者身体, 所以这种方法基本已被淘汰; 生物素标记样品分子则多用在尼龙膜作载体的生物芯片上, 因为在尼龙膜上荧光标记信号的信噪比较低, 用生物素标记可提高杂交信号的信噪比。目前使用最多的是荧光标记物, 相应的检测方法也最多、最成熟, 主要有激光共聚焦显微镜、CCD 相机、激光扫描荧光显微镜及光纤传感器等。 ( 2) 锁相放大器微弱信号检测 常规的微弱信号检测方法根据信号本身的特点不同, 一般有三条途径: 一是降低传感器与放大器的固有噪声, 尽量提高其信噪比; 二是研制适合微弱检测原理并能满足特殊需要的器件( 如锁相放大器) ;三是利用微弱信号检测技术, 通过各种手段提取信号, 锁相放大器由于具有中心频率稳定, 通频带窄,品质因数高等优点得到广泛应用。常用的模拟锁相放大器虽然速度快, 但是参数稳定性和灵活性差, 而且在与微处理器通信时需要转换电路; 传统数字锁相放大器一般使用高速APDC 对信号进行高速采样, 然后使用比较复杂的算法进行锁相运算, 这对微处理器的速度要求很高。现在提出的新型锁相检测电路是模拟和数字处理方法的有机结合, 这种电路将待测信号和参考信号相乘的结果通过高精度型APDC 采样,

信号检测论有无法实验报告剖析

------------------------------------------------------------------------------- 实验报告信息栏 系别心理系年级 13级2班姓名魏晓芹同组成员杨思琪、张彤、韩永超 实验日期 2016年4月学号 120105510215 教师评定 ------------------------------------------------------------------------------- 信号检测论有无法实验报告 摘要本次实验采用信号检测论中的有无法,测定被试在不同先定概率下对呈现信号和刺激的击中率与虚报率,计算其辨别力d′和判定标准β,并绘制出ROC 曲线;检验信号呈现的先定概率发生变化时,被试的击中率、虚报率、辨别力d′和判定标准β是否会受到影响。结果显示:(1)被试在先定概率为0.2、0.5、0.8的条件下,击中率分别为0.8、0.92、0.8625,虚报率分别为0.5125、0.56、0.75,辨别力d′分别为0.592、1.254、0.406,判定标准β分别为0.70、0.38、0.71。 关键词信号检测论;有无法;先定概率;辨别力d′;判定标准β 1引言 传统心理物理学对阈限的理解是有限的,不能将个体客观的感受性和主观的动机、反应偏好等加以区分,从而使研究者渐渐陷入到了由阈限概念本身所引发的僵局之中。而在1954年,坦纳和斯韦茨等人首次应用的信号检测论,正好解决了这个问题。 信号检测论的研究对象是信息传播系统中信号的接收问题。在心理学中,它是借助于数学的形式描述“接收者”在某一观察时间内将掺有噪音的信号从噪音中辨别出来。 信号检测论应用于心理学中的基本原理是:将人的感官、中枢分析综合过程看作是一个信息处理系统,应用信号检测论中的一些概念、原理对它进行分析。信号检测论在心理学中具体应用时,常把刺激变量当作信号,把对刺激变量起干扰作用的因素当作噪音,这样就可以把人接收外界刺激时的分辨问题等效于一个在噪音中检测信号的问题,从而便可以应用信号检测论来处理心理学中的实验结果。 信号检测论的理论基础是统计决策。信号检测论本身就是一个以统计判定为根据的理论。它的基本原理是:根据某一观察到的事件,从两个可选择的方面选

信号检测在雷达系统方面的应用

信号检测与估计理论在雷达系统方面的应用 摘要:随着互联网应用的普及及发展,信号的检测与估计技术的应用也越来越受到人们的关注。雷达中的信号检测是一个综合性问题,涉及多个学科,多领域知识,所以它是科学领域最为关注的问题。近年来已经开展了大量雷达系统信号实现方法相关的研究课题,其中回波信号的检测和估计是最为重要的方面。本论文就是针对雷达信号检测和估计的精确性问题加以展开的。 关键词:雷达系统,信号估计,信号检测 第一章雷达系统 1.1起源和发展 早期雷达用接收机、显示器并靠人眼观察来完成信号检测和信息提取的工作。接收机对目标的回波信号进行放大、变频和检波等,使之变成能显示的视频信号,送到显示器。人们在显示器的荧光屏上寻找类似于发射波形的信号,以确定有无目标存在和目标的位置。随着雷达探测距离的延伸,回波变弱,放大倍数需要增加。于是,接收机前端产生的噪声和机外各种干扰也随着信号一起被放大,而成为影响检测和估计性能的重要因素。这时,除了降低噪声强度之外,还要研究接收系统频带宽度对发现回波和测量距离精度的影响。这是对雷达检测理论的初期研究。后来,人们开始在各种干扰背景中对各种信号进行检测和估计的理论研究,其中有些结论,如匹配滤波理论,关于滤波、积累、相关之间等效的理论,测量精度极限的理论,雷达模糊理论等,已在实际工作中得到应用. 1.2雷达的概述 雷达的英文名字是radar,是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。

雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。 为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。根据电磁波的传播速度,可以确定目标的距离为:S=CT/2 其中S:目标距离;T:电磁波从雷达到目标的往返传播时间;C:光速 1.3雷达的工作原理 雷达是利用目标对电磁波的反射(或称为二次散射)现象来发现目标并测定其位置的空间任一目标所在位置可用下列三个坐标来确定:1>目标的斜距R;2>方位角a;3>仰角B。同时也就是说根据雷达接收到的信号检查是否含有目标反射回波,并从反射回波中测出有关目标状态的数据。 第二章雷达中的信号检测 雷达的基本任务是发现目标并测定其坐标通常目标的回波信号中总是混杂着噪声和各类干扰而噪声和各种干扰信号均具有随机持性在这种条件下发现目标的问题属于信号检测的范畴信号检测理论就是要解决判断信号是否存在的方法及其最佳处理方式。

基于锁定放大器的微弱信号检测系统设计

龙源期刊网 https://www.360docs.net/doc/ca14884398.html, 基于锁定放大器的微弱信号检测系统设计 作者:蒋碧波杨振国杨越 来源:《科技经济市场》2017年第04期 摘要:文章设计了一种基于锁定放大器的微弱信号检测系统,该系统以相敏检波器和单片机为核心,结合加法器、纯电阻分压网络、微弱信号检测电路和显示电路组成。测试表明,该系统可以有效地用于噪声淹没的微弱信号检测。 关键词:微弱信号;强噪声;相敏检波 0.概述 微弱信号检测技术综合利用电子、信息学、计算机技术和物理学方法,研究导致噪声的原因和规律,以及被测信号的相关性,将被噪声淹没的微弱有用信号检测出来。相较于生物芯片扫描法中扫描时间与检测灵敏度难以兼顾的缺点和微弱振动信号的谐波小波频域提取法的局限性来说,以锁定放大器为核心的微弱信号检测系统更有潜力。 用调制器将直流或渐变信号进行交流放大,可以避免噪声的不利影响;利用相敏检测器检测频率和相位,利用窄带低通滤波器来抑制高频噪声,大大提高了稳定性,这些优点使得该项技术具有更加广阔的应用前景。 1.锁定放大器的原理 锁定放大器由信号通道、参考通道、相敏检波器以及输出电路组成。其基本思想是将与被测信号相同频率和相位关系的参考信号作为基准信号,使得只有与被测信号本身以及与参考信号同频和同相的噪声分量有响应,其他频率的噪声被抑制,从而能提取出有用信号。若增加辅助前置放大器,锁相放大器增益可达220dB,能检测极微弱交流输入信号。锁定放大器输出为直流电压信号,且正比于输入信号幅度及被测信号与参考信号相位差。与一般的带通放大器不同,锁相放大器具有极强的抗噪声能力。 系统的核心相敏检波器(PSD)的本质功能是对两个信号之间的相位进行检波,只有当同频同相信号输入时,为全波整流且输出最大。 2.系统总体设计 本系统总体框图如图1所示,系统由接收信号预处理通道、参考信号预处理通道、相关器及输出电路组成,其中核心部件相关器,它包括开关乘法器和RC低通滤波器;其中加法器由同相放大电路构成,实现噪声与待测信号相加,使得信号淹没在噪声环境中,然后经过衰减器衰减约100倍,模拟接收方收到的信号,并送入以相敏检波器为核心的微弱信号检测电路。参

基于PWM调制的微弱信号检测的毕设论文 (本科).

学校代码: 11059 学号: Hefei University 毕业设计(论文)BACH ELOR DISSERTATION 论文题目:基于PWM调制的微弱信号检测 学位类别:工学学士 年级专业: 作者姓名:孙悟空 导师姓名: 完成时间: 2015年5月8号

中文摘要 工程设计领域中在强噪声环境下对微弱信号的检测始终是个技术难点。因此,全面地去研究、分析微弱信号在时域、频域等方面的特点,以及微弱信号的检测技术,都非常重要且有意义的。 本文首先介绍了在电子设备中元器件内部因为载流粒子的运动及外部因素导致系统噪声产生的原理。阐述了在分析研究微弱信号的方法中,时域分析法是目前应用范围最为广泛的分析方法,比如短时Fourier、小波变换。在此基础上,本文从工程设计的角度重点分析了PWM技术检测微弱信号的原理及实现的方法。PWM检测技术是利用PWM脉冲对微弱信号的调制, 从而达到进行频谱搬移。最后,对于调制后的信号,本文中采用带通、全波整形以及低通等三种方式实现了对待调制信号的解调,并在解调端得到最终的解调信号。 在电路仿真方面本文给出了基于Multisim软件的系统电路仿真图。通过搭建各个模块然后利用仿真电路给出了系统调制解调的各个过程及波形图。利用示波器对系统调制、解调等模块的波形检测可以发现各个模块的信号波形与理论波形基本吻合,系统的设计满足对微弱信号检测的要求。 关键词:微弱信号检测;频谱搬移;PWM调制

Abstract The detection of weak signal in the field of engineering design is always a technical difficulty.. Therefore, it is very important and meaningful to study and analyze the characteristics of weak signal in time domain and frequency domain and the detection technology of weak signal.. In this paper, we first introduce the in Zhongyuan electronic equipment device for load flow particle's motion and external factors lead to system noise principle. In the research of weak signal analysis, time-domain analysis is the most widely used method, such as short time Fourier and wavelet transform.. On this basis, the paper analyzes the principle and the method of the weak signal detection from the angle of the engineering design from the point of view of the engineering design.. PWM detection technology is the use of PWM pulse modulation of the weak signal, so as to achieve the frequency shift. Finally, for modulated signals, this paper by band-pass, full wave shaping and low pass in three ways the treated signal modulation and demodulation, and the final demodulation signal at the end of the demodulation. In the circuit simulation, the paper presents the simulation chart of the system circuit based on Multisim.. By building each module and using the simulation circuit, the process and the waveform of the system modulation and demodulation are given.. Using the oscilloscope system modulation and demodulation module of waveform detection can be found that each module of signal waveform and theoretical waveforms are basically consistent, the design of the system meet the requirements of weak signal detection. .Keyword:Weak signal detection ;Frequency shift ;PWM detection

雷达信号

摘要 雷达通过对回波信号进行接收检测处理来识别复杂回波中的有用信息.其中,雷达信号波形的选择与设计有着相当重要的作用,它直接影响到雷达发射机形式的选择、信号处理方式、雷达的作用距离及抗于扰、抗截获等很多重要问题。所以,为了选择或者设计出适合特定用途的雷达信号形式,在对雷达系统设计之前有必要研究各种雷达信号的性能。雷达信号模糊函数全面地反映了雷达所发射的信号在距离和速度二维上的测量精度和分辨率,因此,雷达信号模糊函数理论对于雷达最优波形设计具有非常重要的意义。 现代信息技术的发展对现代雷达系统在有效作用距离、分辨率、测量精度以及电子对抗诸多方面提出了越来越高的要求。针对现代雷达的特殊用途,模糊函数理论为系统研究最优波形提供了基本的研究平台。模糊函数把雷达接收机输出信号的复包络描述为雷达目标距离和径向速度的函数,它可以提供分辨力、测量精度和杂波抑制等重要信息。模糊函数可以作为单一目标距离和速度的精度与分辨率评估尺度参数,根据这些参数还可以可靠区分多个目标.采用仿真的方法对雷达信号及其性能进行研究具有许多优越性。首先,通过仿真可以在不更改主要的硬件和软件的情况下,灵活地选择和改变参数值。第二,仿真可使雷达信号的设计人员通过改变参数,评价不同作战环境下各种参数对雷达系统性能的影响。第三,对关键技术及参数在仿真中加以研究,可节省大量的人力、物力和财力,并且具有很高的灵活性和可重复性,从而达到节省研制费用、缩短研制周期的目的。 本文基于雷达信号波形设计,从几类雷达发射信号出发,推导出不同雷达信号的模糊函数的数学模型,并绘制出模糊函数图,根据模糊函数图分析各类信号特点。在此基础上,根据雷达系统的要求(如分辨力、精度、抗干扰等),对线性调频信号雷达进行了仿真实验,评估所设计雷达信号的实用的价值。本文在波形设计过程中主要采用Matlab对各模块进行功能建模和仿真,取得了较好的仿真效果。仿真研究表明,模糊函数全面反映了雷达所发射的信号在距离和速度上的测量精度和分辨能力。在给定目标环境的条件下,模糊函数可以作为设计和选择合适的雷达信号的重要方法。 关键词:雷达信号,波形设计,模糊函数。模糊函数图 第1章引言 随着我国科学事业的迅速发展,雷达研制已进入一个崭新的阶段。人造地球卫星、飞船、火箭、导弹的发射成功,都离不开高精度的雷达设备,目标分辨已成为雷达设计中突出的实际问题。模糊函数是对雷达信号进行分析研究和波形设计的有效工具,是雷达信号理论中极为重要的一个概念。模糊函数最初是在研究雷达目标分辨力问题时提出的,并从衡量两个不同距离和不同径向速度目标的分辨度出发提出了模糊函数的定义。但模糊函数不仅可以说明分辨力,还可以说明测量精度,测量模糊度以及抗干扰状况等问题。 1.1雷达信号模糊函数研究的重要意义

小波变换与微弱信号检测

一、引言 “微弱信号”不仅意味着信号的幅度很小,而且主要指的是被噪声淹没的信号,“微弱”是相对噪声而言的。微弱信号检测技术不同于一般的检测技术,它注重的不是传感器的物理模型和传感原理、相应的信号转换电路和仪表实现方法,而是如何抑制噪声和提高信噪比,可以说,微弱信号检测技术是一门专门抑制噪声的技术[1]。 目前已经得到广泛应用的微弱信号检测方法有时域方法和频域方法两大类,其中时域方法有相关检测、锁定放大、取样积分和数字式平均;频域方法主要是功率谱估计。但当被检测的信号非常微弱时,信号经上述方法分析处理后,有可能被测信号功率仍然小于噪声功率,甚至有可能仍然相当微弱,比噪声小几个数量级甚至被噪声淹没,或者在某些特定场合下噪声不理想,不能在看成白噪声时,利用上述检测方法就有一定的局限性了。而小波变换是一种变分辨率的时域分析方法,小波应用于降噪、重建与数据压缩等方面国内外研究已取得一定的成果。将小波变换引入微弱信号检测领域,可以充分发挥小波变换的优势,利于微弱信号检测技术的进一步推广和应用。本文主要由三部分组成:小波变换降噪原理分析,小波降噪相关仿真实验和小波降噪应用于微弱信号检测原理和相关算法。 二、小波变换降噪原理分析 小波分析的地位在数学界是独一无二的。小波分析从本质上讲是对一个信号进行投影,并在特定空间内按照称之为小波的基函数对数学表达式的展开和逼近,寻求最小个数的函数表示。小波分析是调和分析发展史上里程碑式的进展,是对Fourier 分析的重要补充和发展。它一方面保留了Fourier 分析的优点,更重要的是克服了Fourier 分析不能做局部化的不足[3]。 2.1小波变换的基本原理 小波分析是一种信号的时间尺度(时间-频率)的分析方法。 设)(t ψ为一平方可积函数,其Fourier变换)(?w ψ满足允许条件 ∞<=∫dw w w C R 2)(?ψψ时,称)(t ψ为小波母函数。将小波母函数进行伸缩和平移后得:(1 )(,a b t a t b a ?=ψψ,称该式为一个小波序列,其中a 称为尺度因子,b 为平移因子,a 1为归一化因子。对任意的函数)()(2R L t f ∈,则其连续小波变换定义为: dt a b t t f a b a W R f ( )(1 ),(??=∫ψ0,,≠∈a R b a (1)小波逆变换为:db a b t a b a W a da C t f f )(1),(1)(2?×=∫∫+∞∞?+∞∞?ψψ(2)

信号检测论有无法实验报告材料材料

信号检测论有无法实验报告 摘要:本次实验采用信号检测论中的有无法,测定被试在不同先定概率下对呈现信号和刺激的击中率与虚报率,计算其辨别力d′和判定标准β,并绘制出ROC曲线;检验信号呈现的先定概率发生变化时,被试的击中率、虚报率、辨别力d′和判定标准β是否会受到影响。 关键词:信号检测论;有无法;先定概率;辨别力d′;判定标准β。 1. 引言:信号检测论(SDT)是以统计判定论为根据的理论,基本原则是把刺激的肯定程度用有序的方法数量化。具体做法是把人类个体比作一个信号感受器,具有对信息辨别的感受能力,能在信号和背景噪音不易分清的实验条件下,根据可供选择的假说,选定一个假说做为判断标准,然后报告出现的刺激是信号还是噪音。 信号检测论把刺激的判断看成对信号的侦察并作出决策的过程,其中既包括感觉过程也包括决策过程。感觉过程是神经系统对信号或噪音的客观反应,它仅取决于外在的刺激的性质,即信号和噪音之间的客观区别;而决策过程受到主观因素的影响。前者决定了被试的感受性大小,信号检测论多选用辨别力指标d’来作为反映客观感受性的指标;后者则决定被试的决策是偏向于严格还是偏向于宽松,信号检测论用判定标准β或报告标准C来对反应倾向进行衡量。并学习绘制ROC曲线。 2. 实验方法: 2.1被试:上海师范大学天华学院13应用心理1班女生一名 2.2仪器:采用计算机和Psytech心理实验系统。4种频率声音:1000Hz、1005Hz、1010Hz和1015Hz。 2.3程序:1.登录并打开PsyTech心理实验软件主界面,选中实验列表中的“信号检测论(有无法)”单击呈现实验简介。点击“进入实验”到“操作向导”。在参数设置中,实验者可以让被试先进行预备实验确定信号的频率。如果不做预备实验可以人工选取 1005、1010、 1015中的一种频率的声音作为信号,直接开始实验。 2.预备实验的指导语是:这是一个预备实验,使用1号反应盒。每次实验计算机将先后发出两个不同频率的声音。请你判断哪个声音的频率更高。如果你觉得第二个声音比第一个声音的频率高,请按“+”键;如果觉得第二个声音比第一个声音的频率低,请按“-”键。预备实验将进行30次。当你明白了上述指导语后,请点击下面的“预备实验”按钮开始。3.预备实验结束后,实验者在“预备实验结果”中将正确百分比中最接近80%的频率作为正式实验的信号(SN),而1000HZ则作为噪声(N)。

微弱信号检测

微弱信号检测电路实验报告 课程名称:微弱信号检测电路 专业名称:电子与通信工程___年级:_______ 学生姓名:______ 学号:_____ 任课教师:_______

微弱信号检测装置 摘要:本系统是基于锁相放大器的微弱信号检测装置,用来检测在强噪声背景下,识别出已知频率的微弱正弦波信号,并将其放大。该系统由加法器、纯电阻分压网络、微弱信号检测电路组成。其中加法器和纯电阻分压网络生成微小信号,微弱信号检测电路完成微小信号的检测。本系统是以相敏检波器为核心,将参考信号经过移相器后,接着通过比较器产生方波去驱动开关乘法器CD4066,最后通过低通滤波器输出直流信号检测出微弱信号。经最终的测试,本系统能较好地完成微小信号的检测。 关键词:微弱信号检测锁相放大器相敏检测强噪声

1系统设计 1.1设计要求 设计并制作一套微弱信号检测装置,用以检测在强噪声背景下已知频率的微弱正弦波信号的幅度值。整个系统的示意图如图1所示。正弦波信号源可以由函数信号发生器来代替。噪声源采用给定的标准噪声(wav文件)来产生,通过PC 机的音频播放器或MP3播放噪声文件,从音频输出端口获得噪声源,噪声幅度通过调节播放器的音量来进行控制。图中A、B、C、D和E分别为五个测试端点。 图1 微弱信号检测装置示意 (1)基本要求 ①噪声源输出V N的均方根电压值固定为1V±0.1V;加法器的输出V C =V S+V N,带宽大于1MHz;纯电阻分压网络的衰减系数不低于100。 ②微弱信号检测电路的输入阻抗R i≥1 MΩ。 ③当输入正弦波信号V S 的频率为1 kHz、幅度峰峰值在200mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 (2)发挥部分 ①当输入正弦波信号V S 的幅度峰峰值在20mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ②扩展被测信号V S的频率范围,当信号的频率在500Hz ~ 2kHz范围内,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ③进一步提高检测精度,使检测误差不超过2%。 ④其它(例如,进一步降低V S 的幅度等)。

信号检测论的基本方法

信号检测论——有无法 摘要本次实验采用信号检测论中的有无法,检验了甲,乙两名女性被试在呈现信号和噪音的先定概率发生变化时,其辨别力和判定标准是否都受到影响。结果发现,随着先定概率的减小,两被试判断标准渐渐变的严格,被试的辨别能力大体上渐渐也在提高。 关键词信号检测论有无法ROC曲线辨别力判断标准 本次实验尝试用信号检测论—有无法,来检验当呈现信号和噪音的先定概率发生变化时,对被试的辨别力和判定标准是否都有影响,并绘制ROC曲线。本次实验假设,随着先定概率的减小,两被试判断标准渐渐变的严格,被试的辨别能力则保持不变。 2 方法 2.1 被试 两名被试,被试甲和被试乙,女,年龄均为20岁; 2.2 实验设计 本次实验使用先定概率为自变量,被试辨别力和判定标准是因变量。 2.3 实验材料 信号及噪音卡片,每张卡片正面写有1位和2位的数字,范围是8-24,背面分为SN和N(SN 和N都呈正态分布); 2.4 实验程序 2.4.1 确定五种SN呈现的先定概率,本次实验按照实验手册中表6-2的标准进行; 2.4.2 主试按照P(SN)=0.9, P(N)=0.1分别从总体SN和N中随机抽样,形成一个n=50的样本。数 据记入表格6-3; 2.4.3 将SN和N的数字分布表给被试看,指导语为:“下面给你看一系列的数字卡片,你根据给你 呈现的数字分布表来判断该数字为信号还是噪音,并口头报告。” 2.4.4 将每张卡片呈现给被试并让其判断,被试报告“信号”,主试就在记录表相应的空格内记下“+”, 若被试判断为“噪音”,主试就在相应的空格内记下“—”。每做完50次休息2分钟; 2.4.5 实验结束后询问被试,在不同的情况下她是如何进行判断的,并将被试的回答记录在下面的 “讨论”中; 2.4.6 换被试重复上述过程。 3 结果 3.1 从PZO转换表中分别查出的与5对P(y/SN),P(y/N)相应的Z和O值,以及五种先定概率的d ˊ和β: 被试甲如下:被试乙如下: 3.2 绘制ROC曲线: 被试甲:被试乙: 3.3 用本实验的结果说明信号的先定概率如何影响被试的判断标准 从表格中我们可以看到: 被试甲随着先定概率的减小(0.9,0.7,0.5,0.3,0.1),被试判断标准总体来说是变的渐渐严格(β值渐渐增大,0.89,0.57,0.61,0.81,3.38); 被试乙随着先定概率的提高(0.9,0.7,0.5,0.3,0.1),被试判断标准变的渐渐严格,(β值增大很明显,0.33,0..59,0.91,1.41,4.75)。 4讨论

相关文档
最新文档