计算方法上机实习题大作业(实验报告)

计算方法实验报告

班级: 学号: 姓名: 成绩:

1 舍入误差及稳定性

一、实验目的

(1)通过上机编程,复习巩固以前所学程序设计语言及上机操作指令;

(2)通过上机计算,了解舍入误差所引起的数值不稳定性

二、实验内容

1、用两种不同的顺序计算10000

21n n -=∑,分析其误差的变化 2、已知连分数()

101223//(.../)n n a f b b a b a a b =++++,利用下面的算法计算f : 11

,i n n i i i a d b d b d ++==+ (1,2,...,0)i n n =-- 0f d = 写一程序,读入011,,,...,,,...,,n n n b b b a a 计算并打印f

3、给出一个有效的算法和一个无效的算法计算积分

1

041n

n x y dx x =+? (0,1,...,10)n = 4、设2211N N j S j ==-∑,已知其精确值为1311221N N ??-- ?+??

(1)编制按从大到小的顺序计算N S 的程序

(2)编制按从小到大的顺序计算N S 的程序

(3)按两种顺序分别计算10001000030000,,,S S S 并指出有效位数

三、实验步骤、程序设计、实验结果及分析

1、用两种不同的顺序计算100002

1n n -=∑,分析其误差的变化 (1)实验步骤:

分别从1~10000和从10000~1两种顺序进行计算,应包含的头文件有stdio.h 和math.h

(2)程序设计:

a.顺序计算

#include

#include

void main()

{

double sum=0;

int n=1;

while(1)

{

sum=sum+(1/pow(n,2));

if(n%1000==0)printf("sun[%d]=%-30f",n,sum);

if(n>=10000)break;

n++;

}

printf("sum[%d]=%f\n",n,sum);

}

b.逆序计算

#include

#include

void main()

{

double sum=0;

int n=10000;

while(1)

{

sum=sum+(1/pow(n,2));

if(n%1000==0)

printf("sum[%d]=%-30f",n,sum);

if(n<=1)break;

n--;

}

printf("sum[%d]=%f\n",n,sum);

}

(3)实验结果及分析:

程序运行结果:

a.顺序计算

b.逆序计算

结果分析:两种不同顺序计算结果是一样的,顺序计算误差从一开始就很小,而逆序计算误差最开始十分大,后来结果正确。

2、已知连分数()101223//(.../)n n a f b b a b a a b =+

+++,计算f : (1)实验步骤:

利用 11

,i n n i i i a d b d b d ++==+

(1,2,...,0)i n n =--,0f d =,计算f (2)程序设计

#include

#include

void main()

{

int i=0,n;

float a[1024],b[1024],d[1024];

printf("please input n,n=");

scanf("%d",&n);

printf("\nplease input a[1] to a[n]:\n");

for(i=1;i<=n;i++)

{

printf("a[%d]=",i);

scanf("%f",&a[i]);

}

printf("\nplease input b[0] to b[n]:\n");

for(i=0;i<=n;i++)

{

printf("b[%d]=",i);

scanf("%f",&b[i]);

}

d[n]=b[n];

for(i=n-1;i>=0;i--)

d[i]=b[i]+a[i+1]/d[i+1];

printf("\nf=%f\n",d[0]);

}

(3)实验结果

程序运行结果:

3、给出一个有效的算法和一个无效的算法计算积分

1

041n

n x y dx x =+? (0,1,...,10)n =

(1)实验步骤

利用C语言编写程序,分别使用数值稳定的和数值不稳定的计算公式所建立的递推公式进行计算。

(2)程序设计

#include

#include

main()

{

double y_0=(1/4.0)*log(5),y_1;

double y_2=(1.0/55.0+1.0/11.0)/2,y_3;

int n=1,m=10;

printf("有效算法输出结果:\n");

printf("y[0]=%-20f",y_0);

while(1)

{

y_1=1.0/(4*n)+y_0/(-4.0);

printf("y[%d]=%-20f",n,y_1);

if(n>=10) break;

y_0=y_1;

n++;

if(n%3==0) printf("\n");

}

printf("\n无效算法的输出结果:\n");

printf("y[10]=%-20f",y_2);

while(1)

{

y_3=1.0/n-4.0*y_2;

printf("y[%d]=%-20f",m-1,y_3);

if(m<=1) break;

y_2=y_3;

m--;

if(m%2==0) printf("\n");

}

}

(3)实验结果及分析

程序运行结果:

结果分析:无效算法数值不稳定,误差造成的影响特别大

《计算方法》课内实验报告

《计算方法》实验报告 姓名: 班级: 学号: 实验日期: 2011年10月26日

一、实验题目: 数值积分 二、实验目的: 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解数值积分的基础理论。 3.进一步掌握应用不同的数值积分方法求解给定的积分并给出数据结果及误差分析。 三、实验内容: 1.分别用复合梯形求积公式及复合辛普森求积公式计算积分xdx x ln 10 ? , 要求计算精度达到410-,给出计算结果并比较两种方法的计算节点数. 2.用龙贝格求积方法计算积分dx x x ?+3 021,使误差不超过510-. 3.用3=n 的高斯-勒让德公式计算积分?3 1 sin x e x ,给出计算结果. 4.用辛普森公式(取2==M N ) 计算二重积分.5 .00 5 .00 dydx e x y ? ? - 四、实验结果: 1.(1)复合梯形法: 将区间[a,b]划分为n 等份,分点n k n a b h kh a x k ,2,1,0,,=-=+=在每个区间[1,+k k x x ](k=0,1,2,···n-1)上采用梯形公式,则得 )()]()([2)()(1 11 1 f R x f x f h dx x f dx x f I n n k k k b a n k x x k k ++===∑?∑? -=+-=+ 故)]()(2)([21 1 b f x f a f h T n k k n ++=∑-=称为复合梯形公式 计算步长和划分的区间 Eps=1E-4 h1=sqrt(Eps/abs(-(1-0)/12*1/(2+1))) h1 =0.0600 N1=ceil(1/h1) N1 =17 用复合梯形需要计算17个结点。 复合梯形: function T=trap(f,a,b,n) h=(b-a)/n;

计算方法上机实验报告

《计算方法》上机实验报告 班级:XXXXXX 小组成员:XXXXXXX XXXXXXX XXXXXXX XXXXXXX 任课教师:XXX 二〇一八年五月二十五日

前言 通过进行多次的上机实验,我们结合课本上的内容以及老师对我们的指导,能够较为熟练地掌握Newton 迭代法、Jacobi 迭代法、Gauss-Seidel 迭代法、Newton 插值法、Lagrange 插值法和Gauss 求积公式等六种算法的原理和使用方法,并参考课本例题进行了MATLAB 程序的编写。 以下为本次上机实验报告,按照实验内容共分为六部分。 实验一: 一、实验名称及题目: Newton 迭代法 例2.7(P38):应用Newton 迭代法求 在 附近的数值解 ,并使其满足 . 二、解题思路: 设'x 是0)(=x f 的根,选取0x 作为'x 初始近似值,过点())(,00x f x 做曲线)(x f y =的切线L ,L 的方程为))((')(000x x x f x f y -+=,求出L 与x 轴交点的横坐标) (') (0001x f x f x x - =,称1x 为'x 的一次近似值,过点))(,(11x f x 做曲线)(x f y =的切线,求该切线与x 轴的横坐标) (') (1112x f x f x x - =称2x 为'x

的二次近似值,重复以上过程,得'x 的近似值序列{}n x ,把 ) (') (1n n n n x f x f x x - =+称为'x 的1+n 次近似值,这种求解方法就是牛顿迭代法。 三、Matlab 程序代码: function newton_iteration(x0,tol) syms z %定义自变量 format long %定义精度 f=z*z*z-z-1; f1=diff(f);%求导 y=subs(f,z,x0); y1=subs(f1,z,x0);%向函数中代值 x1=x0-y/y1; k=1; while abs(x1-x0)>=tol x0=x1; y=subs(f,z,x0); y1=subs(f1,z,x0); x1=x0-y/y1;k=k+1; end x=double(x1) K 四、运行结果: 实验二:

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

计算方法上机作业

计算方法上机报告 姓名: 学号: 班级: 上课班级:

说明: 本次上机实验使用的编程语言是Matlab 语言,编译环境为MATLAB 7.11.0,运行平台为Windows 7。 1. 对以下和式计算: ∑ ∞ ? ?? ??+-+-+-+=0681581482184161n n n n S n ,要求: ① 若只需保留11个有效数字,该如何进行计算; ② 若要保留30个有效数字,则又将如何进行计算; (1) 算法思想 1、根据精度要求估计所加的项数,可以使用后验误差估计,通项为: 1421114 16818485861681 n n n a n n n n n ε??= ---<< ?+++++??; 2、为了保证计算结果的准确性,写程序时,从后向前计算; 3、使用Matlab 时,可以使用以下函数控制位数: digits(位数)或vpa(变量,精度为数) (2)算法结构 1. ;0=s ?? ? ??+-+-+-+= 681581482184161n n n n t n ; 2. for 0,1,2,,n i =??? if 10m t -≤ end; 3. for ,1,2,,0n i i i =--??? ;s s t =+

(3)Matlab源程序 clear; %清除工作空间变量 clc; %清除命令窗口命令 m=input('请输入有效数字的位数m='); %输入有效数字的位数 s=0; for n=0:50 t=(1/16^n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)); if t<=10^(-m) %判断通项与精度的关系break; end end; fprintf('需要将n值加到n=%d\n',n-1); %需要将n值加到的数值 for i=n-1:-1:0 t=(1/16^i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)-1/(8*i+6)); s=s+t; %求和运算 end s=vpa(s,m) %控制s的精度 (4)结果与分析 当保留11位有效数字时,需要将n值加到n=7, s =3.1415926536; 当保留30位有效数字时,需要将n值加到n=22, s =3.14159265358979323846264338328。 通过上面的实验结果可以看出,通过从后往前计算,这种算法很好的保证了计算结果要求保留的准确数字位数的要求。

计算方法上机题答案

2.用下列方法求方程e^x+10x-2=0的近似根,要求误差不超过5*10的负4次方,并比较计算量 (1)二分法 (局部,大图不太看得清,故后面两小题都用局部截图) (2)迭代法

(3)牛顿法 顺序消元法 #include #include #include int main() { int N=4,i,j,p,q,k; double m; double a[4][5]; double x1,x2,x3,x4; for (i=0;i

for(k=p+1;kmax1 max1=abs(A(i,k));r=i; end end

c 计算器实验报告

简单计算器 姓名: 周吉祥 实验目的:模仿日常生活中所用的计算器,自行设计一个简单的计算器程序,实现简单的计算功能。 实验内容: (1)体系设计: 程序是一个简单的计算器,能正确输入数据,能实现加、减、乘、除等算术运算,运算结果能正确显示,可以清楚数据等。 (2)设计思路: 1)先在Visual C++ 6.0中建立一个MFC工程文件,名为 calculator. 2)在对话框中添加适当的编辑框、按钮、静态文件、复选框和单 选框 3)设计按钮,并修改其相应的ID与Caption. 4)选择和设置各控件的单击鼠标事件。 5)为编辑框添加double类型的关联变量m_edit1. 6)在calculatorDlg.h中添加math.h头文件,然后添加public成 员。 7)打开calculatorDlg.cpp文件,在构造函数中,进行成员初始 化和完善各控件的响应函数代码。 (3)程序清单:

●添加的public成员: double tempvalue; //存储中间变量 double result; //存储显示结果的值 int sort; //判断后面是何种运算:1.加法2.减法3. 乘法 4.除法 int append; //判断后面是否添加数字 ●成员初始化: CCalculatorDlg::CCalculatorDlg(CWnd* pParent /*=NULL*/) : CDialog(CCalculatorDlg::IDD, pParent) { //{{AFX_DATA_INIT(CCalculatorDlg) m_edit1 = 0.0; //}}AFX_DATA_INIT // Note that LoadIcon does not require a subsequent DestroyIcon in Win32 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); tempvalue=0; result=0; sort=0; append=0; }

计算方法第二章方程求根上机报告

实验报告名称 班级:学号:姓名:成绩: 1实验目的 1)通过对二分法与牛顿迭代法作编程练习与上级运算,进一步体会二分法与牛顿迭代法的不同特点。 2)编写割线迭代法的程序,求非线性迭代法的解,并与牛顿迭代法。 2 实验内容 用牛顿法和割线法求下列方程的根 x^2-e^x=0; x*e^x-1=0; lgx+x-2=0; 3实验步骤 1)根据二分法和牛顿迭代法,割线法的算法编写相应的求根函数; 2)将题中所给参数带入二分法函数,确定大致区间; 3)用牛顿迭代法和割线法分别对方程进行求解; 3 程序设计 牛顿迭代法x0=1.0; N=100; k=0; eps=5e-6; delta=1e-6; while(1) x1=x0-fc1(x0)/fc2(x0); k=k+1; if k>N disp('Newmethod failed')

break end if(abs(x1-x0)=delta) c=x1; x1=cutnext(x0,x1); x0=c; %x0 x1μYí?μ?μ?x1 x2 è?è?±£′??úx0 x1 end k=k+1; if k>N disp('Cutline method failed') break; end if(abs(x1-x0)

《数值计算方法》上机实验报告

《数值计算方法》上机实验报告华北电力大学 实验名称数值il?算方法》上机实验课程名称数值计算方法专业班级:电力实08学生姓名:李超然学号:200801001008 成绩: 指导教师:郝育黔老师实验日期:2010年04月华北电力大学实验报告数值计算方法上机实验报吿一. 各算法的算法原理及计算机程序框图1、牛顿法求解非线性方程 *对于非线性方程,若已知根的一个近似值,将在处展开成一阶 xxfx ()0, fx ()xkk 泰勒公式 "f 0 / 2 八八,fxfxfxxxxx 0 0 0 0 0 kkkk2! 忽略高次项,有 ,fxfxfxxx 0 ()()(),,, kkk 右端是直线方程,用这个直线方程来近似非线性方程。将非线性方程的 **根代入,即fx ()0, X ,* fxfxxx 0 0 0 0, ,, kkk fx 0 fx 0 0,

解出 fX 0 *k XX,, k' fx 0 k 水将右端取为,则是比更接近于的近似值,即xxxxk, Ik, Ik fx ()k 八XX, Ikk* fx()k 这就是牛顿迭代公式。 ,2,计算机程序框图:,见, ,3,输入变量、输出变量说明: X输入变量:迭代初值,迭代精度,迭代最大次数,\0 输出变量:当前迭代次数,当前迭代值xkl ,4,具体算例及求解结果: 2/16 华北电力大学实验报吿 开始 读入 l>k /fx()0?,0 fx 0 Oxx,,01* fx ()0 XX,,,?10 kk, ,1,kN, ?xx, 10 输出迭代输出X输出奇异标志1失败标志

,3,输入变量、输出变量说明: 结束 例:导出计算的牛顿迭代公式,并il ?算。(课本P39例2-16) 115cc (0), 求解结果: 10. 750000 10.723837 10. 723805 10. 723805 2、列主元素消去法求解线性方程组,1,算法原理: 高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘 -个 方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上 对上三角 3/16 华北电力大学实验报告方程组求解。 列选主元是当高斯消元到第步时,从列的以下(包括)的各元素中选出绝 aakkkkkk 对值最大的,然后通过行交换将其交换到的位置上。交换系数矩阵中的 两行(包括常ekk 数项),只相当于两个方程的位置交换了,因此,列选主元不影响求解的结 ,2,计算机程序框图:,见下页, 输入变量:系数矩阵元素,常向量元素baiji 输出变量:解向量元素bbb,,12n

计算方法实验报告格式

计算方法实验报告格式 小组名称: 组长姓名(班号): 小组成员姓名(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一个完整的实验,应包括数据准备、理论基础、实验内容及方法,最终对实验结果进行分析,以达到对理论知识的感性认识,进一步加深对相关算法的理解,数值实验以实验报告形式完成,实验报告格式如下: 一、实验名称 实验者可根据报告形式需要适当写出. 二、实验目的及要求 首先要求做实验者明确,为什么要做某个实验,实验目的是什么,做完该实验应达到什么结果,在实验过程中的注意事项,实验方法对结果的影响也可以以实验目的的形式列出. 三、算法描述(实验原理与基础理论) 数值实验本身就是为了加深对基础理论及方法的理解而设置的,所以要求将实验涉及到的理论基础,算法原理详尽列出. 四、实验内容 实验内容主要包括实验的实施方案、步骤、实验数据准备、实验的算法以及可能用到的仪器设备. 五、程序流程图 画出程序实现过程的流程图,以便更好的对程序执行的过程有清楚的认识,在程序调试过程中更容易发现问题. 六、实验结果 实验结果应包括实验的原始数据、中间结果及实验的最终结果,复杂的结果可以用表格

形式列出,较为简单的结果可以与实验结果分析合并出现. 七、实验结果分析 实验结果分析包括对对算法的理解与分析、改进与建议. 数值实验报告范例 为了更好地做好数值实验并写出规范的数值实验报告,下面给出一简单范例供读者参考. 数值实验报告 小组名称: 小组成员(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一、实验名称 误差传播与算法稳定性. 二、实验目的 1.理解数值计算稳定性的概念. 2.了解数值计算方法的必要性. 3.体会数值计算的收敛性与收敛速度. 三、实验内容 计算dx x x I n n ? += 1 10 ,1,2,,10n = . 四、算法描述 由 dx x x I n n ? += 1 10 ,知 dx x x I n n ?+=--101110,则

计算方法上机作业

计算方法第四次上机报告 2.用欧拉方法解初值 y’=10x(1-y) 0<=x<=1 Y(0)=0 取步长h=0.1,保留5位有效数字,并与准确解相比较 分析:该题目考察欧拉方法解初值问题 程序如下: function Heun(a,b,y0,n) h=(b-a)/n;x=a:h:b; y=y0*ones(1,n+1); for j=2:n+1 yp=y(j-1)+h*f(x(j-1),y(j-1)); yc=y(j-1)+h*f(x(j),yp); y(j)=1/2*(yp+yc); end for k=1:n+1 fprintf('x[%d]=%f\ty[%d]=%f\n',k-1,x(k),k-1,y(k)); end function z=f(xx,yy) z=10*xx*(1-yy); 运行结果: >> Heun(0,1,0,10) x[0]=0.000000 y[0]=0.000000 x[1]=0.100000 y[1]=0.050000 x[2]=0.200000 y[2]=0.183000

x[3]=0.300000 y[3]=0.362740 x[4]=0.400000 y[4]=0.547545 x[5]=0.500000 y[5]=0.705905 x[6]=0.600000 y[6]=0.823543 x[7]=0.700000 y[7]=0.901184 x[8]=0.800000 y[8]=0.947627 x[9]=0.900000 y[9]=0.973290 x[10]=1.000000 y[10]=0.986645 >> 分析: 该结果与准确结果相比比较接近,但是有一定的误差。 6.用四阶龙格—库塔公式解第三题中的初值问题,取步长h=0.2,保留五位有效数字。 题目目的分析: 该题考查四阶龙格-库塔方法和改进欧拉方法求解精确度问题。 程序: 改进欧拉法: function Heun(a,b,y0,n) h=(b-a)/n;x=a:h:b; y=y0*ones(1,n+1); for j=2:n+1 yp=y(j-1)+h*f(x(j-1),y(j-1)); yc=y(j-1)+h*f(x(j),yp); y(j)=1/2*(yp+yc); end for k=1:n+1 fprintf('x[%d]=%f\ty[%d]=%f\n',k-1,x(k),k-1,y(k)); end

数值分析上机实验报告

数值分析上机实验报告

《数值分析》上机实验报告 1.用Newton 法求方程 X 7-X 4+14=0 在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。 1.1 理论依据: 设函数在有限区间[a ,b]上二阶导数存在,且满足条件 {}α?上的惟一解在区间平方收敛于方程所生的迭代序列 迭代过程由则对任意初始近似值达到的一个中使是其中上不变号 在区间],[0)(3,2,1,0,) (') ()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20 )()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f a b c f x f b a x f b f x f k k k k k k ==- ==∈≤-≠>+ 令 )9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3 2 2 5 333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f 故以1.9为起点 ?? ?? ? ='- =+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。当前后两个的差<=ε时,就认为求出了近似的根。本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码: #include #include main() {double x2,f,f1; double x1=1.9; //取初值为1.9 do {x2=x1; f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;} while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);} 1.3 运行结果: 1.4 MATLAB上机程序 function y=Newton(f,df,x0,eps,M) d=0; for k=1:M if feval(df,x0)==0 d=2;break else x1=x0-feval(f,x0)/feval(df,x0); end e=abs(x1-x0); x0=x1; if e<=eps&&abs(feval(f,x1))<=eps d=1;break end end

计算方法试题库讲解

计算方法 一、填空题 1.假定x ≤1,用泰勒多项式?+??+++=! !212n x x x e n x ,计算e x 的值,若要求截断误差不超过0.005,则n=_5___ 2. 解 方 程 03432 3=-+x -  x x 的牛顿迭代公式 )463/()343(121121311+--+--=------k k k k k k k x x x x x x x 3.一阶常微分方程初值问题 ?????= ='y x y y x f y 0 0)() ,(,其改进的欧拉方法格式为)],(),([21 1 1 y x y x y y i i i i i i f f h +++++= 4.解三对角线方程组的计算方法称为追赶法或回代法 5. 数值求解初值问题的四阶龙格——库塔公式的局部截断误差为o(h 5 ) 6.在ALGOL 中,简单算术表达式y x 3 + 的写法为x+y ↑3 7.循环语句分为离散型循环,步长型循环,当型循环. 8.函数)(x f 在[a,b]上的一次(线性)插值函数= )(x l )()(b f a b a x a f b a b x --+-- 9.在实际进行插值时插值时,将插值范围分为若干段,然后在每个分段上使用低阶插值————如线性插值和抛物插值,这就是所谓分段插值法 10、数值计算中,误差主要来源于模型误差、观测误差、截断误差和舍入误差。 11、电子计算机的结构大体上可分为输入设备 、 存储器、运算器、控制器、 输出设备 五个主要部分。 12、算式2 cos sin 2x x x +在ALGOL 中写为))2cos()(sin(2↑+↑x x x 。 13、ALGOL 算法语言的基本符号分为 字母 、 数字 、 逻辑值、 定义符四大

计算方法上机实习题大作业(实验报告).

计算方法实验报告 班级: 学号: 姓名: 成绩: 1 舍入误差及稳定性 一、实验目的 (1)通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; (2)通过上机计算,了解舍入误差所引起的数值不稳定性 二、实验内容 1、用两种不同的顺序计算10000 21n n -=∑,分析其误差的变化 2、已知连分数() 1 01223//(.../)n n a f b b a b a a b =+ +++,利用下面的算法计算f : 1 1 ,i n n i i i a d b d b d ++==+ (1,2,...,0 i n n =-- 0f d = 写一程序,读入011,,,...,,,...,,n n n b b b a a 计算并打印f 3、给出一个有效的算法和一个无效的算法计算积分 1 041 n n x y dx x =+? (0,1,...,1 n = 4、设2 2 11N N j S j == -∑ ,已知其精确值为1311221N N ?? -- ?+?? (1)编制按从大到小的顺序计算N S 的程序 (2)编制按从小到大的顺序计算N S 的程序 (3)按两种顺序分别计算10001000030000,,,S S S 并指出有效位数 三、实验步骤、程序设计、实验结果及分析 1、用两种不同的顺序计算10000 2 1n n -=∑,分析其误差的变化 (1)实验步骤: 分别从1~10000和从10000~1两种顺序进行计算,应包含的头文件有stdio.h 和math.h (2)程序设计: a.顺序计算

#include #include void main() { double sum=0; int n=1; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0)printf("sun[%d]=%-30f",n,sum); if(n>=10000)break; n++; } printf("sum[%d]=%f\n",n,sum); } b.逆序计算 #include #include void main() { double sum=0; int n=10000; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0) printf("sum[%d]=%-30f",n,sum); if(n<=1)break; n--; } printf("sum[%d]=%f\n",n,sum); } (3)实验结果及分析: 程序运行结果: a.顺序计算

计算方法实验报告 拟合

南京信息工程大学实验(实习)报告 一、实验目的: 用最小二乘法将给定的十个点拟合成三次多项式。 二、实验步骤: 用matlab编制以函数为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi=1) x -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 y -2.30 -1 -0.14 -0.25 0.61 1.03 1.75 2.75 4.42 6.94 给定直线方程为:y=1/4*x3+1/2*x2+x+1 三、实验结论: 最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。 一般地。当测量数据的散布图无明显的规律时,习惯上取n次代数多项式。 程序运行结果为: a = 0.9731 1.1023 0.4862 0.2238 即拟合的三次方程为:y=0.9731+1.1023x+0.4862*x2+0.2238*x3

-2.5 -2-1.5-1-0.5 00.51 1.52 2.5 -4-20246 81012 x 轴 y 轴 拟合图 离散点 y=a(1)+a(2)*x+a(3)*x.2+a(4)*x.3 结论: 一般情况下,拟合函数使得所有的残差为零是不可能的。由图形可以看出最小二乘解决了残差的正负相互抵消的问题,使得拟合函数更加密合实验数据。 优点:曲线拟合是使拟合函数和一系列的离散点与观测值的偏差平方和达到最小。 缺点:由于计算方法简单,若要保证数据的精确度,需要大量的数据代入计算。

(完整版)数值计算方法上机实习题答案

1. 设?+=1 05dx x x I n n , (1) 由递推公式n I I n n 1 51+-=-,从0I 的几个近似值出发,计算20I ; 解:易得:0I =ln6-ln5=0.1823, 程序为: I=0.182; for n=1:20 I=(-5)*I+1/n; end I 输出结果为:20I = -3.0666e+010 (2) 粗糙估计20I ,用n I I n n 51 5111+- =--,计算0I ; 因为 0095.05 6 0079.01020 201 020 ≈<<≈??dx x I dx x 所以取0087.0)0095.00079.0(2 1 20=+= I 程序为:I=0.0087; for n=1:20 I=(-1/5)*I+1/(5*n); end I 0I = 0.0083 (3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。 首先分析两种递推式的误差;设第一递推式中开始时的误差为000I I E '-=,递推过程的舍入误差不计。并记n n n I I E '-=,则有01)5(5E E E n n n -==-=-Λ。因为=20E 20020)5(I E >>-,所此递推式不可靠。而在第二种递推式中n n E E E )5 1(5110-==-=Λ,误差在缩小, 所以此递推式是可靠的。出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制, 即算法是否数值稳定。 2. 求方程0210=-+x e x 的近似根,要求4 1105-+?<-k k x x ,并比较计算量。 (1) 在[0,1]上用二分法; 程序:a=0;b=1.0; while abs(b-a)>5*1e-4 c=(b+a)/2;

计算方法上机作业集合

第一次&第二次上机作业 上机作业: 1.在Matlab上执行:>> 5.1-5-0.1和>> 1.5-1-0.5 给出执行结果,并简要分析一下产生现象的原因。 解:执行结果如下: 在Matlab中,小数值很难用二进制进行描述。由于计算精度的影响,相近两数相减会出现误差。 2.(课本181页第一题) 解:(1)n=0时,积分得I0=ln6-ln5,编写如下图代码

从以上代码显示的结果可以看出,I 20的近似值为0.7465 (2)I I =∫I I 5+I 10dx,可得∫I I 610dx ≤∫I I 5+I 10dx ≤∫I I 510dx,得 16(I +1)≤I I ≤15(I +1),则有1126≤I 20≤1105, 取I 20=1 105 ,以此逆序估算I 0。代码段及结果如下图所示

(3)从I20估计的过程更为可靠。首先根据积分得表达式是可知,被积函数随着n的增大,其所围面积应当是逐步减小的,即积分值应是随着n的递增二单调减小的,(1)中输出的值不满足这一条件,(2)满足。设I I表示I I的近似值,I I-I I=(?5)I(I0?I0)(根据递推公式可以导出此式),可以看出,随着n的增大,误差也在增大,所以顺序估计时,算法不稳定性逐渐增大,逆序估计情况则刚好相反,误差不断减小,算法逐渐趋于稳定。 2.(课本181页第二题)

(1)上机代码如图所示 求得近似根为0.09058 (2)上机代码如图所示 得近似根为0.09064;

(3)牛顿法上机代码如下 计算所得近似解为0.09091 第三次上机作业上机作业181页第四题 线性方程组为 [1.13483.8326 0.53011.7875 1.16513.4017 2.53301.5435 3.4129 4.9317 1.23714.9998 8.76431.3142 10.67210.0147 ][ I1 I2 I3 I4 ]=[ 9.5342 6.3941 18.4231 16.9237 ] (1)顺序消元法 A=[1.1348,3.8326,1.1651,3.4017;0.5301,1.7875,2.5330,1.5435; 3.4129, 4.9317,8.7643,1.3142;1.2371,4.9998,10.6721,0.0147]; b=[9.5342;6.3941;18.4231;16.9237]; 上机代码(函数部分)如下 function [b] = gaus( A,b )%用b返回方程组的解 B=[A,b]; n=length(b); RA=rank(A); RB=rank(B);

计算方法实验报告册

实验一——插值方法 实验学时:4 实验类型:设计 实验要求:必修 一 实验目的 通过本次上机实习,能够进一步加深对各种插值算法的理解;学会使用用三种类型的插值函数的数学模型、基本算法,结合相应软件(如VC/VB/Delphi/Matlab/JAVA/Turbo C )编程实现数值方法的求解。并用该软件的绘图功能来显示插值函数,使其计算结果更加直观和形象化。 二 实验内容 通过程序求出插值函数的表达式是比较麻烦的,常用的方法是描出插值曲线上尽量密集的有限个采样点,并用这有限个采样点的连线,即折线,近似插值曲线。取点越密集,所得折线就越逼近理论上的插值曲线。本实验中将所取的点的横坐标存放于动态数组[]X n 中,通过插值方法计算得到的对应纵坐标存放 于动态数组[]Y n 中。 以Visual C++.Net 2005为例。 本实验将Lagrange 插值、Newton 插值和三次样条插值实现为一个C++类CInterpolation ,并在Button 单击事件中调用该类相应函数,得出插值结果并画出图像。CInterpolation 类为 class CInterpolation { public : CInterpolation();//构造函数 CInterpolation(float *x1, float *y1, int n1);//结点横坐标、纵坐标、下标上限 ~ CInterpolation();//析构函数 ………… ………… int n, N;//结点下标上限,采样点下标上限 float *x, *y, *X;//分别存放结点横坐标、结点纵坐标、采样点横坐标 float *p_H,*p_Alpha,*p_Beta,*p_a,*p_b,*p_c,*p_d,*p_m;//样条插值用到的公有指针,分别存放 i h ,i α,i β,i a ,i b ,i c ,i d 和i m }; 其中,有参数的构造函数为 CInterpolation(float *x1, float *y1, int n1) { //动态数组x1,y1中存放结点的横、纵坐标,n1是结点下标上限(即n1+1个结点) n=n1; N=x1[n]-x1[0]; X=new float [N+1]; x=new float [n+1]; y=new float [n+1];

西交计算方法A上机大作业

计算方法A 上机大作业 1. 共轭梯度法求解线性方程组 算法原理:由定理3.4.1可知系数矩阵A 是对称正定矩阵的线性方程组Ax=b 的解与求解二次函数1()2 T T f x x Ax b x =-极小点具有等价性,所以可以利用共轭梯度法求解1()2 T T f x x Ax b x = -的极小点来达到求解Ax=b 的目的。 共轭梯度法在形式上具有迭代法的特征,在给定初始值情况下,根据迭代公式: (1)()()k k k k x x d α+=+ 产生的迭代序列(1)(2)(3)x x x ,,,... 在无舍入误差假定下,最多经过n 次迭代,就可求得()f x 的最小值,也就是方程Ax=b 的解。 首先导出最佳步长k α的计算式。 假设迭代点()k x 和搜索方向()k d 已经给定,便可以通过()()()() k k f x d φαα=+的极小化 ()()min ()()k k f x d φαα=+ 来求得,根据多元复合函数的求导法则得: ()()()'()()k k T k f x d d φαα=?+ 令'()0φα=,得到: ()() ()()k T k k k T k r d d Ad α=,其中()()k k r b Ax =- 然后确定搜索方向()k d 。给定初始向量(0)x 后,由于负梯度方向是函数下降最快的方向,故第一次迭代取搜索方向(0) (0)(0)(0)()d r f x b Ax ==-?=-。令 (1)(0)00x x d α=+ 其中(0)(0)0(0)(0) T T r d d Ad α=。第二次迭代时,从(1) x 出发的搜索方向不再取(1)r ,而是选取(1) (1)(0)0d r d β=+,使得(1)d 与(0)d 是关于矩阵A 的共轭向量,由此可 求得参数0β:

计算方法上机实验报告——拉格朗日插值问题

计算方法上机实验报告——拉格朗日插值问题 一、方法原理 n次拉格朗日插值多项式为:Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0) n=2时,称为二次插值或抛物线插值,精度相对高些 L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x 2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1) 二、主要思路 使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。 对节点xi(i=0,1,…,n)中任一点xk(0<=k<=n)作一n次多项式lk(xk),使它在该点上取值为1,而在其余点xi(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) 上式表明:n个点xi(i=0,1,…,k-1,k+1,…,n)都是lk(x)的零点。可求得lk 三.计算方法及过程:1.输入节点的个数n 2.输入各个节点的横纵坐标 3.输入插值点 4.调用函数,返回z 函数语句与形参说明 程序源代码如下: 形参与函数类型 参数意义 intn 节点的个数 doublex[n](double*x) 存放n个节点的值 doubley[n](double*y) 存放n个节点相对应的函数值 doublep 指定插值点的值 doublefun() 函数返回一个双精度实型函数值,即插值点p处的近似函数值 #include #include usingnamespacestd; #defineN100 doublefun(double*x,double*y,intn,doublep); voidmain() {inti,n; cout<<"输入节点的个数n:"; cin>>n;

《大学计算机基础》上机实验报告

《大学计算机基础》 上机实验报告 班级: 姓名: 学号: 授课教师: 日期:年月日

目录 一、Windows操作系统基本操作 ............................. - 1 - 二、Word文字处理基本操作 ................................ - 4 - 三、Excel电子表格基本操作 ............................... - 6 - 四、PowerPoint幻灯片基本操作 ............................ - 8 - 五、网页设计基本操作..................................... - 9 - 六、Access数据库基本操作 ............................... - 10 - 上机实验作业要求: ○1在实验报告纸上手写并粘贴实验结果; ○2每人将所有作业装订在一起(要包封面); ○3全部上机实验结束后全班统一上交; ○4作业内容不得重复、输入的数据需要有差别。

实验名称一、Windows操作系统基本操作 实验目的1、掌握Windows的基本操作方法。 2、学会使用“画图”和PrntScr快捷键。 3、学会使用“计算器”和Word基本操作。 实验内容 1、日历标注 利用“画图”和Word软件,截取计算机上日历的图片并用文字、颜色、图框等标注出近期的节假日及其名称,并将结果显示保存在下面(参考下面样图)。 运行结果是: 主要操作步骤是: 2、科学计算 利用“计算器”和Word软件,计算下列题目,并将结果截图保存在下面(参考样图)。 ○1使用科学型计算器,求8!、sin(8)、90、74、20、67、39、400、50.23、ln(785)的平均值、和值,并用科学计数法显示。 运行结果是: ②将以下十、八、十六进制数转换为二进制数:(894.8125)10、(37.5)8、(2C.4B)16 运行结果是:(需要下载使用“唯美计算器”) ○3计算下列二进制数的加法与乘法:101.1+11.11;1101*1011 运行结果是:(参考样图) 写出主要操作步骤: 3、实验心得体会

相关文档
最新文档