铸造合金原理及熔炼资料

铸造合金原理及熔炼资料
铸造合金原理及熔炼资料

铸造合金原理及熔炼

一、名词解释

l.铸铁:是C的含量大于2.14%或者组织中具有共晶组织,并含有较多Si.Mn.P.S杂质元素的铁碳合金。

2.白口铸铁:少数C固溶于铁素体,其他以碳化物存在。

3.灰口铸铁:c主要结晶成石墨,并呈片状形式存在于铸铁中,断口为暗灰色。

4.球墨铸铁:铁水在浇注前经球化和孕育处理,C主要以球状形式存在于铸铁中。

5.球化处理:向铁水中加入稀土镁合金(球化剂)。(其中镁是具有很强球化能力的元素)。球化剂的作用

是使石墨呈球状析出。我国应用最广的球化剂是稀土镁合金。

6.孕育处理:向铁水中加入硅铁合金(孕育剂)颗粒。孕育剂的作用是促进铸铁石墨化,防止产生白口,

细化石墨。常用的孕育剂为硅的质量分数75%硅铁。

7.蠕墨铸铁;是液态铁水经蠕化处理和孕育处理得到的.由金属基体和蠕虫状石墨构成。

8.可锻铸铁:是由白口铁经过退火而制得的一种高强度铸铁,白口铸铁中的渗碳体分解成团絮状石墨的灰

口铸铁,性能优于灰铸铁,耐磨性和减震性优于普通碳索钢,可部分代替碳钢,合金钢和有色金属。

9.奥氏体(A或γ):碳溶于γ-Fe中所形成的间隙固溶体。晶格结构:面心立方晶格fcc。

10.铁素体(F或α):碳溶于α-Fe中所形成的间隙固溶体,晶格结构:体心立方晶格bcc。

11.δ-铁素体:碳溶于δ-Fe中所形成的间隙固溶体。

12.碳当量定义:将合金元素对共晶点碳量的影响折算成铸铁碳量的增减,折算后的值称之为碳当量,以

CE表示。碳当量:CE=C+1/3(Si+p) 13.共晶度:铁液实际含碳量和共晶点的实际碳量的比值为共晶度,以sc表示。

共晶度:Sc=C/[4.26%-(Si+p)l/3l 14.钢的腐蚀金属表面在周围介质的作用下逐渐被破坏的现象称为金属的腐蚀。

15.化学腐蚀是指金属表面与周围介质发生化学反应而引起的破坏,如高温下金属的氧化等。

16.电化学腐蚀是指金属与电解质溶液发生电化学作用而使金属破坏的现象。

17.耐热钢是指在高温下对氧化性气体具有抗氧化性的钢种。

18.黑色金属:在工业生产中,通常把铁及其合金称为黑色金属。

19.有色金属:把其他非铁金属及其合金称为有色金属。

20.固溶强化:通过合金元素固溶于金属基体中,使晶格发生畸变,从而使塑性变形的抗力增加,合金强

度和硬度提高的过程叫做固溶强化。

21.时效强化(沉淀强化):时效处理,又称低温回火。时效强化是指在网溶度随温庋降低而减少的合

金系中,当合金元素含量超过一定限量后,淬火可获得过饱和固溶体。在较低的温度加热(时效),过饱

和固溶体将发生分解并析出弥散相,引起合金强度、硬度升高而塑性下降的过程。它也被称为沉淀强化。

22.自然时效是指时效强化在室温下进行的时效,通常需要较长的时间。

23.人工时效又分为不完全人工时效、完全人工时效和过时效3种。

24.过剩相强化:当过量的合金元素加人到基体中时,一部分溶人固溶体,而超过极限溶解度的部分

则不能溶入,形成过剩的第二相,如铝硅合金中的硅相。过剩相强化主要利用较硬的过剩相来阻碍基体的

变形,从而使合金强化,与时效强化有相似之处。

25.变质处理:铸造合金的组织细化亦常称为变质处理

26.淬火:工艺是将工件加热到足够高的温度,并保温足够长的时间,使强化相充分溶人固溶体,随后快

速冷却(淬人水中或油中)的过程。

27.时效:当铝合金通过高温下淬火形成过饱和固溶体后,再在一定温度下保温(或室温长时间放置)而使

其强度、硬度升高的过程称为时效。

28.紫铜:纯铜呈紫红色,故又称紫铜,具有面心立方晶格,无同素异构转变,无磁性。

29.青铜主要是CuSn台金,后来发展出一些代锡的铜合金,其组织和性能仍与锡青铜类似,称为无锡青铜,如铝青铜、铅青铜等。

30.黄铜:以锌为主加元素的铜合金称为黄铜

31.特殊黄铜:通常,Cu-Zn二元合金称为普通黄铜。以铜、锌为主要组元,再加人其他元素构成的合金,称为特殊黄铜

32.锡汗:锡青铜有很强的枝晶偏析和反偏析现象,常在铸件表面渗出许多灰白色颗粒(富锡分泌物人在加工表面也常见到一些灰白色小点,俗称“锡汗”。

33.焦炭:是将配制的煤在隔绝空气条件下,长时间(20h左右)高温(最高达1300℃左右)加热炼制而成的人工燃料。

34.冲天炉熔化区:是指金属料块从开始熔化到熔化完毕这一段炉身高度范围。

35.双联熔炼,即将冲天炉与电炉等其他熔化炉组合,冲天炉铁水经过其他熔炼炉升温及成分调接后才浇注。

三、填空题

1.蠕墨铸铁的蠕化剂为镁钛合金、稀土镁钛合金或稀土镁钙合金等。

2.灰铸铁的金相组织由金属基体和片状石墨组成。主要的金属基体形式有珠光体、铁索体及珠光体加铁素体三种。

3.可锻铸铁种类;1)黑心可锻铸铁:KTH300 - 06:2)珠光体可锻铸铁KTZ450-06: 3)白心可锻铸铁KTB380-12

4.获得合乎要求的白口铸铁是生产可锻铸铁的前提,所以选择好化学成分,保证铸铁浇铸后获得白口铁组织非常重要。

5.石墨形态因结晶条件不同而有七种基本类型,即球状、团状、团絮状、蠕虫状、水草状、开花状和片状。在片状石墨中又可分为A、B、C、D、E、F六种形状。

6.珠光体:奥氏体冷却到共析点以下即发生共析发应,一方面析出共析渗碳体,一方面转变为α-Fe,二者共同组成的共析体就是珠光体。

7.渗碳体:由一个C原子和三个Fe原子组成的化合物Fe3C称为渗碳体。晶格结构:复杂正交。

8.莱氏体:共晶反应时与奥氏体同时生长的渗碳体称为共晶渗碳体,它和共晶奥氏体形成的机械混合物称为莱氏体

8.高温莱氏体:727℃以上,奥氏体与渗碳体,以Le表示。

低温莱氏体:727℃以下,珠光体与渗碳体,以L'e表示。

9.二元磷共晶:Fe3P+α-Fe:三元磷共晶:Fe3P+Fe3C +α-Fe。

10.强化孕育条件,细化共晶团,控制磷共晶数量有可能得到断续网状磷共晶结构,既保持较高的强度又有

较好的耐磨性。

11.奥氏体中碳的脱溶:普通成分的铸铁,共晶转变后组织为含碳约2.10%的奥氏体加石墨。如继续冷却,奥氏体中的含碳量将减小,卧二次石墨的形式析出。

12.目前各国使用的商业孕育剂和专利孕育剂的品种繁多,归纳起来可分两大类:石墨化孕育剂和稳定化孕育剂。

13.现在我国生产的球墨铸铁普通用稀土硅铁镁合金作为球化剂,所以也称稀土镁球墨铸铁

14.磷在球墨铸铁中有严重的偏析倾向,易在晶界处形成磷共晶,严重降低球墨铸铁的韧性。磷还增大球墨铸铁的缩松倾向。

15.适用于球墨铸铁生产的优质铁液应该是高温,低硫、磷含量和低的杂质含量(如氧及反球化元素含量等)。

16.在球墨铸铁生产中,除会产生一般的铸造缺陷外,还经常会产生一些特有的缺陷。主要有:缩孔及

缩松、夹渣、皮下气孔、石墨漂浮及球化衰退等。

17.根据铸态组织中有无自由渗碳体,而可分别采取高温石墨化退火和低温石墨化退火的两种方式。18.根据正火温度的不同,可分为高温完全奥氏体化正火以及部分奥氏体化正火。

19.蠕虫状石墨是介于片状石墨及球状石墨之间的中问状态类型石墨,它既有在共晶团内部石墨互相连续的片状石墨的组织特征,又有石墨头部较圆、其位向特点和球状石墨相似的特征。

20. 蠕墨铸铁的化学成分与球墨铸铁的成分要求基本相似,即高碳、低磷。低硫,一定的硅、锰含量21.铸铁中石墨的润滑能力,与金属基体有关,与石墨的形状、尺寸和分布有关,还与摩擦面承载大小有关。

22.一种优质抗磨材料应该在保证不破裂的前提下尽量提高耐磨性,因此要求材料有强韧性好的基体和足够数量的硬化相。

23.材料在巨大的局部载荷作用下不损坏的关键是金属基体,只有强韧性特别好的基体才能够承受恶劣的工作条件,如马氏体、奥氏体,贝氏体都属于抗磨铸铁选择的基体。要避免铁索体、珠光体、石墨等显微组织存在。其次,要有足够数量的硬化相。

24.铸钢材料的品种从普通碳钢、低合金钢至高合金钢。

25.碳钢铸件热处理的目的是细化晶粒,消除魏氏体(或网状组织)和消除铸造应力。热处理方法有退火、正火或正火加回火。

26.纯铝具有银白色金属光泽,密度小(2.72),熔点低(660.4℃),导电、导热性能优良。

27. Al-Si系铸造铝合金,称硅铝明。其中ZL102(ZAlSi12)是含12%Si的铝硅二元合金,称为简单硅铝明.加入其他合金元素的铝硅铸造合金称复杂(或特殊)硅铝明。

28.时效处理又分为自然时效及人工时效两大类。

29.金属镁的密度(约 1.7 g/cm3小于铝,镁合金也比铝合金轻,密度约为锅台金的 2/3。镁合金具有很高的比强度、比剐度和比弹性模量,且切削加工性能极好。

30.影响冲天炉内焦炭燃烧过程的因素,主要是送人炉内空气的数量和质量用温度、含氧量等人焦炭的质量(灰分、块度)等。

31. 焦炭灰分含量不仅影响焦炭中固定碳含量及发热值大小,而且影响焦炭的燃烧速度。

32.一般随焦炭块度增大,氧化带扩大,燃烧温度增高。

33.空气温度对燃烧过程的影响一方面是空气带人的物理热,使反应的热量增大,从而提高燃烧温度。34。若风量不变、层焦用量增加时(焦耗增大)原来熔化一批金属炉料消耗的底焦少于补充的层焦,使底焦高度上升,但这样并不会造成底焦高度无限升高,经过3~5批料后,底焦高度会在一个新的高度上稳定下来,原因是层焦增多会使还原带增高,并使还原反应更充分,造成C2。含量降低,CO含量升高,燃烧系数ηv下降。

35.当送风量增加时,燃烧速度加快,熔化一批料所消耗的底焦量增多,若层焦量不变时,必然造成底焦高度逐渐下降

36.当送风量减少时,由于消耗的底焦量少于层焦补充量,底焦高度就会逐渐升高

37. 当底焦高度过低,使还原带高度减少到零时,这种平衡过程就无法再进行,冲天炉的熔炼过程就无法继续进行下去,生产中若出现这种情况时,必须立即打炉,否则会出现冻炉或结渣等严重事故。

38.当焦耗过高而风量又不足时,可能出现底焦高度太高,使得还原带上部的温度低于还原反应的温度(1200℃)这时底焦顶面以上的金属炉料无法熔化,冲天炉的熔炼过程便出现暂时中断现象。

39.预热区是指从加料口到金属炉料加热到平均熔点(一般取1200℃)为止的区间。

40.过热区是冲天炉热交换最薄弱的环节。冲天炉的总热效率为35%左右,其中预热带热效率为50%—60%,熔化带为50%左右,但过热带的热效率仅为6%~8%。

41.酸性冲天炉熔炼可能出现增硅现象,不可能出现增锰现象。

42.碳作为铸铁的重要元素,在冲大炉熔炼过程中,既被O2,CO2和FeO氧化损失,又因焦炭中的碳向铁水溶解而增加。

43.水冷冲大炉的关键结构是在冲天炉底焦区的钢板炉壳加冷却水套,形成水冷炉壁,其结构有内冷式和外冷式两种

44.常用的双联熔炼有冲天炉一电炉(包括电弧炉、有芯工频妒、无芯工频炉)熔炼。

45.冲天炉的预热及熔化的热效率高(约60%)但过热效率低(约7%)而电炉的过热效率高(>60%)故冲天炉一电炉双联熔炼可晟大限度地降低能耗和成本,并获得高质量的铁水。

46.常用的三相电弧炉结构主要由炉体、炉盖、装料机构、电极升降与夹持机构、倾炉机构、炉体开出机构、炉盖旋转机构、电气装置和水冷装置等部分构成。

五、问答题

1.可锻铸铁生产分两个步骤:

第一步,先铸造纯白口铸铁,不允许有石墨出现,否则在随后的退火中,碳在已有的石墨上沉淀,得不到团絮状石墨:

第二步,进行长时间的石墨化退火处理。

将白口铸铁加热到900℃—960℃,长时间保温,使共晶渗碳体分解为团絮状石墨,完成第一阶段的石墨化过程。随后以较快的速度(100℃,h)冷却通过共析转变温度区,得到珠光体基体的可锻铸铁。

若第一阶段石墨化保温后慢冷,使奥氏体中的碳充分析出,完成第二阶段石墨化,并在冷至720℃~760℃后继续保温,使共析渗碳体充分分解,完成第三阶段石墨化,在650℃—700℃出炉冷却至室温,可以得到铁素体基体的可锻铸铁。

为了缩短时间,并细化组织,提高机械性能,可在铸造时采取孕育处理。孕育剂能强烈阻碍凝固时形成石墨和退火时促进石墨化。采用0.00l%硼、0.006%铋和0.008%铝的孕育剂,可将退火时间由70多小时缩短至30小时。

2.石墨的结晶特点:在简单六方晶体中,碳原子是分层排列,同一层上的原子间距小(0.142nm),结合力强层间原子间距大(0.340nm),结合力弱。容易形成片状石墨。

3.Fe -C合金结晶过程中为什么一般形戍Fe -Fe3C,而不是Fe—G?

答:从热力学上,G比Fe3C要稳定:从动力学上,渗碳体的成分与铁液更接近,

Fe的排列与A也有相似之处。因而,A中析出渗碳体较易形核,而G的晶体结构与A相差较大,不易从A 中形核和长大。铁碳合金中,C以何种形式存在取决于化学成分和冷却速度。

4.影响铸铁石墨化程度的主要因索?

答:(1)、化学成分

1)碳和硅:碳是形成石墨的元素,也是促进石墨化的元素。含碳愈高,析出的石墨愈多、石墨片愈粗大。硅是强烈促进石墨化的元素,随着含硅量的增加,石墨显著增多。

2)硫。硫是强烈阻碍石墨化元素。

3)锰。锰是弱阻碍石墨化元素,具有稳定珠光体,提高铸铁强度和硬度的作用。

4)磷。磷对铸铁的石墨化影响不显著。含磷过高将增加铸铁的冷脆性。

(2).冷却速度

渗碳体的成分(碳含量)更接近于液态铸铁,与G相比,结构亦更近于A,在快冷时易得到渗碳体:而G 是一种更稳定的相,在缓冷时易得到G。

5.球墨铸铁的共晶结晶有以下特点?①在片状石墨共晶团的结晶过程中,虽然石墨也是先导相,但石墨和奥氏体基本上是同步长大的,如图1-15所示。而球状石墨菇晶团的结晶则先是石墨的形核和长大,然后才是奥氏体壳的成核和长大。②因球墨铸铁需要不断地补充新晶核,共晶结晶才能完成,新晶核的产生就需要继续冷却,需要不断地增加过冷度,因此球墨铸铁的共晶结晶不但时间较长,而且其终了温度也比灰铸铁低得多。

③球墨铸铁的共晶团晶粒比灰铸铁细得多,这也是球墨铸铁结晶的一个特点。

6.蠕虫状G的形成过程

两种方式:

1)、先生成小球-畸变.沿没被A包围的出口与铁液接触长大而成

2)、先生成小片一蠕化元素富集逐渐演变而成

一般:浓度大时按前一种生长(蠕化元素)浓度小时按后一种生长

7.消除炉料遗传性的措施有两种:

①提高铁液的过热温度:

@用两种以上的原生铁进行配料,可减弱炉料的遗传性。

8.提高灰铸铁力学性能的途径

为了提高灰铸铁的性能,常采取下列各种措施:合理选定化学成分、孕育处理、微量或

低合金化,根据要求,各种措施还可同时采用。

(1)合理选定化学成分

提高Si/C比。(0.5提高至0. 75),组织中共析奥氏体量增加,有加固基体的作用:由于总碳量的降低,石墨量相应减少,减少了石墨的缩减及切割作用:溶于铁索体中的硅含量增高,强化了铁索体·提高了共析转变温度,珠光体稍有糨化,对强度性能不利·由于硅的增高,使铁液的白口倾向有所降低。

(2)孕育处理.

孕育目的在于,促进石墨化,降低白口倾向:降低断面敏感性:控制石墨形态,消除过冷石墨:适当增高共晶团数和促进细片状珠光体的形成,从而改善铸铁的强度性能及其他性能如:致密性、耐磨性及切削性能等,

(3)低台金化

在常规化学成分的基础上添加一种或几种合金元素,使铸铁的显微组织得到改善,力学性能及物理、化学性能得到提高

9.常用灰铸铁的热处理方法?

由于一般热处理改变不了石墨的片状特征,因此灰铸铁的热处理就用得不很多,最常用的有:①低温退火,消除内应力的热处理,亦称热时效:②改善加工性能的降低硬度(去除铸件内残留的少量自由碳化物)的热处理,称为高温石墨化退火。

10.球墨铸铁的组织?

球墨铸铁显微组织由金属基体和分布其间的球状石墨组成,石墨体积约占总体积10%。金属基体的形式有珠光体、珠光体加铁素体、铁索体三种,经过合金化和热处理,也可获得贝氏体、马氏体、屈氏体、索氏体或奥氏体一贝氏体的基体。

11. 球墨铸铁的根本性特点?

1)石墨形状的改变(从片一球状),使石墨对基体的割裂作用减到最小,从而根本上改变了铸铁的性能水平:

2)可以发挥基体的作用来达到性能要求:

(1)通过热处理调节:(2)铸态下获得。

12.球墨铸铁的生产过程?

球墨铸铁的生产过程包含以下几个环节:熔炼合格的铁液,球化处理,孕育处理,炉前检验,浇注铸件,清理及热处理,铸件质量检验。在上述各个环节中,熔炼优质铁液和进行有效的球化一孕育处埋是生产的关键。

13.球墨铸铁中锰所起的作用与其在灰铸铁中所起的作用有什么不同?

在灰铸铁中,锰除了强化铁索体和稳定珠光体外,还能减小硫的危害作用,而在球墨铸铁中,由于球化元素具有根强的脱硫能力,因而锰已不再能起这种有益的作用。而由于锰有严重的正偏析倾向,往往有可能富集于共晶团晶界处,严重时会促使形成晶间碳化物,因而显著降低球墨铸铁的韧性。

14.球墨铸铁中硫所起的作用?

球墨铸铁中的硫与球化元素有很强的化合能力,生成硫化物或硫氧化物,不仅消耗球化剂,造成球化不稳

定,而且还使夹杂物数量增多,导致铸件产生缺陷,此外,还会使球化衰退速度加快,故在球化处理前应对原铁液的含硫量加以控制。

15.目前工业生产中采用的球化剂具有以下的共同特点?

与疏、氧有很大的亲和力,生成稳定的反应生成物,显著减少溶于铁液中的反球化元素含量:在铁液中的溶解度很低:可能与碳有一定的亲和力,但在石墨品格中有低的溶解度。

16.目前常用的球化处理方法有哪几种?

目前常用的球化处理方法有以下几种。

1)冲入法。2)压力加镁法。

31转动包法。4)型内球化法。

17.球墨铸铁孕育处理的目的?

孕育处理是球墨铸铁生产中的一个重要环节,至少有以下几个目的。

①消除结晶过冷倾向。②促进石墨球化。③减小晶间偏析。

18.球墨铸铁的凝固特点?

1)球墨铸铁有较宽的共晶凝固温度范围

2)球墨铸铁的糊状凝固特性

3)球墨铸铁具有较大的共晶膨胀

19.球化不良的形成原因及防止措施?

1)原铁液含硫高、严重氧化的炉料中含有过量反球化元素·处理后铁液残留镁和稀土量过低。铁液中溶解氧量偏高是球化不良的重要原因。

2)选用低硫焦炭、低硫金属炉料,必要时进行脱硫处理,废钢除锈·控制冲天炉鼓风强度和料位·检验控制炉料及球化元素成分,必要时增加球化剂中稀土元素用量.严格控制球化工艺,防止球化处理失败。20.球化衰退的形成原因及防止措施?

1)高硫、低温、氧化严重的铁液经球化处理后形成的硫化物、氧化物夹渣未充分上浮,扒渣不充分,铁液覆盖不好,空气中的氧通过渣层或直接进人铁液使有效的球化元素氧化并使活性氧增加是球化衰退的重要原因。渣中的硫也可重新进人铁液消耗其中的球化元素,铁液在运输、搅拌、倒包过程中,镁聚集上浮逸出被氧化,因此使有效残留球化元素减少造成球化衰退。此外孕育衰退也使石器球数减少而导致石墨形态恶化。造成球化不良的因素也加快球化衰退。

2)应尽量降低原铁液含硫、含氧量,适当控制温度。可添加稀渣剂,使渣充分上浮并扒渣,扒净渣后加草灰等覆盖剂以尽可能隔离空气。加包盖或采用密封式浇注包、采用氮气或氮气保护可有效地防止球他衰退。应加快浇注,尽量减少倒包、运输及停留时间。

21.球墨铸铁缩松的形成过程?

球墨铸铁共晶凝固时间比灰铸铁长,呈粥状凝固,凝固外壳较薄弱,二次膨胀时,在石墨化膨胀力作用下使外壳膨胀,松弛了内部压力。因此在第二次收缩过程中,最后凝固的热节部位内部压力低于大气压,被树枝晶分割的小熔池处成为真空区,完全凝固后成为孔壁粗糙、排满树枝晶的疏松孔,即缩松缺陷。22.球墨铸铁石墨漂浮的形成原因及防止措施?

1)形成原因。碳当量过高,厚壁铸件凝固缓慢为石墨上浮提供了时间条件,加剧了石墨漂浮,稀土使共晶点左移,当稀土残留量>0.06%时,石墨漂浮显著增加。镁使共晶点右移,提高残留镁量,减轻石墨漂浮。高温浇注延长了铁液在型内保持液态的时间,增加石墨漂浮。炉料原始石墨尺寸大、数量多,未熔石墨微粒促进液态下石墨形核析出和石墨漂浮:纯净炉料过冷度大,则不利于形核析出石墨,漂浮较少。

2)防止措旌。将碳当量控制在4.6%~4.7%以下,厚壁铸件由于凝固慢,易于发生石墨漂浮,故碳当量应该控制在更低的范围内。在碳当量不变的条件下,适当降低硅含量,有助于防止发生石墨漂浮。控制残留稀土量不可过高:控制浇注温度适当-大截面铸件可适量添加m止石墨化元素,局部放置冷铁也可防止该部位产生石墨漂浮。

23.复合蠕化剂处理铁液的优点缺点?

1)复合蠕化剂处理铁液的优点是:这样既利用球化元素使石墨球化的作用,又使铁液中有足够的反球化元素,使石墨不能变为球状。允许有较宽的蠕化元素残留量,便于生产控制:

2)缺点是用此法生产的蠕墨铸铁中舍有钛等反球化元素,这种铁的回炉料不能作为生产其他种类铸铁(特别是球墨铸铁)使用,因而给炉料管理带来了麻烦。

24.石墨对铸铁减摩性的影响?

1)石墨是六方晶格的片层状晶体结构,其基面上碳原子之间由共价键联结,而基面之间由。极性键联结。共价键键能可达到极性键能的7倍左右,故在外力作用下,石墨很容易沿基面解理。当相对滑动的表面间存在石墨时,其低能解理面会发生转动,使之基本平行于滑动界面,使得石墨成为一种很好的固体润滑剂,降低滑动界面的摩擦和磨损。

2)在摩擦过程中,铸铁中的石墨除能当作固体润滑剂外,在润滑条件下,还能吸附和保存润滑油,保持油膜的连续性。石墨脱落后在金属基体中留下的空穴,又能储存润滑剂,促进润滑油膜的形成。这是石墨有利的一面。在摩擦磨损中,石墨还具有不利的一面,这就是削弱基体的一面。

25.防止铸铁氧化的主要措施?

加入合金元素铝、硅、铬等,以形成连续致密的能防止离子扩散的层下氧化膜:采用孕育处理,使共晶团及石墨细化,适当降低含碳量,以减少石墨数量:采用球墨铸铁等。

26.如何获得铸铁的耐蚀性能?

铸铁组织中,石墨的电极电位高于渗碳体,而渗碳体又高于铁素体。因此当铸铁处于电解液中时,即会形成原电池而发生电化学腐蚀,使电位低的相受到腐蚀。当往铸铁或钢中加人适当的合金元素,如铬、硅或镍时,可同时提高其耐化学腐蚀和耐电化学腐蚀酌性能。这些合金元素能在铸铁的表面形成一层以Cr2O3或SiO2为主要成分的、或富镍的钝化膜,以保护工件,不使腐蚀性介质侵人其内部。这些合金元素又都是电极电位比铁高的金属,当溶入铸铁中时,能够提高铁素体的电极电位,从而减轻相间的电化学腐蚀过程。但为于形成一定厚

度(约l00nm以上)的钝化膜,并能显著提高铁索体的电极电位,合金元素需要达到一定的含量。

27.铸造碳钢的结晶过程?

碳钢的结晶过程分为两个阶段:第一阶段由钢液开始结晶至完全凝固形成奥氏体为止,即一次结晶过程;第二阶段由奥氏体开始再结晶,析出先共析铁素体至共析转变终了为止,即二次结晶过程。实际上,在两次结晶过程之问,还发生奥氏体的粒化过程。

29.铸钢中的非金属夹杂物对性能的影响?

非金属夹杂物割裂金属的基体,降低力学性能,特别是降低韧性,其作用大小取决于以下两方面的因素:一是夹杂物数量,夹杂物数量愈多,削弱力学性能的作用愈大:二是夹杂物形态,如长条形和尖角形的夹杂物在钢中,将造成缺口及应力集中,大幅度降低钢的力学性能,尤其是断裂韧性:而球形或圆钝形夹杂物的削弱作用则小得多。

30.铸钢热处理目的?

1)细化晶粒、提高性能。2)消除网状及魏氏组织。3)消除铸造内应力

31.高锰钢的热处理方法?

高锰钢的基本热处理是固溶化处理,又称为水韧处理。因为高锰钢的铸态组级中有大量沿奥氏体晶界析出的网状碳化物,它大大降低钢的韧性。为了消除这些铸态碳化物,将钢加热至奥氏体相区温度(105~l100℃,视钢中碳化物尺寸而定)并保温一段时间讨当于每25mm壁厚保温1h人使铸态组织中的碳化物都溶解到奥氏体中。由于高锰钢合碳量高,为保证碳化物彻底溶解,选择1050—1100℃固溶,然后在水中进行淬火,由于快冷而使碳化物来不及析出,从而得到单一的奥氏体组织。这种用于高锰钢的通过固溶、水淬而获得高韧性的热处理方法即所谓的水韧处理.

32.高锰钢的加工硬化机理?

1)位错堆积论这种理论认为,高锰钢在经受强力挤压或冲击作用下,晶粒内部产生最大切应力的许多互相平行的平面之间产生相对滑移,结果在滑移界面的两方造成高密度的位错,而位错阻碍滑移的进一步运动,

即起到位错强化的作用。其结果是增强了钢抵抗变形的能力和提高了钢的硬度。

2)形变诱导相变论认为高锰钢中奥氏体处于相对稳定的状态,在受力而发生变形时,由于应变诱导的作用,发生奥氏体向马氏体的转变,在钢的表面层中产生马氏体,因而具有高硬度。

34.不锈钢的化学成分碳的作用?

碳是对不锈钢的组织和性能影响最大的元素之一,它的作用主要表现在以下两个方面。

一方面,碳稳定奥氏体,其作用约为镍的30倍。。另一方面,由于碳铬亲和力很大,碳可与铬形成一系列复杂的碳化物

35.不锈钢的化学成分镍的作用?

镍是不锈钢的重要合金元素,它的作用是:

①化学性质不活泼,不易氧化,与硫、氯离子不易结合,具有高的化学稳定性.

②提高固溶体的电极电位,从而减轻电化学腐蚀:③扩大Fe-C相图的奥氏体相区

36.影响不锈钢组织的合金元素?

影响不锈钢组织的合金元素可归纳为两类:

①如铬、钼、钛、铌。硅等元素都具有体心立方晶格,它们都缩小奥氏体相区,扩大铁素体相区,为铁素体形成元素.

②如镍、锰、铜、碳、氮等元素都具有面心立方晶格,它们都扩大奥氏体相区,缩小铁素体相区,为奥氏体形成元素。铁素体形成元素和奥氏体形成元素的相对量决定了不锈钢的组织。

37.提高铸造AlSi合金性能的途径?

这些措施主要有:变质处理,合金化,热处理,精炼以及采用特种铸造方法。

38.为什么在各种铸造铝合金中,以Al-Mg合金的固溶强化效果最好?

在各种铸造铝台金中,以Al-Mg合金的固溶强化效果最好这是因为Mg原子与周原子半径相差较大(约13%)而且Mg在Al中有较大的固溶度(最大固溶度为 14. 9%)因此,当大量的Mg溶人AI时,固溶体的晶格就产生畸变,使其变形抗力增加。

39.人工时效又分为不完全人工时效、完全人工时效和过时效3种.

1)不完全人工时效把铝合金铸件加热到较低温度下(150~170℃)保温3—5h,以获得较好的抗拉强度、良好的塑性和韧性,但抗蚀性较低的热处理工艺。

2)完全人工时效把铸件加热到较高温度一下(175—185℃)保温5~24h,以获得足够的抗拉强度间最高的硬度八但伸长率较低的热处理工艺。

3)过时效把铸件加热到190~230℃,保温4~9h,使强度有所下降,硬度有所提高,以获得较好的抗应力、抗腐蚀能力的工艺,也称稳定化回火。

40.过剩相强化的效果与哪些因素有关?

采用过剩相强化的效果与过剩相本身的特性,以及形态、数量、大小及分布有关。过剩相的强度、硬度愈高,强化效果愈大。过剩相增多,合金的强度、硬度上升,塑性下降,当过剩相增加较多或形成网状时,由于基体被分割包围,无从发挥其变形能力,晶界区的应力集中也难于松弛,使合金的塑性大大降低,强度也随之下降。粗大针状的过剩相怕铝硅台金中的未变质共晶硅)容易引起变形裂纹,也易于使合金的塑性和强度降低。

41.细化铸造铝合金的组织的方法?

1)基体的细化铝合金的基体圭要是αAl相,因此基体的细化主要是指铸造铝合金中初生αAl相的细化。

生产中,常加人微量Ti、Zr、B等元素对铸造铝合金的基体进行细化。

2)过剩相的细化对于过剩相的细化,亦称为变质处理,例如,Al-Si台金加钠处理使共晶Si细化,由未变质时的粗大针状或片状变为海藻状或球粒状,提高了合金的力学性能,尤其是塑性。

3)有害相的细化在铸造铝合金的熔铸过程中,由于原材料或操作工艺等原因的影响,常带人许多有害杂质。例如,铝硅合金中铁杂质形成的粗大针状B相( Al5FeSi)削弱合金力学性能。可在铝硅合金中加人Mn使时β变成为团块状的AlSiMnFe相,从而改善了合金性能。

42.AI-Cu合金时效强化机理?

时效强化的合金强度取决于时效过程中形成的各种脱溶相及其应变区对位错运动阻碍的状况。

1).位错运动受应变区所阻碍。

2)位错相受脱溶相阻碍可分为两种情况:

a.脱溶相不硬,不和基体一起变形时,位错可能切过脱溶相,由于使脱溶相粒子产生滑移,增加了相界面,提高了能量,故脱溶相对位错的通过也表现相当大的阻力.

b.脱溶相很硬,且尺寸、间距均较大时,运动的位错线就可能以绕过脱溶相的形式通过它们,并在这些脱溶相周围留下一位错环。

3)位错绕过脱溶相所受的阻力和脱溶相间距的大小有关,脱溶相分布越弥散,间距越小,位错绕脱溶相所需的力就愈大。即位错运动所受阻力也越大,反之阻力越小。在铝铜台金时效后期,析出稳定的脱溶相θ(CuAI2),共格联系已被破坏、应变区消失,故这时主要靠脱溶相本身对位错运动的阻碍来达到强化。43.铸造铝合金的热处理工艺?

最常用的铸造铝合金的热处理工艺有淬火( T4)淬火加不完全时效(T5)和淬火加完全时效(T6)另外还有人

工时效( TI)退火(T2)淬火稳定化回火(T7)和淬火软化团火(T8).

44.铸造镬合金分类?

主要有三类:一类是以Mg-Al台金为基础,如镁铝锌合金和镁铝铝合金:另一类是以Mg-Zn合金为基础,如镁锌铝合金等,这两类合金有较高的常温强度和良好的铸造性能,但耐热性较差,长期工作温度不能超过1500C:

第三类是以Mg- RE为基础,如镁稀土铝合金等,这类合金为耐热镁合金,可在250℃~300℃下长期工作。45.冲天炉熔炼过程有哪些?

主要包括燃烧过程、热交换过程和冶金反应过程三个部分,此外还有气体运动、炉渣形成及炉衬浸蚀等过程。

46.铸铁熔炼的基本要求?

要求:优质高产低耗长寿简便

l、铁液质量高:

铁液温度要高: 1400-1500℃

化学成分:波动范围小,C、S(50%) 增加Si(10%-20%)、Mn(15%-25%)烧损

2、高产:熔化率大(Q)

每小时熔化炉料的重量反应冲天炉的熔化能力与铸造能力相适用.公称值:1.2.3.5.8.10.

3、低耗:燃料的消耗少

铁焦比:α =m铁/m焦一般:8-10越高越好

4、长寿:炉衬寿命要求

5、操作简便自动化、机械化

47.焦炭的燃烧反应过程?

在冲天炉内,焦炭由两大部分组成:一部分是底焦,即炉底以上1~2m厚的焦炭层:另一部分为层焦,它与金属炉料及熔剂分批分层加人炉内。开始送风后,空气经风口进人炉内只与底焦层中的焦炭发生燃烧反应,而层焦只处于预热、干燥及挥发物排出过程,未发生燃烧反应。层焦与底焦层接触后,一方面补充底焦,另一方面也开始发生燃烧反应。冲天炉内的焦炭燃烧,是在底焦层内的氧化带和还原带内进行,实质上是焦炭中的碳与人炉空气中的氧之间的反应。底焦燃烧所消耗的焦炭由层焦补充,以维持底焦内的燃烧反应能继续进行。

48.富氧送风对燃烧过程的影响?

提高人炉空气中的含氧量,一方面增大燃烧速度,有利于形成集中的高温区:另一方面不参加燃烧反应的氨量和炉气总量减少,对提高燃烧温度有利。因此,富氧送风对燃烧过程的影响与预热送风的影响相似,只是作用机理不同而已。

49.强化冲天炉过热区热交换过程,可从哪两方面采取措施?

其一是延长过热时间,具体办法是增加焦炭用量和采用适当块度、反应能力低的焦炭:其一二是提高焦炭表面温度,具体办法有预热送风,富氧送风,除湿送风,或采用固定碳含量高用灰分低)的优质焦炭。50.冲天炉强化熔炼的主要措施

(1)预热送风

为了提高出铁温度及进一步提高冲天炉的热效率,预热送风是人们最早想到和应用的技术,目前热风温度最高可达到 9 0 0℃左右。

作用:1)可提高铁液温度,减少焦耗

2)缩短氧化区增大还原区,减少C、Si、Mn的烧损

3)减小风口冷风区

(2)除湿送风

空气中的水分被带人炉内,不仅给燃烧过程带来不利影响,而且使铁水含气量(主要是H2和O2大为增加,导致铸件因气孔、缩松、硬度不均匀等缺陷而报废。

影响:1)吸热、降温,

2)氧化消耗C、Si、Mn,

3)增加氢,恶化铁液质量

(3)富氧送风

富氧送风是在冲天炉的送风系统内,附加送氧装置,增加空气的氧含量,有助于改善燃烧条件,提高出铁温度和熔化率。

作用:1)提高容化率

2)提高铁水温度

3)降低焦铁比

51.冲天炉的热风装置按以下分类?

①按热源分类有内热式,利用冲大炉本身炉气中的化学热(CO)或物理热:外热式,利用另外的热源门煤气、油等.以及综合式,即内外热都用:②按预热装置的安装位置不同可分为:炉外式,预热装置安装在冲天炉之外,需另占场地:炉内式,预热装置安装在冲天炉炉内(炉身或烟囱处) ③按换热方式不同而分为对流式、辐射式及综合式。

52.冲天炉送风主要的除湿方法有哪三种?

①吸附法,用多孔物质怕硅胶、分子筛)表面吸附水分子的能力,将空气中的水分除去,达到控制湿度的目的,在这个过程中只有物理吸附过程,没有化学反应发生.

②吸收法,利用吸水物质(CaCl2, LiCl2)吸收空气中的水分,达到控制湿度的目的,在这个过程中有化学反应发生,这两种方法都存在吸水物质饱和并需要再生两个过程,为了连续对空气除湿,必须两套装置,而且除湿的稳定性较差,在冲天炉上不宜使用-

③冷冻法,这是能真正用于冲天炉的除湿方法。冷冻除湿原理是将空气温度降到露点以下,使空气中的水分凝结成液体水珠。

53.富氧的具体方法有哪两种?

一种是将工业纯氧直接加到冲大炉的送风管中,使空气的氧含量提高到24%左右,该法耗氧多、效果不太好:另一种方法是将工业纯氧经各个风口直接喷人炉内(一般只在下排风口内喷氧).

54.炼钢的主要任务什么?

是:熔化炉料,去除合金液中的有害元素、非金属夹杂物和气体,使其含量不超过规定范围:调整钢液的化学成分,使各元索的含量符合规格要求:将合金液过热到一定温度以保证浇注需要。电弧炉熔炼法可以满足铸钢熔炼的绝大部分要求。

铝合金的熔炼与浇铸

铝合金的熔炼与浇铸 6.5.1铝合金的性能及应用 铝合金是比较年轻的材料,历史不过百年,铝合金以比重小,强度高著称,可以说没有铝合金就不可能有现代化的航空事业和宇航事业,在飞机、导弹、人造卫星中铝合金所占比重高达90%,是铸造生产中仅次于铸铁的第二大合金,其地壳含量达7.5%,在工业上有着重要地位。 铝合金有良好的表面光泽,在大气及淡水中具有良好的耐腐蚀性,故在民用器皿制造中,具有广泛的用途。纯铝在硝酸及醋酸等氧化性酸类介质中具有良好的耐蚀性,因而铝铸件在化学工业中也有一定的用途。纯铝及铝合金有良好的导热性能,放在化工生产中使用的热交换装置,以及动力机械上要求具有良好导热性能的零件,如燃机的汽缸盖和活塞等,也适于用铝合金来制造。 铝合金具有良好的铸造性能。由于熔点较低(纯铝熔点为660℃,铝合金的浇注温度一般约在730~750℃左右),故能广泛采用金属型及压力铸造等铸造方法,以提高铸件的在质量、尺寸精度和表面光洁程度以及生产效率。铝合金由于凝固潜热大,在重量相同条件下,铝液的凝固过程时间延续比铸钢和铸铁长得多,其流动性良好,有利于铸造薄壁和结构复杂的铸件。 铸造铝合金的分类、牌号: 铝合金按照加工方法的不同分为两大类,即压力加工铝合金和铸造铝合金(分别以YL和ZL表示)。在铸造铝合金中又依主要加入的合金元素的不同而分为四个系列,即铸造铝硅合金、铸造铝铜合金、铸造铝镁合金和铸造铅锌合金(分别以 ZL1X X,ZL2 X X,ZL3 X X和ZL4 X X表示),在每个系列中又按照化学成分及性能的不同而分为若干牌号。表1中列出了铸造铝合金国家标准所包括的几种铝合金的牌号。 6.5.2 铝合金的熔炼设备

铸造合金及其熔炼铸铁部分复习题

第一篇铸铁及其熔炼 1、按石墨形态的不同,铸铁分为灰口铸铁;球墨铸铁;蠕墨铸铁。 2、在Fe-G-Si相图中,硅的作用 (1)共晶点和共析点含碳量随硅量的增加而减少; (2)共晶转变和共析转变出现三相共存区; (3)改变共晶转变温度范围;提高共析转变温度; (4)减小奥氏体区域。 3、只考虑Si、P等元素对共晶点实际碳量影响的计算公式为CE=C+1/3(Si+P); 4、亚共晶铸铁凝固特点:凝固过程中,共晶体不是在初析树枝晶上以延续的方式在结晶前沿形核并长大,而是在初析奥氏体晶体附近的枝晶间、具有共晶成分的液体中单独由石墨形核开始;石墨作为领先相与共晶奥氏体共生生长; 5、过共晶铸铁的凝固特点:凝固过程则由析出初析石墨开始,到达共晶温度时,共晶石墨在初析石墨上析出,共晶石墨与初析石墨相连。 6、石墨的晶体结构是六方晶体。 7、如图所示,形成片状石墨的晶体生长是A向占优,而球状石墨是C向生长占优, 8、F、C型石墨属于过共晶成分铸铁中形成的石墨 A型B型D型F型 9、球状石墨形成的两个必要条件:铁液凝固时必须有较大的过冷度;铁液与石墨间较大的表面张力。 10、球墨铸铁的球状石墨的长大包括两个过程:石墨球在熔体中直接析出并长大;形成奥氏体外壳,在奥氏体外壳包围下长大。 11、由于球状石墨的生长是在共晶成分下形成的石墨和奥氏体分离长大,因此其共晶过程又称之为离异共晶; 12、灰铸铁的金相组织由金属基体和片状石墨组成,基体的主要形式有珠光体、铁素体、珠光体加铁素体。 13、普通铸铁中除铁以外,五大基本元素包括碳、硅、锰、硫、磷,其中碳、硅是最基本的成分,磷、硫是杂质元素,因此加以限制。 14、在铁碳双重相图中,稳定系和亚稳定系的共晶反应温度差别形成了共晶温度间隔,对于Ni、Si、Cr、S这四种元素来说,促进合金液在冷却过程中按稳定系转变的元素有Ni、Si,按亚稳定系转变的元素有Cr、S。 15、Cr元素在铸铁中的作用: (1)反石墨化元素,珠光体稳定元素;

铝合金铸造工艺简介

铝合金铸造工艺简介 一、铸造概论 在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下: 由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。 1、铝合金铸造工艺性能 铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1) 流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。 (2) 收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在

铸造合金及熔炼思考题要点

第一篇铸造有色合金及其熔炼思考题及参考答案 1.基本概念:屈服强度、抗拉强度、固溶强化、时效强化 屈服强度就是指金属对起始塑性变形的抗力;抗拉强度是代表最大均匀塑性变形抗力的指标;固溶强化是指形成固溶体使合金强化的方法;时效强化是指通过热处理利用合金的相变产生第二相微粒,造成的强化。 2.金属材料的强化机制主要有哪些,对强度和塑性有什么影响? 晶界强化、固溶强化、分散强化、形变强化、复合强化。形变强化与粒子强化在强度提高时,塑性会显著降低;固溶强化在强度提高时塑性还能保持较好的水平;晶界强化时,细化晶粒提高强度也改善塑性。 3.铸造合金的使用性能有哪些? 机械性能、物理性能和化学性能 4.铸造合金的工艺性能有哪些? 铸造性能、熔炼性能、焊接性能、热处理性能、机加工性能 5.基本概念:变质处理、机械性能的壁厚效应 所谓变质处理是在熔融合金中加入少量的一种或几种元素(或加化合物起作用而得),改变合金的结晶组织,从而改善合金机械性能。这种随铸件壁厚增加而使机械性能下降的现象,称为机械性能的壁厚效应。 6.铝硅合金进行变质处理的原因及方法? 原因:铝硅合金中的硅相在自发非控制生长条件下会长成粗大的片状,这种形态的脆性相严重割裂基体,大大降低合金的强度和塑性,为了改变这种状况,必须进行变质处理。方法:生产上常在合金液中加入氟化纳与氯盐的混合物来进行变质处理,加入微量的纯钠也有同样效果。 7.镁、铜、铁和锰对铝硅合金组织和性能的影响? 1)镁:少量的镁,即能大大提高抗拉和屈服强度,随着镁量增加,强化效果不断增大,强度急剧上升,而塑性下降;2)铜:使铝硅合金强度显著增加,但伸长率下降,提高合金的热强性;3)铁:恶化了合金的机械性能,特别是塑性,

金属材料的熔炼和浇铸部分实验报告

《材料的制备技术与实践课程-金属材料》 金属材料的熔炼和浇铸部分实验报告 一、实 验目的 金 属材料的熔炼 和铸造作为金 属材料使用最为广泛的成型方法之 一,在工业零件,尤其是大型零件的制备中具有不可替代的地位。本实验通过对有色合金进行熔炼浇注,了解铸造的整个流程,对金属的铸造有直观的认识。 二、实验方法 实验步骤: 1. 坩埚熔炼炉的使用 本实验使用电阻坩埚熔炼炉,主要包括两个部分:加热部分-电阻丝加热熔炼炉和控温部分-控温继电器。 打开总电源,在控温继电器的显示屏幕上显示有两个数字,红色的数字为当实验名称 金属材料的熔炼和浇铸部分 时间地点 2015年12月 23 日 材料学院325室 指导教师 王军、严彪 专业班级 无机 班 级 无机班 学生姓名 沈 杰 学 号 1531519

前熔炼炉炉内温度,绿色数字为设定的加热保温温度。待继电器示数稳定后,对加热温度进行设置。 点击按钮,设定数字变为4位数并闪动,点击按钮,选择要改变的位置,按进行调节,直到设定为想要的温度。点击按钮,确定加热保温温度。打开加热电源后,电流表显示有加热电流,说明已经开始加热。到达温度后保温一段时间,直至坩埚内金属熔化为液态。 2.金属浇注的方法 关闭加热电源,打开熔炼炉炉盖,用铁钳将坩埚从熔炼炉中取出,慢慢倾倒坩埚,使得里面的金属溶液慢慢流入模具中,充满整个形腔。将模具静置,待其冷却后卸模取样。 注意事项: 金属浇注是高温操作,必须注意安全,必须穿戴白帆布工作服和工作皮鞋。严格按照操作流程,预防危险。浇注前,必须清理浇注行进通道,防止摔倒。浇注时必须切断加热电源。在浇注前对模具进行预烘,防止模具中残留水分导致金属溶液飞溅。 三、思考题 1、铸造时温度的选择有什么要求? 铸造过程中温度的选择至关重要:过高温度浇注易造成粘砂、铁夹砂、缩孔、缩松、热裂、跑火、局部氧化、尺寸不合格、反应性气孔偏多等缺陷;过低温度浇注易造成:浇不足、冷隔、过渡圆角偏大、夹渣、夹砂、析出性气孔

铝合金熔炼与铸造工艺规范与流程

铝合金熔炼与铸造工艺 规范与流程 Revised by Chen Zhen in 2021

铝合金熔炼与铸造工艺规范与流程 资料来源:全球铝业网铝业知识频道一、铝合金熔炼规范 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T 9438-1999《铝合金铸件》、JISH 5202-1999《铝合金铸件》、ASTM B 108-03a《铝合金金属型铸件》、GB/T 15115-1994《压铸铝合金》、JISH 5302-2006《铝合金压铸件》、ASTM B 85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。 ②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨坩埚或铸铁坩埚。铸铁坩埚须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属材料及回炉料 ①新金属材料 铝锭:GB/T 1196-2002《重熔用铝锭》

铝硅合金锭:GB/T 8734-2000《铸造铝硅合金锭》 镁锭: GB 3499-1983《镁锭》 铝铜中间合金:YS/T 282-2000《铝中间合金锭》 铝锰中间合金:YS/T 282-2000《铝中间合金锭》 各牌号的预制合金锭:GB/T 8733-2000《铸造铝合金锭》、JISH 2117-1984《铸件用再生铝合金锭》、ASTM B 197-03《铸造铝合金锭》、JISH 2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50% 。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。 4)炉料预热 预热一般为350~450℃下保温2~4h。Zn、Mg、RE在200~250℃下保温2~4h。在保证坩埚涂料完整和充分预热的情况下,除Zn、Mg、Sr、Cd及RE等易燃材料外的炉料允许随炉预热。

我国铸造有色合金及其特种铸造技术发展现状

?? 铸造有色合金及其特种铸造技术在基本制造产业中占有重要地位,是关键技术之一,在航空、航天、船舶、汽车、轨道交通、化工、能源、电子电器和运动休闲等领域有着广泛的应用,由其所带动的产业在国民经济中起着重要的支撑作用。目前公认的铸造有色合金包括铝、镁、钛、锌和铜等材料,约占各类铸件总量的 20%左右,由于减重降耗的要求,其应用具有明显的增 长趋势,例如在汽车产业中,需要将铝合金铸件从现有的占铸件总重量的10%增长到30%左右,而在航空工业中,铝铸件更是占到铸件总量的80%以上。 为了更好的满足某类产品的使用要求,在产品设计时,会更多地考虑减轻产品的结构重量和特殊的物理化学性能,有色合金恰恰可以满足这几方面的需求,即:①产品构件的减重和轻量化需求;②产品的功能性需求,如电阻材料、磁性材料、记忆功能材料和耐磨减摩材料等;③产品的装饰性功能需求,如铝合金的光亮性、钛合金的可着色性等。对产品的减重和构件轻量化需求是推动铸造有色合金应用领域不断扩大的动力,而对产品的功能性和装饰性需求则是铸造有色合金的发展方向。 1 我国铸造有色合金的发展概况 1.1 铸造铝合金 铸造铝合金是我国发展较早的有色金属材料之一, 其密度小,比强度高和耐腐蚀,因此广泛地应用于航空、航天、汽车、机床制造等制造业。目前,随着行业的发展,对铸造铝合金的需求越来越大,尤其是汽车工业的发展,轿车生产总量激增,对铝合金的需求量越来越大。例如一汽生产的红旗轿车,其整车铝合金铸件已经超过100kg[1],而且随着对节约能源和环境保护要求的提高,铝铸件的生产正朝着轻量化、强韧化、精密化和复合化的方向发展,铸造铝合金的应用将有很大的空间。 在各类铸造铝合金中,按照其性能特点可分为:高强韧铝合金、耐热铝合金、耐蚀铝合金和超轻铝合金等等,其中高强韧铸造铝合金能够保证合金在高强度的条件下,还具有高的断裂韧性、疲劳性能和抗应力腐蚀性能,因此可以部分的取代锻件,制备成形状复杂的铸件。例如ZL205A高强度铸造铝合金,该合金的极限拉伸强度可达500MPa以上,已广泛用于航空、 收稿日期:2007-01-18收到初稿,2007-03-19收到修订稿。 作者简介:丁宏升(1968-),男,黑龙江双城人,副教授,博士,研究方向为材料液态制备成形与新工艺。E-mail:dinghosh@yahoo.com.cn 丁宏升,郭景杰,苏彦庆,贾 均,傅恒志 (哈尔滨工业大学,黑龙江哈尔滨150001) 摘要:结合我国在铸造有色合金领域的发展概况,从合金发展、应用和有色合金熔体技术以及特种铸造在有色合金中的 应用角度,分析了五十年来我国在该领域所取得的成绩和存在的问题,以引起广大科技工作者和生产技术人员对这方面 自主创新的重视,不断提高铸造有色合金的技术水平,扩大其应用领域。 关键词:有色合金;特种铸造;熔体处理;铸造合金;精密铸件中图分类号:TG29-1 文献标识码:A 文章编号:1001-4977(2007)06-0561-06 DINGHong-sheng,GUOJing-jie,SUYan-qing,JIAJun,FUHeng-zhi(HarbinInstituteofTechnology,Haerbin150001,Heilongjiang,China) Abstract:Thisarticlereviewsthefifty-year'sachievementsandthecurrentadvancementsonaspectsofnonferrouscastalloysandthecorrespondingspecialcastingtechnologiesinChina.Thereincludesalloysystems,alloyapplicationsandprocessesformelttreatmentsaswellastherelatedspecialcastingtechniquesaresummarized.Theaimistoarisepeoplepaymoreattentionsforimprovementinthisarea.Itisdemonstratedmakingbreakthroughandthereforepresentingnoveltiescoherentlyonthistechnologyinprospectisamainpathtobeahead. Keywords:nonferrousalloy;specialcasting;melttreatment;castalloy;precisioncasting 我国铸造有色合金及其特种铸造技术发展现状 DevelopmentonNonferrousCastAlloysandtheCorresponding SpecialCastingTechnologiesinChina !!!!!" !" !!!!!" !" 专题综述 Jun.2007Vol.56 No.6 铸造 FOUNDRY 561

合金及熔炼 (1)

1、屈服强度:表示方法:试样拉伸过程中标距部分残余伸长为原长度的0.2×10时的应力,符号δ0.2. 名词解释:就是指金属对起始塑性变形的抗力; 抗拉强度:表示方法:最大均匀塑性变形抗力的指标δb 名称解释:是代表最大均匀塑性变形抗力的指标; 延伸率:表示方法:δ 铸造合金的分类:铸造有色合金和铸造黑色合金 常用的熔炼方法及加热原理:冲天炉熔炼:利用焦炭燃烧产生热量使合金融化。 电弧炉熔炼:利用电弧产生的热量来熔炼合金。 感应炉熔炼:利用交流电感应作用是金属本身产生热量来熔化金属的一种熔炼方法 固溶强化:指形成固溶体使合金强化的方法 时效强化:通过热处理利用合金的相变产生第二相微粒,这样的强化加时强化 变质处理:是在熔融的合金中加入少量的一种或几种元素(或加化和物起作用而得),改变合金的结晶组织,从而改善机械性能 机械性能的壁厚效应:机械性能随壁厚的增加而下降的现象 变质潜伏期:变质元素加入铝液后,必须保持某一确定时间才能得到最大的变质作用,此保持时间称为潜伏期 炉料遗传性:质量差的炉料,熔化后获得的铸件组织性能也差,虽经正常熔炼工艺的处理仍无改善 球化衰退:球化处理后的铁液在停留预定时间后,球化效果会下降甚至消失 铁碳相图双重性:是指碳既可以以石墨形式存在,又可以以Fe3c形式存在。 炉气燃烧比:是指CO2占(CO2+CO)总量的百分比。 冲天炉的炉壁效应:冲天炉内的炉气有自动趋于沿炉壁流动的倾向 魏氏组织:铸钢冷却时,在二次结晶过程中,若铁素体呈针、片状从奥氏体中析出,且与晶粒周界成一定的角度,通常将这种先共析针(片)状铁素体加珠光体的组织 等强温度:随着温度升高,在一定温度时,晶界和晶内强度相等 金属的钝化:是指活泼金属由易腐蚀的活性状态变为耐腐蚀的钝性状态 集肤效应:由于高频,炉料中的电流绝大部分都沿表层流过,这种现象称为集肤效应 回火脆性: 稳定化处理:充分发挥钛的作用,使钢中尽可能多的C都形成TiC,并将铬稳定在奥氏体基体中的热处理方法称为稳定化处理。 3、金属材料的强化机制有哪些,细晶强化实质及对合金强度和塑性的影响 答:机制:细晶强化、固溶强化、时效强化、弥散强化、形变强化 实质:增加晶界能同时提供塑性和强度 影响:形变强化与粒子强化在强度提高时,塑性会显著降低;固溶强化在强度提高时塑性还能保持较好的水平;晶界强化时,细化晶粒提高强度也改善塑性。 4、铸造合金的使用性能有哪些: 答:机械性能、物理性能、化学性能 5、铸造合金的工艺性能有哪些: 答:铸造性能、熔炼性能、焊接性能、热处理性能、机加工性能 6、铸造铝合金的分类及牌号表示方法? 分类:si,cu,mg,zn四类,表达方式分别是:zl1**,zl2**,zl3**,zl4**,牌号:zal+合金元素+元素含量 标准类铸镁合金(Mg-Al-Zn系合金);2)高强度类铸镁合金(Mg-Zn-Zr系合金):3)耐热类镁合金(Mg-RE-Zn-Zr系合金) 7、铝硅合金进行变质处理的原因及方法? 答:原因:硅相在自发非控制生长条件下回长成片状,这种形态的脆相严重地割裂基体,大大降 低了合金的强度和塑性 方法:加入氟化钠与氯盐的混合物来进行变质处理,加入微量的纯钠也有同样效果。 8、镁、铜、铁、稀土、镍及锰对铝硅合金组织和性能的影响 答1)镁:少量的镁,即能大大提高抗拉和屈服强度,随着镁量增加,强化效果不断增大,强度急剧上升,而塑性下降; 2)铜:使铝硅合金强度显著增加,但伸长率下降,提高合金的热强性; 3)铁:恶化了合金的机械性能,特别是塑性,同时降低了合金的抗蚀性; 4)锰:在Al-Si合金中加入锰,可大大降低Fe的危害。 9、Al-Si类活塞合金多为共晶及过共晶合金的原因 答:原因:活塞材料要求具有高的热强性和耐磨性,低的线膨胀系数和密度。共晶及过共晶合金铝硅合金中含有大量共晶和初生

(工艺流程)铝合金熔炼工艺流程和操作工艺

铝合金熔炼工艺流程和操作工艺(一) 装料 熔炼时,装入炉料的顺序和方法不仅关系到熔炼的时间、金属的烧损、热能消耗,还会影响到金属熔体的质量和炉子的使用寿命。装料的原则有: 1、装炉料顺序应合理。正确的装料要根据所加入炉料性质与状态而定,而且还应考虑到最快的熔化速度,最少的烧损以及准确的化学成分控制。 装料时,先装小块或薄片废料,铝锭和大块料装在中间,最后装中间合金。熔点易氧化的中间合金装在中下层。所装入的炉料应当在熔池中均匀分布,防止偏重。 小块或薄板料装在熔池下层,这样可减少烧损,同时还可以保护炉体免受大块料的直接冲击而损坏。中间合金有的熔点高,如AL-NI和AL-MN合金的熔点为750-800℃,装在上层,由于炉内上部温度高容易熔化,也有充分的时间扩散;使中间合金分布均匀,则有利于熔体的成分控制。炉料装平,各处熔化速度相差不多这样可以防止偏重时造成的局部金属过热。 炉料应进量一次入炉,二次或多次加料会增加非金属夹杂物及含气量。 2、对于质量要求高的产品(包括锻件、模锻件、空心大梁和大梁型材等)的炉料除上述的装料要求外,在装料前必须向熔池内撒20-30kg粉状熔剂,在装炉过程中对炉料要分层撒粉状熔剂,这样可提高炉体的纯洁度,也可以减少损耗。 3、电炉装料时,应注意炉料最高点距电阻丝的距离不得少于100mm,否则容易引起短路。 熔化 炉料装完后即可升温。熔化是从固态转变为液态的过程。这一过程的好坏,对产品质量有决定性的影响。 A、覆盖 熔化过程中随着炉料温度的升高,特别是当炉料开始熔化后,金属外层表面所覆盖的氧化膜很容易破裂,将逐渐失去保护作用。气体在这时候很容易侵入,造成内部金属的进一步氧化。并且已熔化的液体或液流要向炉底流动,当液滴或液流进入底部汇集起来时,其表面的氧化膜就会混入熔体中。所以为了防止金属进一步氧化和减少进入熔体的氧化膜,在炉料软化下塌时,应适当向金属表面撒上一层粉状熔剂覆盖,其用量见表。这样也可以减少熔化过程中的金属吸气。 覆盖剂种类及用量 炉型及制品电气熔 炼煤气炉熔炼 覆盖剂用量普通制品特殊制品普通制 品特殊制品 (占投量) /% 0.4-0.5 0.5-0.6 1-2 2-4 覆盖剂种类粉状熔剂 Kcl:Nacl按1:1混合 B、加铜、加锌 当炉料熔化一部分后,即可向液体中均匀加入锌锭或铜板,以熔池中的熔体刚好能淹没住锌锭和铜板为宜。 这时应强调的是,铜板的熔点为1083℃,在铝合金熔炼温度范围内,铜是溶解在铝合金熔体中。因此,铜板如果加得过早,熔体未能将其盖住,这样将增加铜板的烧损;反之如果加得过晚,铜板来不及溶解和扩散,将延长熔化时间,影响合金的化学成分控制。 电炉熔炼时,应尽量避免更换电阻丝带,以防脏物落入熔体中,污染金属。 C、搅动熔体

2013-2014-(1)铸造合金及其熔炼试题与答案

成都理工大学2013-2014学年 第一学期《铸造合金及其熔炼》试卷答案(A) 一、名词解释 1)HT200 是指抗拉强度不低于200Mpa的灰口铸铁; 2)QT500-7是指抗拉强度不小于500MPa,伸长率不小于7的球墨铸铁。 3)ZL201:铸造铝铜合金ZAlCu5Mn,是重要的耐热高强度铸铝合金,成份Cu 4.5~5.3%,Mn 0.6%~1.0%,Ti 0.15~0.35%,其余为Al。 4)孕育处理:铸铁铁液在浇注前,在一定的温度和成分下,加入一定量的孕育剂如硅铁等,改变铁液的凝固过程,改善铸态组织,从而达到提高铸件性能为目的的处理方法,谓之孕育处理。 5)球化处理:向铁水中加入稀土镁合金(球化剂)。(其中镁是具有很强球化能力的元素)。球化剂的作用是使石墨呈球状析出。我国应用最广的球化剂是稀土镁合金。 6)铝合金的吸附精炼:是指在铝合金熔炼时通入不溶气体或加入精炼剂产生不溶于铝液的气体,在上浮的过程中吸附氧化夹杂,同时清除氧化夹杂及其表面依附的H2,达到净化铝液的方法。(3分) 7)水韧处理:高锰钢的含碳量一般在0.9~1.4%,属于高碳钢,铸态组织为奥氏体和碳化物以及少量的珠光体组成,为了消除碳化物,铸件加热至奥氏体化温度,保温至组织全部奥氏体化后,淬火得到单一的奥氏体组织,从而提高铸件的韧性,这一处理成为水韧处理。 8)时效强化(沉淀强化):时效处理,又称低温回火。时效强化是指在网溶度随温庋降低而减少的合金系中,当合金元素含量超过一定限量后,淬火可获得过饱和固溶体。在较低的温度加热(时效),过饱和固溶体将发生分解并析出弥散相,引起合金强度、硬度升高而塑性下降的过程。它也被称为沉淀强化。 9)T4 固溶处理:将铸件加热至固相线附近,使强化相溶入α(Al)中,在淬入冷却介质中获得过饱和的α(Al)固溶体,提高铸件的强度和塑性的一种热处理工艺。 10)吹氩精炼:利用氩是惰性气体,既不溶于钢液中,又不合钢液中的元素反应,因此向钢包内的钢液中吹氩,氩气泡在缓慢上升过程中吸附非金属夹杂和溶解在钢液中的气体,达到净化作用;同时由于氩气泡内CO的分压力为0,因此[C]和[O]在氩气泡和钢液界面上发生反应形成CO进入氩气泡,从而达到脱氧的目的。 二、填空(20分) 1、石墨形态的不同,铸铁分为灰口铸铁;球墨铸铁;蠕墨铸铁。 2、球状石墨形成的两个必要条件:铁液凝固时必须有较大的过冷度;铁液与石墨间较大的表面张力。 3、不锈钢中铬的主要作用,其作用包括:(1)在铸件表面形成致密的氧化膜;(2)提高铁素体的电极电位。 4、铸钢件断面典型的晶粒分布如图所示,包括三个区域:1—表面细晶区;2—柱状晶区;3—中间等轴晶区。 5、碳钢铸件热处理的目的是细化晶粒,消除魏氏体(或网状组织)和消除铸造应力。热处理方法有退火、正火或正火加回火。 6、铝合金的变质处理包括三类:(1)α(Al)的晶粒细化处理;(2)初晶Si的细化处理; (3)共晶硅的变质处理。(3分) 7、铸造黄铜是以Zn为主加元素的铜合金,铸造性能好表现在:(1)结晶温度范围小,充型能力强;(2)锌的沸点低,有自发除气作用。 8、木炭是熔炼铜合金时应用的覆盖剂,主要作用是防氧化、脱氧和保温。 三、简答(40) 1、影响铸铁石墨化程度的主要因索? 答:(1)、化学成分 1)碳和硅:碳是形成石墨的元素,也是促进石墨化的元素。含碳愈高,析出的石墨愈多、石墨片愈粗大。硅是强

《铸造合金及其熔炼》课程标准01

《铸造合金及其熔炼》课程标准 030705 一、课程描述 《铸造合金及其熔炼》是材料成型及控制专业核心课程。 通过该理论课程与实践课程的学习,使学生基本掌握本门课程的科学原理和技能,最终能够运用所学知识确定材料的性能、结构与应用的要求,制定合理的生产工艺;使学生掌握铸造合金的组织特点及其形成过程;能够分析各种铸造合金的工艺因素、金相组织和其机械性能的关系;具备制定和控制各项工艺因素,获得满意的金相组织和各种性能的知识和技能;了解铸造合金的凝固过程、工艺因素、金相组织和其机械性能的关系及不同合金凝固过程中的共性;掌握铸造合金的各种熔炼技术和工艺以及其与金属液质量、铸件质量的关系;了解近年来铸造合金及熔炼领域内的发展;培养学生分析问题、逻辑推理和创新能力,具有比较熟练地运用铸造合金及熔炼基本理论去分析解决实际生产问题的能力,成为能够适应工程实践要求的高素质技能型专门人才。 开课学期:5;总学时102;理论学时72;讲课60;课堂实训12;课程设计30;学分为:6。 二、课程目标 1、素质目标: 1)具有良好的职业道德、爱岗敬业、团队协作能力与实训创新能力; 2)有一定的自我学习能力和吸收新技术、新知识的意识; 3)具有较强的安全和环保意识; 2、知识目标: 1)掌握各种铸铁的概念及其应用场合,铸铁的金相组织及机械性能特点等基础知识; 2)掌握铸铁的一次结晶过程的主要特点及对组织形成的影响和二次结晶过程等理论识; 3)掌握各种铸铁的生产工艺,提高铸铁强度性能的途径及铸铁各种常见缺陷的特征、形成原因及防止措施;

4)了解冲天炉熔炼的基本原理、结构、工艺和方法,冲天炉内炉气性质与温度分布规律、炉内热交换规律及其影响因素等知识; 5)掌握强化冲天炉熔炼过程的途径、冲天炉熔炼过程的控制方法及常用仪器设备方面的知识; 6)了解铸造碳钢的结晶组织对性能的影响规律及铸造碳钢的牌号及性能; 7)了解高强韧性铸造合金钢、铸造高合金钢的牌号及性能特点及应用场合; 8)掌握铸造抗磨钢组织、性能特点及生产工艺。了解碱性电弧炉氧化法炼钢的工艺过程; 9)掌握铸造特种钢的组织特点及与性能的关系;重点掌握高锰钢的铸态、热处理态的组织特点及性能的差异; 10)了解和掌握碱性电弧炉氧化法炼钢的工艺过程; 11) 了解中频感应电炉、电阻坩埚炉熔炼、浇注工艺、机械化及自动化铸造技术; 3、能力目标: 1)熟悉铸铁的金相组织及机械性能特点,能够根据铸件材料的性能、结构与应用的要求,制定合理的生产工艺; 2)具备根据铸造合金的组织特点及其形成过程,分析各种铸造合金的工艺因素、金相组织和其机械性能的关系; 3)具备制定和控制各项工艺因素,获得满意的金相组织和各种性能的能力; 4)熟悉和掌握铸造合金的凝固过程、工艺因素、金相组织和其机械性能的关系及不同合金凝固过程中的共性; 5)掌握铸造合金的各种熔炼技术和工艺以及其与金属液质量、铸件质量的关系; 6)掌握强化冲天炉熔炼过程的途径、冲天炉熔炼过程的控制方法及常用仪器设备; 7)掌握铸钢熔炼的主要设备、加热原理,常见的各种熔炼方法的特点及碱性电弧氧化法炼钢的工艺过程及特点;

铸造铝合金熔炼工艺

铸造铝合金熔炼工艺 1工艺适用范围本熔炼工艺适用于砂型和金属型铸造ZL101A 合金的熔炼,可针对于重力铸造、低压铸造、倾转浇注、调压铸造等成型工艺使用。 本工艺可作为ZL101A 合金熔炼的母工艺,针对某一特定的成型工艺,如需特殊指出,可在此工艺基础上形成相应熔炼工艺,但不允许与母工艺相互冲突。 2工艺文件的抄报与保存工艺文件抄报、抄送范围:总师、副总师、技术部、质量部。工艺文件保存范围:电子文件备份和纸质文件送档案室保存,技术部、质量部各存一份使用文件。 3工艺详细内容 3.1熔炼设备、工具的选择及对后续熔炼质量的影响 3.1.1铝合金料熔化设备规定使用熔炼设备范围为:坩埚电阻炉,燃气连续熔化炉。对于金属型铸造可采用两种熔炼设备,使用燃气连续熔化炉熔化铝液,然后转包到坩埚电阻炉进行后续处理(精炼及变质);也可使用坩埚电阻炉熔化铝液及进行后续处理(精炼及变质)。 如采用金属型低压铸造、调压铸造成型工艺,可使用侧面开口注入铝液的机下炉进行连续生产。 采用坩埚电阻炉熔化铝液,铝液温度控制750℃以下,熔化过程的铝液吸气较少;采用燃气连续熔化炉熔化铝液,铝液温度控制容易超750℃,熔化过程的铝液吸气倾向较大。

3.1.2熔炼工具的选择及准备 熔炼前熔炼工具的准备对铝液熔炼质量影响较大,坩埚采用石墨及SiC 材质,使用前需进行预热烘干,烘干工艺如图1;如采用金属材质坩埚,最好选用不锈钢材质,如选用铸铁材质坩埚,以合金球墨铸铁为好。常用的浇包、浇勺等多采用不锈钢制作。 及工具进行喷砂处理,去除表面的铁锈及污物,然后预热到120~180 ℃,逐层喷涂,浇包、浇勺的涂料厚度0.3~0.8mm 为宜,坩埚涂料可稍厚一些。涂料最好选用专用的金属型非水基涂料,也可自行配制,基本配方如表1 所示,使用前涂料需预热到50~90 ℃。 表1 涂料配方 3.1.3炉料的存放与处理, 熔炼所使用的炉料需存放在干燥、不易混淆和污染的地方,铝

铸造合金及其熔炼复习摘要要点

铸造合金及其熔炼复习思考题 铸铁及其熔炼 1.什么是Fe-C双重相图,那一个相图是热力学稳定的,如何用双重相图来解释同一化学 成分的铁水在不同的冷却速度下会得到灰口或白口,硅、铬对双重相图共晶临界点各有何影响? 2.什么是碳当量、共晶度,有何意义。 3.分析片状石墨、球状石墨、蠕虫状石墨与奥氏体的共晶结过程和形成条件。 4.铸铁固态相变有那些,对铸铁最终组织有何影响? 5.冷却速度、化学成分(C、Si、Mn、 Cr、Cu等)对铸铁的一次结晶和二次结晶有何影响? 6.灰铸铁中石墨的分布形态有那几种,对铸铁的性能有何影响,从化学成分、冷却速度及 形核等方面说明其形成条件。 7.灰铸铁的基体和非金属夹杂物有那些类型,对铸铁的性能有何影响? 8.灰口铸铁的性能有何特点?与其组织有何关系?汽车上那些铸件采用灰口铁生产? 9.影响灰铸组织、性能的因素有那些,根据组织与性能的关系分析提高灰铸铁性能的途径 和措施。 10.灰铸铁孕育处理的目的是什么,有那些作用,孕育铸铁化学成分的选择原则是什么,提 高孕育效果有那些途径和措施? 11.说明球墨铸铁生产的工艺过程,其化学成分选择的原则是什么,与灰口铸铁有何不同? 12.球墨铸铁的球化剂和球化处理方法有那些? 13.球铁凝固组织中为何易于出现自由渗碳体,如何消除自由渗碳体? 14.根据铸铁组织形成原理分析在铸态下获得高韧性、高强度球墨铸铁的途径与措施。 15.球墨铸铁比灰口铸铁易出现缩孔、缩松缺陷,分析其原因和防止措施。 16.铸铁的热处理有何特点,生产上球墨铸铁采用那些热处理工艺? 17.蠕墨铸铁有何性能特点? 18.蠕墨铸铁的化学成分选择与灰铁和球铁有何不同,蠕化剂和蠕化处理工艺有那些? 19.简述可锻铸铁生产工艺过程,化学成分选择原则,为何对于薄壁小件采用可锻铸铁生产 有优越性? 20.减摩铸铁与抗磨铸铁的组织要求有何不同,常用减摩铸铁和抗磨铸铁有那些? 21.提高铸铁的耐热性能的途径和措施有那些?常用耐热铸铁有那些? 22.提高铸铁的耐蚀性能的途径和措施有那些,硅、铭、铬三元素在耐热铸铁及耐蚀铸铁中 的作用是什么? 23.简述冲天炉的结构与熔炼的一般过程。 24.简述冲天炉内炉气和温度的分布,影响铁液温度的主要因素。 25.冲天炉内铁液成分变化的一般规律? 26.简述感应电炉熔炼原理,感应炉内铁水成分的变化及铁液质量。 铸钢及其熔炼 27.与铸铁比较,铸钢的性能和生产工艺有何特点? 28.影响铸造碳钢力学性能的因素主要有那些?

有色合金及其熔炼

有色合金及其熔炼 时间:2009-12-02 18:32来源:未知作者:吴光来点击:48次 3. 有色合金及其熔炼 3.1 常用铸造有色合金(包括铸造铝合金、铸造镁合金、铸造铜合金、铸造锌合金及铸造轴承合金,下同)的分类、合金牌号及其特点、掌握合金材质选用及其熔铸工艺确定的原则; 3.1.1 简述Al-Si、Al-Cu、Al-Mg 和Al-Zn系铸造合金的主要特点及 3.有色合金及其熔炼 3.1常用铸造有色合金(包括铸造铝合金、铸造镁合金、铸造铜合金、铸造锌合金及铸造轴承合金,下同)的分类、合金牌号及其特点、掌握合金材质选用及其熔铸工艺确定的原则; 3.1.1简述Al-Si、Al-Cu、Al-Mg和Al-Zn系铸造合金的主要特点及其用途。 答:铸造用的铝合金主要是由Al-Si、Al-Cu、Al-Mg和Al-Zn四个二元基本合金系以及在此基础上,再添加少量其它元素形成的多元合金系组成的。 1)Al-Si合金系(≥5%Si)该系合金具有良好的铸造性能,铝中添加硅后,能明显提高铝液的流动性和铸造充填性能;减少收缩和热裂倾向。含有较多硅的合金热膨胀系数小、耐磨性能优良。含有少量的Mg、Cu等合金元素组成的多元Al-Si合金通过热处理有明显析出强化的效果,适用于多种铸造方法。现在铸造铝铸件大多数都是采用该系合金,它是铸造铝合金中牌号最多,应用最广泛的一类合金。 2)Al-Cu合金系(≥4%Cu)该系合金添加的Cu起固溶强化的作用,所以合金具有较高的强度和耐热性能;但密度大,耐蚀性能

和铸造性能较差,易产生热裂,常用于制造较高温度下(<300℃)工作的高强度的零件,如内燃机气缸头、增压器导风叶轮等。3)Al-Mg(≥5%Mg)该系合金具有优异的耐蚀性、强度高、密度小、切削及抛光性能也较好;但其铸造性能差,合金液易氧化,熔炼和铸造工艺较复杂。主要用于制造在大气和海水中工作的耐腐蚀性高且承受一定冲击载荷、形状较简单的零件,如船舶配件和机械壳体等。 4)Al-Zn合金系(Zn5-13%)该系合金是研究应用最早的铸造铝合金,其主要特点是价格较低,制备工艺简单,不需要热处理就能得到较高的强度;但密度大,耐蚀性能和铸造性能较差,高温性能低。主要用于制造压铸仪表壳体类零件、模具和模板等。3.1.2以ZL102合金为例,分析其组织形态在变质处理前后的变化。 答:(基本成分Si10-13%);变质处理:钠盐变质—二元变质剂。铝硅合金室温下组织为α(Al)和β(Si)两相组成。未变质时,Al-Si合金中的相呈针片状或粗大块状导致铝合金力学性能不高。变质后共晶组织为:共晶体(α+β)。 3.1.3试分析亚共晶和过共晶Al-Si合金变质剂及其处理特点。答: 亚共晶Al-Si合金常采用钠变质剂。特点:1)变质效果稳定;2)变质效果保持时间短,变质剂易吸潮,腐蚀铁质坩埚。锶变质剂属于长效变质剂。

铸造合金及其熔炼复习总结1

1、计算下列灰铸铁的碳当量及共晶度,并简述各铸铁的一次结晶过程。 (1)C:3.1%;Si:1.6%;Mn:0.6%;P:0.08%;S:0.08%; (2)C:3.6%;Si:2.6%;Mn:0.5%;P:0.06%;S:0.08%; 碳当量:将元素对共晶点实际碳量的影响折算成碳量的增减称为碳当量。 CE=C+1/3(Si+P) 共晶成分=4.26% 过共晶>4.26% 亚共晶<4.26% 共晶度:铸铁的实际含碳量和共晶点的实际含碳量比值,表示铸铁偏离共晶点的程度。 S c=C铁/[4.26%-1/3(Si+P)] 过共晶>1 共晶=1 亚共晶<1 答:(1)碳当量CE=C+1/3(Si+P)=3.2%+1/3(1.5%+0.08%)=3.73% 共晶度S c=C铁/[4.26%-1/3(Si+P)]=3.2%/[4.26%-1/3(1.5%+0.08%)]=0.86 CE<4.26%为亚共晶成分,其一次结晶过程为:铁液冷却时,先遇到液相线,在一定的过冷下析出初析奥氏体并逐渐长大,当进入共晶阶段后,开始形成共晶团。 (2)碳当量CE=C+1/3(Si+P)=3.6%+1/3(2.7%+0.06%)=4.52% 共晶度S c=C铁/[4.26%-1/3(Si+P)]=3.6%/[4.26%-1/3(2.7%+0.06%)]=1.08 CE>4.26%为过共晶成分,其一次结晶过程为:铁液冷却时,先遇到液相线,在一定的过冷下析出初析石墨的晶核,并在铁液中逐渐长大,当进入共晶阶段后,开始形成共晶团。 2、试分析为什么灰铸铁一般不能通过热处理提高其性能,而球墨铸铁可以通过热处理来提高其性能。 答:在灰铁件的生产中,之所以不能通过热处理大幅度提高其性能,其主要原因是由于灰铸铁的组织是有片状石墨和基体组成,并且片状石墨的数量、分布、状态和尺寸大小对灰铸铁和性能影响极大,对其性能起着关键的作用。而热处理只能改变基体,基本不能改变片状石墨的数量、分布、形态和大小,因此在灰铸铁的生产中难以通过热处理大幅度改善和提高其力学性能。 而球墨铸铁中石墨呈球状,对基体的切割和缩减作用大大降低。基体的机械性能对球墨铸铁的性能起决定性作用。通过热处理可以改善其基体组织,从而提高机械性能。因此在球墨铸铁的生产中可以通过热处理来提高其力学性能。 3、简述其碳当量、冷却速度对灰铸铁组织和性能的影响。 答:当冷却速度一定时,碳当量越大,析出的铁素体越少,石墨越多,粗大,并且分布不均匀;灰铸铁的强度、硬度减小,塑性、韧性增大。碳当量越小,则反之。当碳当量一定时,随着冷却速度的增加,铁液的过冷度增大,灰铸铁的白口倾向越来越大,析出的铁素体增加,石墨减少,但石墨数量多,细小,并且分布均匀,灰铸铁的硬度、强度增大,塑性、韧性下降。随着冷却速度的减小,则反之。 4、简述灰铸铁与球墨铸铁在化学成分、金相组织及力学性能方面的主要差别。 答:灰铸铁和球墨铸铁在化学成分方面的差别是:灰铸铁碳量、硅量偏低,锰量、硫量、磷量偏高,而球墨铸铁碳量、硅量偏高,锰量、硫量、磷量较低,并含镁和稀土球化元素;二者在组织上的差别是:灰铸铁金相组织:片状石墨+珠光体+少量铁素体+极少量磷共晶和渗碳体,球墨铸铁的金相组织:球状石墨+基体(珠光体+铁素体)+极少量渗碳体(或没有);二者在性能上的差别:灰铸铁强度低(σb=100~400MPa),且是脆性性材料。球墨铸铁强度较高(σb=400~800MPa),且具有良好的塑性、韧性(延伸率=2~20%),依据不同比例的基体种类,可实现强度和塑、韧性的匹配。 5、分析在球墨铸铁生产中,为什么必须进行孕育处理。(简述球墨铸铁孕育处理的作用或目的) 答:1)消除结晶过冷倾向,球墨铸铁加入了Mg,RE等球化剂,共晶转变温度降低,结晶过冷倾向大,易形成白口组织。孕育处理可以消除结晶过冷倾向,避免按介稳定系凝固。 2)促进石墨化,球铁铁液经球化净化了体系,形核率降低。加入孕育剂,增加了石墨核心,细化球状石墨,提高球状石墨生长的稳定性,提高了石墨球的圆整度。 3)减小晶间偏析,球铁共晶团生长过程中,结晶前沿富集了正偏析元素,并产生脆性相,降低了铸铁的塑韧性,孕育处理能够使共晶团细化,减小晶间偏析,提高铸铁的塑性和韧性。 6、为什么铸态球墨铸铁组织中易出现少量渗碳体?如何避免和消除? 答:球墨铸铁铁液的结晶过冷倾向较灰铸铁大,并且球墨铸铁的结晶过冷倾向不随铁液硅含量的高低而变化,因此尽管球墨铸铁的碳硅含量比一般灰铸铁高,但人有较大的白口倾向,在球墨铸铁组织中常发现在共晶团边界上有少量渗碳体析出。若冷却较快,会形成局部或全部白口组织。所以在球化处理后,必须进行有效的孕育处理,以消除过冷倾向,避免铁液按介稳定系凝固。

铸造合金及其熔炼实验报告

“铸造合金及其熔炼” 实验指导书 赵忠兴王连琪张学萍 材料科学与工程学院 2006、8

实验一: 灰铸铁、球墨铸铁、蠕墨铸铁、可锻 铸铁金相组织观察及分析 一、实验目的 1.观察灰铸铁、球墨铸铁、蠕墨铸铁、可锻铸铁的金相组织。 2.观察不同牌号灰铸铁的金相组织,分析石墨大小、数量对灰铸铁力学性能的影响。 3.观察不同形状石墨铸铁的金相组织,分析石墨形状对灰铸铁力学性能的影响。 4.观察不同基体铸铁的金相组织,分析基体组织对灰铸铁力学性能的影响。 5.了解石墨和基体组织的生成条件。 二、实验内容 1.画出HT100、HT150、HT200的金相组织示意图,并指出各相的名称。 2.画出球墨铸铁、蠕墨铸铁、可锻铸铁的金相组织示意图,并指出各相的名称。 三、实验原理及方法 1.实验原理 铸铁的力学性能来源于基体,取决于石墨的大小、数量、形状。石墨以片状形态存在,对基体割裂作用较大,降低基体的有

效承载面积;同时在石墨的尖端产生较大的应力集中,从而使铸铁的力学性能降低。石墨以球状形态存在,对基体割裂作用最小,对于灰铸铁,片状石墨数量越多、越大,铸铁的力学性能相对较低。 2.实验方法 ①选择不同的铸铁试样。 ②将试样腐蚀吹干。 ③调整焦距,在清晰视野内将试样在光学显微镜下进行观察。 ④画出所观察铸铁试样的金相组织示意图。 四、填写实验报告 1.实验目的。 2.实验内容 3.实验仪器、设备、原理、步骤。 4.实验结果分析。 五、讨论题 1、分析灰铸铁中石墨数量、大小对其力学性能的影响。 2、试分析灰铸铁、球墨铸铁、蠕墨铸铁、可锻铸铁中石墨形状的变化对铸铁力学性能的影响。

相关文档
最新文档