cDNA 微阵列技术研究进展

cDNA 微阵列技术研究进展
cDNA 微阵列技术研究进展

cDNA 微阵列技术研究进展

从1995年首次完成流感嗜血杆菌的全基因组测序到人类基因组计划接近尾声,全世界公共数据库和私人数据库中已积累了天文数字的多种生物的核酸和蛋白序列信息,且这个数字日益加速增大。现在生物学研究已进入功能基因组时代,研究重点是基因的功能、表达和调控,在这个时期充分利用公共数据库中丰富的序列信息资源具有举足轻重的意义。基因微阵列技术作为沟通基因序列信息与功能基因组间的桥梁,在后基因组时代将发挥日益重要的作用。

基因微阵列(microarray)又称基因芯片,是一类重要的生物芯片。它是把大量已知序列探针集成在一张基片上,然后把若干经过标记的靶基因序列与微阵列上的序列探针杂交。通过检测已杂交的探针,便可根据碱基互补配对的原理确定靶基因的序列,从而获得细胞或组织中大量的基因表达信息,实现对基因表达信息的同步大规模快速检测。基因微阵列可分为两种类型:寡聚核苷酸微阵列(oligonucleotide microarrays,genechips)和DNA片段微阵列(DNA fragment microararays),后者中的cDNA微阵列是将大量经过3’端或5’测序的cDNA 经扩增后点在尼龙膜等聚合物基片上或玻璃片等刚性光学基片上而制成,在检测高等生物基因表达譜上具有其特有的优点。本文对cDNA微阵列技术的生物学基础、基本原理、制备方法、靶基因标记、杂交图像分析、杂交数据的提取和分析及应用进行综述。

1 cDNA微阵列技术的生物学基础

生物的生存和繁衍依赖于细胞对遗传指令的储存、阅读和翻译的能力。遗传信息通过细胞分裂由母细胞传给子细胞,通过生殖细胞由上一代传给下一代。遗传信息以基因的形式储存在每一个活细胞中,细胞依靠基因产物来进行产生能量、合成生物大分子、维持细胞结构和应答外界刺激等功能活动。蛋白质是细胞机器的工作组分,DNA中储存着蛋白合成的信息,而RNA携带着编码于DNA 中的遗传指令,介导储存在DNA中信息的表达。mRNA是携带着蛋白质特异的氨基酸序列信息的转录本。

为了理解生物的发育、遗传疾病的发作、基因在调节细胞功能时的协同作用,最好的办法就是检测不同发育阶段、不同组织、及生病状态和健康状态下基因表达的波动变化。知道在各类组织、各个发育阶段、各种条件下的基因转录丰度有助于了解不同基因在其参与的细胞过程中所起的功能作用,也有助于理解其调控及基因之间和基因产物之间的相互作用。虽然mRNA并非基因的最终产物,但是基因调节的第一步就是转录,有关转录水平的信息对于了解基因调控网络是不可缺少的。mRNA的水平并不直接反映相应蛋白的丰度,但mRNA转录信息至少可以用于定量估计相应蛋白的水平。而且,目前测定mRNA的转录水平要比直接测定蛋白表达水平要经济的多,且可采用高通量的方法。

2 cDNA微阵列技术原理

微化工技术在化学反应的应用的论文

微化工技术在化学反应的应用的论文 摘要:化工产业和化学工程激素和的迅速发展,使得相关科学技术的研究开始向着更为深入的层次发展,微化学工程的技术研发和应用,在化学反应过程中发挥了愈加重要的作用。由于微化工的技术方法能够进一步强化化学反应,大大提升反应的速率,这样就为能源或者资源的合理利用提供了先进的技术方法,大幅度提高资源的合理利用率。可见,微化工相关技术原理及其方法的应用可以满足节能降耗的目标,促进化工产业的进步发展。 关键词:微化工;化学反应;应用 1引言 微化工是一种多领域学科相互交叉、综合而形成的科学技术项目,它将原有的一些化学和化工的基础原理同微机电子系统紧密结合在一起,通过先进的传感技术和精密集成电路来提高对各类化学反应的监测和分析能力,从而找到科学的技术方法来促进和增强各类化学反应发生的速率和整个反应过程,还可以利用其系统体系和特殊的微化工设备仪器来分析化学反应中的一些科学规律和具体特点。因此要加大对微化工的技术研发和应用重视程度。 2微化工技术的应用优点 2.1满足反应过程中各类物质配比的准确性与合理性要求 在很多以往所开展的化学研究中,化学反应之所以出现很多不符合预期试验目标的异常情况,大多都是因为参与反应过程的各类物质元素的搭配比例不合理,在具体用量上无法达到规定的准确程度,在这种情况下,反应最终结果就会出现很多难以确定的因素。而微化工的技术应用可以满足其配比比例和用量上的准确性和合理性需求,对于物质的称重将更为精准,使得测量以及最终结果的误差率大大降低,还可以加速整个反应过程,提高工作效率。 2.2降低反应过程中的安全风险系数 化学的反应过程存在一定程度的风险,如果配比和操作方式等工作中出现一些失误或者疏忽,就很可能酿成安全事故。而微化工这种高新技术的应用,能够迅速有效地对可能出现的隐患和事故进行合理的管控,在最大程度上降低了反应过程中的安全风险系数和事故发生几率。 2.3强化化学反应 化学反应的不充分是传统化学试验和技术应用中长期存在的问题,在化学反应结束以后,工作人员会发现容器内会残留很多原材料化学物质,这就造成很大的资源浪费,也提高了化学反应研究和技术实践所需要的成本。微化工技术方法能够切实加快反应的速度,而且起到了关键的强化性作用,让化学反应进行的更加充分,如此就大大降低了资源的消耗程度。 3微化工技术在化学反应中的应用

2014年染色体微阵列分析技术在产前诊断中的应用专家共识

染色体微阵列分析技术在产前诊断中的应用专家共识 染色体微阵列分析技术在产前诊断中的应用协作组 目前,G 显带染色体核型分析技术仍然是细胞遗传学产前诊断的“金标准”,但该技术具有细胞培 养耗时长、分辨率低以及耗费人力的局限性。包括荧光原位杂交(fluorescence in situ hybridization,FISH) 技术在内的快速产前诊断技术的引入虽然具有快速及特异性高的优点,但还不能 做到对染色体组的全局分析。 染色体微阵列分析(chromosomal mlcroarray analysis,CMA) 技术又被称为“分子核型分析”, 能够在全基因组水平进行扫描,可检测染色体不平衡的拷贝数变异(copy number variant,CNV),尤其是 对于检测染色体组微小缺失、重复等不平衡性重排具有突出优势。 根据芯片设计与检测原理的不同,CMA 技术可分为两大类:基于微阵列的比较基因组杂交(array- based comparative genomic hybridization ,aCGH) 技术和单核苷酸多态性微阵列(single nucleotide polymorphism array,SNP array) 技术。 前者需要将待测样本DNA 与正常对照样本DNA 分别标记、进行竞争性杂交后获得定量的拷贝数 检测结果,而后者则只需将待测样本DNA 与一整套正常基因组对照资料进行对比即可获得诊断结果。 通过aCGH 技术能够很好地检出CNV,而SNP array 除了能够检出CNV 外,还能够检测出大多 数的单亲二倍体(uniparental disomy,UPD) 和三倍体,并且可以检测到一定水平的嵌合体。而设计涵 盖CNV+SNP 检测探针的芯片,可同时具有CNV 和SNP 芯片的特点。 2010 年,国际细胞基因组芯片标准协作组(lntemational Standards for Cytogenomic Arrays Consortium,ISCA Consortium) 在研究了21698 例具有异常临床表征,包括智力低下、发育迟缓、多 种体征畸形以及自闭症的先证者的基础上,发现aCGH 技术对致病性CNV 的检出率为 12.2%,比传统 G 显带核型分析技术的检出率提高了10%。 因此,ISCA Consortium 推荐将aCGH 作为对原因不明的发育迟缓、智力低下、多种体征畸形以及 自闭症患者的首选临床一线检测方法。近年来,CMA 技术在产前诊断领域中的应用越来越广泛,很多研 究也证明了该技术具有传统胎儿染色体核型分析方法所无法比拟的优势。 CMA 对非整倍体和不平衡性染色体重排的检出效率与传统核型分析方法相同,并具有更 高的分辨率和敏感性,且CMA 还能发现额外的、有临床意义的基因组CNV,尤其是对于产前超声检查发现胎儿结构异常者,CMA 是目前最有效的遗传学诊断方法。 基于上述研究结果,不少学者认为,CMA 技术有可能取代传统的核型分析方法,成为产前遗传学诊断的一线技术。但到目前为止,尚缺乏基于人群的大规模应用研究结果。 目前,在国内CMA 只有少数具有技术条件和资质的医疗机构进行了小规模的探索,大致有以下几类临床应用情况: 1.儿童复杂、罕见遗传病,如:智力障碍、生长发育迟缓、多发畸形、孤独症样临床表现,排除染色体病、代谢病和脆性X 综合征之后的全基因组CNV 检测。 2.对自然流产、胎死宫内、新生儿死亡等妊娠产物(product of concept,POC) 的遗传学检测。 3.对产前诊断中核型分析结果异常,但无法确认异常片段的来源和性质者进行DNA 水平的更精细分析。 4.对产前超声检查异常而染色体核型分析结果正常的胎儿进一步行遗传学检测。 在产前诊断领域中,CMA 的应用主要在后两种情况中。虽然目前应用研究的范围不广,积累的例数也不多,但却显现出一些问题的存在,主要表现在: 1.在部分开展应用的医疗机构,对CMA 检测前和检测后的产前咨询能力存在不足。

胎儿超声软指标异常的染色体微阵列分析

胎儿超声软指标异常的染色体微阵列分析 【摘要】目的探讨染色体微阵列分析技术(chromosomal microarry analysis,CMA)在超声软指标异常胎儿产前诊断中的应用价值。方法选取2015年10月至2017年12月于浙江省湖州妇幼保健院产前诊断中心就诊,超声检查发现软指标异常但未合并明确结构畸形的125例患者,包括多项软指标异常孕妇35例,单项软指标异常孕妇90例。入选病例已排除常见染色体非整倍体异常。对上述病例羊水行CMA 检测,并分析结果。结果CMA共检出致病性拷贝数变异(pathogenic copy number variation,pCNV)6例,检出率为4.80%。其中35例多项软指标异常胎儿中检出pCNVs 3例,检出率为8.57%;90例单项软指标异常胎儿中检出pCNVs 3例,检出率为3.33%;结论与传统染色体核型分析相比,CMA可以提高超声软指标异常胎儿染色体异常的检出率,有较高的临床应用价值。 【关键词】染色体微阵列分析;产前诊断;超声软指标异常Chromosomal Microarray Analysis of Abnormal Fetal Ultrasonographic Soft Markers 【Abstract】Objective:To explore the application value of chromosomal microarray analysis (CMA) in prenatal diagnosis of abnormal ultrasonographic soft markers. Methods: Choose in October 2015 to December 2017 in our hospital prenatal diagnosis center visits and abnormal ultrasonographic soft markers of 125 cases of fetus. There were 35 cases with multiterm soft markers, 90 cases with single soft 基金项目:染色体微阵列分析技术在中枢神经系统结构异常胎儿遗传学病因中的应用研究(2017GYB45)

微化学工程技术发展浅谈

微化学工程技术发展浅谈 兴起于上世纪90年代初期的微化学工程技术,是一门多学科交叉的前沿科学,该技术将微机电系统设计思想与化学化工基本原理有机的结合在一起,而移植成电路和微传感器制造技术。微化学工程技术所涉猎的学科非常广泛,如化学、材料、化工、机械等,文章将对该技术的主要应用做简单论述。 标签:微化工;技术;发展 1 微化工技术的概述 微化工技术的应用,实现了反应时间的大幅度缩短,从几小时甚至几十小时缩短至几十秒,乃至几秒,而且反应容器的体积也得以缩小成为以升或毫升为单位的容器。微化工技术自形成以来,到如今仅仅经过了20多年的发展阶段,已经凭借其特有的魅力让我们对化工生产的前景充满了希望。如利用可直接放大而且具有较高安全性,能够比较容易控制反应过程的技术,改变化学工业污染重、能耗高的传统发展模式,实现绿色化工生产,提高化工生产的资源与能源利用的效率。化工过程中进行的化学反应往往会受到来自于传递速率或本征反应动力学的控制或者处于两者的共同控制下。 2 微化工系统的特点及优越性 2.1 有利于化学反应的精确控制 微反应技术的实现原理是对微管道中的连续流动反应的运用,从而准确控制物料在反应条件下的停留时间,而且这一方法的运用,明显减少了反应物的所需用量,因此反应时间大幅度缩短,而且显著提高了精度,从而能够将因在过程的反应时间内所产生的副产品清除掉。检测时间因微组合化学合成与分析系统的应用,将原来的2-3个小时缩短至不足一分钟,而精度却提高到仄摩尔(10-21mol)。 2.2 安全可靠 特征尺寸与火焰传播临界直径相比,相对要小一些,而且微通道具有很强的传热能力,从而为链式反应的顺利进行提供了条件。同时,也有效地抑制自由基爆炸反应。由于微化工系统的换热效率极高,再加上系统内存有能够滞留的物料,即使发生了自由基爆炸的情况,所造成的后果也属于可控范围内,从而促使在过去于常规设备内完成的具有较大危险的化学反应而不敢或不能进行的试验,得以实现。 2.3 小试工艺不需中试可以直接放大 将微反应技术应用于生产时,工艺放大的实现可以运用增加微通道数量的方式,而不能选择增加微通道特征尺寸。这样就有效减少了中间的试验放大阶段,

基于微阵列的比较基因组分析

微阵列芯片(Microarray)以高密度阵列为特征。其基础研究始于20世纪80年代末,本质上是一种生物技术,主要是在生物遗传学领域发展起来的。 微阵列分为cDNA微阵列和寡聚核苷酸微阵列.微阵列上"印"有大量已知部分序 列的DNA探针,微阵列技术就是利用分子杂交原理,使同时被比较的标本(用同位素或荧光素标记)与微阵列杂交,通过检测杂交信号强度及数据处理,把他们转化成不同标 本中特异基因的丰度,从而全面比较不同标本的基因表达水平的差异.微阵列技术是一种探索基因组功能的有力手段. 其发展契机主要来自于现代遗传学的一些重要发现,并直接收益于该领域的某些重要研究成果,即在载体上固定寡核苷酸的基础上以杂交法测序的技术。因此发展早期,微阵列芯片有时被通俗的称为“生物芯片(Biochip)”,目前媒体和科普读物中仍然常用该名称。微阵列芯片经过近十年的主要发展期,国内外学术界渐渐采用名称Microarray(微阵列芯片),而Biochip(生物芯片)由于这名称容易混淆微阵列芯片和微流控芯片,渐渐该领域用的越来越少了。 比较基因组杂交技术 比较基因组杂交(comparative genomic hybridization,CGH)是自1992年后发展起来的一种分子细胞遗传学技术,它通过单一的一次杂交可对某一肿瘤整个基因组的染色体拷贝数量的变化进行检查。其基本原理是用不同的荧光染料通过缺口平移法分别标记肿瘤组织和正常细胞或组织的DNA制成探针,并与正常人的间期染色体进行共杂交,以在染色体上显示的肿瘤与正常对照的荧光强度的不同来反映整个肿瘤基因组DNA表达状况的变化,再借助于图像分析技术可对染色体拷贝数量的变化进行定量研究。 CGH技术的优点:1.实验所需DNA样本量较少,做单一的一次杂交即可检查肿瘤整个基因组的染色体拷贝数量的变化。2.此法不仅适用于外周血、培养细胞和新鲜组织样本的研究,还可用于对存档组织的研究,也可用于因DNA量过少而经PCR扩增的样本的研究。CGH技术的局限性:CGH技术所能检测到的最小的DNA扩增或丢失是在3-5Mb,故对于低水平的DNA扩增和小片段的丢失会漏检。此外在相差染色体的拷贝数量无变化时,CGH技术不能检测出平等染色体的易位。

金纳米颗粒聚集以及金纳米探针 微阵列技术研究进展

金纳米颗粒聚集以及金纳米探针-微阵列技术研究进展 逄键涛 文思远 王升启# (军事医学科学院放射与辐射医学研究所,北京100850) 摘 要 金纳米颗粒 (GNP )探针正引起科学家们越来越多的兴趣。本文主要综述了基于GNP 自组装聚集反应的生物检测和微阵列-金标银染检测的最新进展,对GNP 在电化学等其他领域的研究前沿也进行了探讨。引用文献41篇。 关键词 金纳米颗粒,微阵列,生物检测,评述 2005-08-10收稿;2005-12-03接受 本文系国家863资助项目(No.2004BA519A46) 1 引 言 金纳米颗粒(GNP )是直径为0.8~250nm [1]的缔合胶体,具有纳米表面效应、量子效应、宏观量子 隧道效应。按粒子尺寸和聚集情况,GNP 可显示不同的颜色,已被广泛用于光学、电学、电子显微镜检 测的生物分子标记[2]。单个纳米颗粒的尺寸和颗粒间的组装形式,使胶体Au 溶液表现出不同的整体 特征。生物分子可参与到GNP 的聚集和组装过程中, 从而干扰GNP 的原始组装方式。通过胶体Au 溶液最终的物理状态(如颜色、吸光度等)可得到参与组装的生物分子的“质、量”特征,达到检测的目的。另外,GNP 逐渐在生物芯片检测中显现出应用前景。生物芯片技术本身是纳米尺度的分子操作和组装技术,芯片诊断、纳米检测等技术可以在此得到良好的融合。本文着重就GNP 自组装以及GNP 探针-微阵列技术进展作一综述。 2 生物分子辅助的GNP 聚集和组装 2.1 DNA-GNP 探针 灵敏度高、特异性强、快速简单、低成本是生物检测的重要指标。基于GNP 聚集反应的分子诊断方法能满足这些要求。Mirkin 发现DNA 特异杂交可使DNA-Au 颗粒自组装为复合结构,开创了GNP 用 于生物检测的新领域[3]。GNP 经巯基修饰的短链DNA 修饰成为编码探针[4],溶液中加入目标互补 DNA 后,纳米颗粒发生有序、可逆的聚集反应[5]。聚集后溶液颜色发生红7桃红7紫色变化,几小时出 现桃灰色沉淀(DNA-胶体金沉淀)。该现象是DNA 介导的胶体-胶体键合,其过程是可逆的。系统在没有优化的情况下能检测10fmol 的寡核苷酸。 DNA 修饰的GNP 以非交联结构聚集,对于颗粒表面结合的杂交体末端错配有很好的选择性[6],可 对单核苷酸多态性(SNP )进行检测。5个人瘤细胞系的基因组DNA 的检测结果与传统方法(质谱、直接测序)一致。这种方法不需要复杂的设备,为SNP 医护现场诊断、个性化医疗提供了可能。Storhoff 等[7]研究了GNP 距离和光学性质的关系,开发出“杂交-读出”的比色检测方法,鉴别核酸序列。DNA 修饰的金纳米探针识别核酸目标分子后发生颜色变化,可检测到zmol (10-21mol )级的核酸,不需要目 标分子的扩增或信号放大。S?nnichsen 等[8]采用等离子体耦合对金银纳米颗粒间距进行测量,研究了 金银纳米颗粒二聚体的实时组装以及单个DNA 分子杂交的动力学。 “等离子体标尺”可连续监控分子间距离上限达到70nm ,时间超过50min 。 2.2 非标记DNA 检测 双链DNA (dsDNA )比单链DNA (ssDNA )表面负电荷堆积程度高,并且dsDNA 的双螺旋结构使氮(N )、硫(S )等对GNP 亲和性高的原子包埋更深,所以ssDNA 和dsDNA 对GNP 有不同吸附力。 Li 等[9,10]据此设计了基于Au 颗粒聚集反应的核酸杂交比色检测方法。ssDNA 可吸附负电荷纳米金颗第34卷 2006年6月 分析化学(FENXI HUAXUE ) 评述与进展 Chinese Journal of Analytical Chemistry 第6期 884~888

微流体技术制备多级结构材料的研究进展_郭松

中国科学: 化学 2015年第45卷第1期: 24 ~ 33 SCIENTIA SINICA Chimica https://www.360docs.net/doc/ca4976125.html, https://www.360docs.net/doc/ca4976125.html, 《中国科学》杂志社SCIENCE CHINA PRESS 评述 微流体技术制备多级结构材料的研究进展 郭松, 尹苏娜, 潘宜昌, 陈苏*, 张利雄* 材料化学工程国家重点实验室; 南京工业大学化学化工学院, 南京 210009 *通讯作者, E-mail: lixzhang@https://www.360docs.net/doc/ca4976125.html, 收稿日期: 2014-09-30; 接受日期: 2014-10-17; 网络版发表日期: 2014-12-26 doi: 10.1360/N032014-00274 摘要多级结构材料具有微纳米尺度范围内结构可调、多功能化等特点而受到广泛关注. 微流体技术具有独特的微尺寸效应和易操控性, 应用于多级结构材料制备具有明显优势. 国外对此有较多研究, 国内也取得了很多进展, 有些方面还处于领先水平. 本文对国内微流体技术制备多级结构材料方面的研究进展进行了综述, 主要介绍了基于这一技术新开发的各种制备方法, 包括界面反应法、界面萃取、液滴分相和多重乳液等, 阐述了各种新制备方法的科学原理、所采用的微流体装置的特点和所制得的多级结构材料的类型与结构特征, 为进一步利用微流体技术开发新型多级结构材料及其制备方法提供有用信息, 最后对今后的发展趋势进行了展望. 关键词 微流体 多级结构材料界面反应 双液相分相多重乳液 1引言 多级结构材料指一类在微观尺度下结构或性质具有多样性的成型材料, 如具有空心、核壳、Janus 等结构的微球和微纤维、非球状的微囊泡、形貌独特的组装体、嵌套结构(structure-within-structure)的复合体、复杂形貌和微结构的颗粒以及多级孔道结构的多孔材料等[1~6]. 它们因具有结构复杂、形貌特殊和功能多样化等特点, 可广泛运用在催化、生物技术、纳米技术、电子技术和能源再生等领域, 成为近10多年来的研究热点[3,5,6]. 多级结构材料的形貌和结构取决于其制备方法. 例如, 空心、核壳、Janus类微球的制备主要包括模板法、选择性刻蚀和奥氏熟化等[3]; 微纤维的制备主要采用静电纺丝、湿法纺丝和流体涂布等[6]; 非球状微囊泡、形貌独特的组装体及嵌套结构的复合体等材料的制备一般采用乳化、模板印刷法和自组装等[2,7]; 而多级孔道结构的多孔材料的制备也主要采用模板法和酸、碱处理等选择性刻蚀法[3]. 由此可见, 每种多级结构材料都有其限定的制备方法, 如何采用这些方法来精确调控所制备材料的尺寸分布、结构及组成仍面临着巨大挑战. 因此, 需要开发一种操控简单且同时适用于多类多级结构材料的制备技术. 微流体技术因其微米数量级的通道结构、优良的液滴和流型操控性能、较快的传热传质速度等特点[8], 除广泛应用于化学合成领域外, 近来还被用于金属粒子、氧化硅、纳米沸石、量子点、金属有机骨架材料(MOFs)等微纳米材料的高效合成[5,9~11], 显现出制备时间显著缩短、产品尺寸均一度大幅提高等优点. 同时, 还能通过耦合多步合成过程制得微纳复合颗粒, 如CdS/ZnS核壳量子点、Co/Au核壳纳米粒子和Co3BTC2@Ni3BTC2核壳结构MOF微粒等[12~14]. 此外, 基于微流体的层流效应和相界面特性, 如界面聚合、界面萃取、多重乳液和液滴融合等多种微流体技术已被成功用于制备出类型多样、形貌各异、结构复杂和功能多样化的多级结构材料, 体现出该技术在多级结构材料的制备方面具有灵活性、多变性和相对普适性. 因此, 近10年来相关研究工作不断涌现. 但 微化工技术专题

微阵列分析

微阵列分析与基因差异表达 药物基因组学中的基因表达分析目前主要应用于创新药物研究和开发。同时,基因表达谱已经开始为慢性致命性疾病的药物治疗效应提供预测信息,并指导治疗选择,而寡核苷酸微阵列平台具有应用于药物基因组学研究的潜在优势。 微阵列分析的特点: 与DNA顺序分析和基因分型不同,微阵列基因表达分析的分析物是信使RNAs (mRNA)。信使RNAs的不稳定性要比DNA大得多,对操作方面的要求非常高,以避免由于Rnase酶降解而产生假象。此外,信使RNA在经PCR产生DNA拷贝扩增之前,或在大多数的微阵列分析中,或在产生cRNA拷贝的试管内转录(IVT)线性扩增程序中,都是逆转录形成cDNA的。在IVT反应期间,cRNAs都被标记,而在杂交到寡核苷酸阵列时往往被分裂。 在研究中,基因表达阵列常常采用被标记的cRNAs或长寡核苷酸作为固定探针,以及由类似于半导体工业应用的光刻技术制造的寡核苷酸探针阵列;寡核苷酸探针可直接在微阵列表面合成,还可以应用多空间的完美匹配单碱基-错匹配探针对来查询每一个重要的基因。这种高密度寡核苷酸探针诊断方法可检测出拼接变异种的能力,以及因特殊转录而造成融合基因时产生的特异性嵌合转录(如慢性髓细胞白血病中的BCR-ABL)。 目前有很多种途径来对成千上万的探针强度数据点进行数据分析,最近提出的是临床应用表达类型的最佳实用指导方针。各种全自动化的分析方法(如层次聚类算法与运用自组织图)可供用于确定具有相似表达类型的分组基因之间的关系。同样,还有一些需操作人员监管的分析方法(如支持向量机),可应用同质的PCR检测平台进行药物效应的基因显型检测,以筛选和鉴定最可能有效的患者。 促进肿瘤诊治水平提高 基因的表达差异是药物疗效的基础。基因表达的各种分析方法正在开发过程中,为疾病,尤其是肿瘤的治疗选择提供分子图表类型信息。例如,常见的急性成人或儿童白血病

微反应器和微化工技术

微反应器和微化工技术 最近在做使用微反应器进行有机合成的试验,觉得下面这篇短文很有参考价值,拿来与大家分享! 利用微反应器进行化学合成的可能性优势和成本分析 Johannes Gutenberg University Mainz Chemistry and Pharmaceutics Institute of Organic ChemistryProf. Dr. Holger Loewe 多年来的实验结果表明,利用微反应器实现化学反应能显著提高产物的收率与选择性。这种反应器最初时作为实验室分析设备,应用于生物诊断,药物合成和组合材料科学的研究。在一个密闭的内部尺寸从几微米到几百微米的微结构反应器内进行化学或生化反应,这种反应器的内部尺寸并不需要尽可能的小,而是根据化学反应本身的需要来确定。按照这种思路进行思考,是对化工工艺模式的一种转变。自从一些特殊的反应器能使化学反应速率接近他们的动力学极限,就不再需要原来那些为了使化学过程适应固有设备的调整手段,如添加溶剂,沸点的受热限制,缓慢且不规则的搅拌混合。“调整设备去适应化学反应过程而不是相反,调整化学反应条件去适应设备” 是微化工工艺的基本理念。基于这个理念,微反应器内部的结构要根据化学过程本身来调节,因此它们可能没必要是“微”的。 一般来说,微反应器常用在连续流动体系。其优点集中体现在以下几个方面:传质传热效率高,返混几率小以及能更好的控制反应温度和停留时间。由于能够改变化学反应的激烈程度,因此在高温,高压和难实现过程体系的应用过程中,微结构反应器要强于传统常规的批反应斧。如果一个化学过程能在单个微通道中实现,那么这个反应过程就能通过简单的微通道的数量放大,达到工业生产规模。 依据动力学和热力学需要,内部腔体的大小,如通道的尺寸范围能从几微米大到几毫米。有时,一些自由的流动方式例如通过较窄直径范围的碰撞射流也可以应用于微反应过程。基于这个理念,微反应器不只是由成百上千的微通道组成的反应器,而是一种能通过形成特殊流体形态来促进流体传质传热的设备。因此,不管微反应器的大小像信用卡,鞋盒,还是更大,其内部的“微”才是最关键的。微反应器可能实现的过程 用传统的釜式反应器,反应放出的热量不能及时的释放,反应温度不能精确控制。因此反应速度常常被人为的加以限制,否则可能会发生爆炸。 利用微反应器能克服釜式反应器的缺点。如果关于微反应器的这个预言是正确的,那么这将是对化工工艺的一次彻底的改革。这种新化工工艺必然会有广阔的应用前景。许多学术报道都做了传统反应器与微反应器的比较,并发现应用微反应器比传统反应器更能强化反应过程。下面这些应用微化工工艺的例子的详细说明都在参考文献中能够找到。 苯基硼酸的合成 (Clariant / 法兰克福) 偶氮染料Yellow 12的制备 (Trustchem / 杭州) 合成过氧化氢 (UOP / 芝加哥) 硝基甘油的生产工艺(西安惠安集团 / 西安) 2-乙酰基四氢呋喃的合成 (SK Corporation / Daejeon) 抗生素喹诺酮中间体的合成(LG Chem / Daejeon)

微化工技术的研究与应用

化工设计通讯Chemical Engineering Design Communications 研究与开发 Research and Development 第45卷第3期 2019年3月微化工技术的研究与应用 赵#达 (广东省茂名市质量计量监督检测所,广东茂名525000) 摘要:主要围绕微化工技术的研究和应用状况进行叙述,对微化工技术的含义、过程强化原理、发展、研究进程以及应用等进行了全面的介绍,不断加深人们对该技术的理解,旨在推动微化工技术的进一步发展,不断提升技术应用的整体水平。 关键词:微化工技术;研究;应用 中图分类号:TQ016文献标志码:B文章编号:1003-6490(2019)03-0153-02 Research and Application of Microchemical Technology Zhao Shan-da Abstract:This paper mainly describes the research and application status of micro-chemical technology,and comprehensively introduces the meaning,process strengthening principle,development,research process and application of micro-chemical technology?so as to deepen people*s understanding of the technology,in order to promote the further development of micro-chemical technology and constantly improve the overall level of application of technology. Key words:microchemical technology;research;application 1前言 近年来,我国经济发展水平不断提高,在这个过程中人们对于生活中各项事物的要求也不断提升。为了持续满足人们的多样化要求,相关人员务必对工业生产过程中的技术等进行改善,为人们提供更加优质的产品和服务,而微化工技术作为一种新型技术可以应用到工业生产中。 2微化工技术的含义 化学品制备的设备和工艺源头就是微化工技术的起始点,主要通过微通道反应器的利用达到相关目的,相较于其他技术,微化工技术具有反应持液量较小、传热能力较高的优势。在保证生产过程安全的同时,还可以阻止方法效应产生,并且能够在化学合成工艺进行的过程中融入集成自控和持续稳态技术。在化学品生产的过程中,相关人员需要不断提升生产的安全性,而连续流工艺就可以在很大程度上提高安全性能。对于化工企业来说,微化工技术可以不断提升生产安全,并且对于企业现代化和转型的实现有着很大的作用 3微化工技术的过程强化原理 在化工工作进行的时候,化学反应是由传递速率和本征反应动力学共同或者各自进行控制的。如果在传统设备中开展快速反应,传递速率就是控制该反应过程的重要因素,如果相关人员不断提升该反应的传递速率,那么就可以尽可能提升反应速率。而本征反应动力学就是在慢反应进行中进行控制工作的因素,相关人员如果想要提升反应速率必须要从本征反应动力学的提升入手。通常情况下,工作人员可以从改变反应温度和改善操作条件进行调整。另外,对于一些中速度的反应,则是由两者共同进行控制,当前很多工业生产过程中的反应都属于中慢速类型的反应,相关人员可以根据实际情况开展强化措施[2,o 4微化工技术的发展 早在20世纪50年代末期,就已经有物理学家提岀了科学的微型化发展趋势,并且从之后的科学发展过程中也可以得到印证,科学逐渐朝着微型化的方向发展,其中微型化特征最为明显的就是微型机电系统和计算机信息技术领域,随着这两个领域技术的不断发展和应用,社会逐渐发生了巨大的变革。微通道散热器的概念被相关人员在80年代提出,解决了大规模集成电路散热困难的问题,在90年代,芯片反应器被制造,有利于很多化学物质的生产 5微化工技术在我国的研究进程 5.1微型氢源系统的研究 当前,为了推动可持续发展战略,解决我国的能源问题,相关人员将电动汽车领域作为一种十分重要的工作内容,其中质子交换膜燃料就是电动汽车的最佳候选能源,但是目前相关人员在将其应用在电动汽车领域的过程中还存在一定的问题,其商业化趋势还需要不断推进。造成其商业化存在难度的主要原因就是内部的氢源技术,氢气作为技术的基础,在运输、存储等过程中都存在较大难度,没有办法根据不同规模电池进行有效分配[41o 5.2微混合技术的研究 大多数化工生产过程都呈现出强放热快速反应的特点,而这个特点主要受到传热和传质过程控制。为了改善化工生产的这一特点,保证生产安全,相关人员可以利用微混合技术进行改善,其中微混合技术具有高效混合的优势,可以很大程度上对化工过程进行微型化和强化。随着单微通道内的混合、传质和流动被相关人员研发,越来越多的技术涌现。微混合技术的操作稳定、换热效果好,与此同时震动小、噪音小等也是其重要的发展特点,能够尽可能改善传统技术的问题[51o 5.3芳怪硝化反应的研究 在化工生产的过程中,强放热和快速反应不断扩大生产工作的风险,但是我国在化工生产中很多技术和设备还不够完善,这样更加容易导致生产的安全问题出现。 其中有机物的硝化反应是化工生产中十分常见且风险较大的反应,相关人员需要采取措施及时对反应过程进行控制,硝化过程中所产生的热量是工作人员主要关注的内容。传统的有机物硝化反应会在带冷却夹套的搅拌釜式反应器中展开,但是这种类型的反应器具有传递速率小和换热面积狭窄的缺点,为了降低风险,工作人员只能通过降低反应速率来实现,但是这样就会导致反应效率低下的问题冋。 6微化工技术的应用状况 在微化工技术的研究过程中,相关人员将微反应器的研究作为工作的重点和核心内容,微反应器也可以被称为微通道反应器,作为一种新型的反应器设备,主要利用精密仪器的加工技术和微加工技术实现化学反应过程中三维结构原件的制造。另外,混合、换热、分析和分离等是三维结构反应器的主要构成内容,保持流通工作可以在微米和毫米之间实现。 随着微反应器的不断发展,它也逐渐被人们应用到生产的过程中。它可以实现反应动力学的测定工作,另外有利于工艺的整体优化,不断提升反应效率,推动生产的现代化进程。除此之外,该反应器还可以帮助工作人员进行催化剂的筛选,在筛选的效率上不断优化和提升。最近几年,微反应技术的研究工作取得了一定进展,在很多工业生产的过程中得到了更加广泛的应用。目前,很多外国企业将工作内容放在微反应技术的研究中,希望能够通过先进技术不断实现企业内部 (下转第186页) 收稿日期:2019-02-06 作者简介:赵善达(1988—),男,广东茂名人,工程师’主要从事 化工技术开发及应用、分析测试等工作。 ?153?

个体化医学检测微阵列基因芯片技术规范

个体化医学检测 微阵列基因芯片技术规范

微阵列基因芯片是基于DNA分子杂交技术原理研制,通过探针结合碱基互补序列的单链核酸,从而确定其相应序列来识别基因或其产物。能够同时快速检测多个基因及其多个位点,在多态性分析、突变分析、基因表达谱测定及杂交测序等多领域具有广泛应用价值。 临床诊断技术使用的微阵列基因芯片,可快速鉴定病原体、检测遗传突变及基因表达,更早更方便的检测肿瘤基因标志,检测药物反应和代谢相关基因多态性来指导临床个体化治疗。 本规范旨在对个体化医学检测中采用微阵列基因芯片检测核酸序列以及基因表达进行一般性技术指导,不包括行政审批要求。 本规范由全国生物芯片标准化技术委员会(SAC/TC 421)提出。 本规范起草单位:全国生物芯片标准化技术委员会、清华大学医学院、生物芯片北京国家工程研究中心、北京博奥医学检验所。 本规范起草人:项光新、李元源、王辉、邓涛、孙义民、张治位、张川、邢婉丽、程京。

1.适用范围 (1) 2.声明/警告 (1) 3.术语和定义 (1) 4.样本处理 (2) 4.1样本类型 (2) 4.2样本采集、运输与保存 (3) 4.3样本质量保证 (3) 4.4样本信息保存 (3) 5.检测各步骤分述 (4) 5.1核酸分离 (4) 5.2核酸定量(如适用) (4) 5.3核酸扩增和标记 (4) 5.4芯片杂交 (5) 5.5信号采集和数据分析 (5) 6.结果报告 (5) 7.质量控制 (5) 8.注意事项 (6) 9.参考文献 (6)

1.适用范围 本规范适用于医疗机构开展微阵列基因芯片个体化医学检测服务。 检测服务需遵循国家卫生主管部门或各专业协会发布的疾病诊疗指南或国家卫生计生委医政医管局个体化医学检测技术专家委员会发布的个体化医学检测指南。 2.声明/警告 本规范所称微阵列基因芯片诊断技术是指从医疗机构获得的临床样本中,提取核酸(DNA或RNA),进行必要的扩增和标记,标记后的靶标与基因芯片进行分子杂交,通过基因芯片扫描仪器获得基因芯片杂交的图像与数据,经计算机程序分析,并给出检测报告的全过程。 3.术语和定义 (1)聚合酶链反应polymerase chain reaction(PCR) 聚合酶链反应或多聚酶链反应是一种对特定的DNA或RNA片段在体外进行快速扩增的方法。 (2)杂交hybridization 具有一定同源序列的两条核酸单链(DNA或RNA)可以通过氢键的方式,按碱基互补配对原则相结合。 (3)突变mutation 是细胞中DNA核苷酸序列发生了稳定的可遗传的改变。 (4)点重复spot replicates 每种探针在芯片上每个阵列中的重复次数。 (5)探针probe

最新染色体微阵列分析(基因芯片)在儿科遗传病临床应用的专家共识

儿科遗传病评估的一线检测手段—— 染色体微阵列分析 俗话说“孩子是祖国的花朵,是每个家庭的希望”,而当孩子出现不明原因的智力落后和(或)发育迟缓时,当孩子出现多发畸形时,当孩子出现自闭症(孤独症)时,或当孩子出现身材矮小、语言发育延迟、癫痫或其他精神神经发育障碍时,不仅给患儿身心健康带来严重的危害,也给社会和家庭带来了沉重的经济和精神负担。随着二胎政策的全面放开,很多父母想再要一个孩子,可是头胎患病孩子带来的精神压力可能会让父母犹豫,担心下一个孩子还是同样的情况怎么办?而近两年出现的一项最新诊断技术——染色体微阵列分析(chromosomal microarray analysis, CMA),给解决患儿父母的忧虑带来了希望。 什么是CMA?该技术又称为“基因芯片”是基于核酸互补杂交原理对全基因组进行检测,可检测基因组拷贝数变异(copy number variations, CNVs),主要针对微缺失或微重复、单亲源二体等。与传统染色体核型相比,它具有更高的分辨率,可提供更为准确和全面的细胞分子遗传学诊断。继2010年10月美国医学遗传学与基因组学学会(American College of Medical Genetics and Genomics, ACMG)专家委员会CMA指南发布后,2016年我国中国医师协会医学遗传学分会、中国医师协会青春期医学专业委员会临床遗传学组、中华医学会儿科学分会内分泌遗传代谢学组组织专家,对CMA技术各个环节展开交流讨论,形成了专家共识,对该技术临床应用进行规范指导。 根据我国多中心临床研究数据表明:针对智力落后和(或)发育迟缓疾病患儿阳性率约为19.2%,针对多发畸形患儿阳性率约32.6%。此结果与国外研究数据基本一致(13%~20%)。因此共识中指出对以下临床表型的疾病,建议将CMA 作为一线检测手段,将CMA作为一线检测手段,作为一线检测手段(重要的事说三遍!!!):

DNA微阵列技术原理及应用(光导固相法挺有用)

Ultra-weak Chemiluminescence Analytical Technology Principle and Application.ZHANG Zhong-Lun(Institute of Biophysics,The Chinese Academy of Scienc es,Beijing100101,China). Abstract Ultra-weak chemiluminescence analyzers that detect w eak light from sam ples w ere developed by ultra-weak chemiluminescence analytical technology.BPCL ultra-weak chemiluminescence analy zer has a lot of supper performance.It is satisfactory to research and applicatio n in the fields of biology,medicine and chemistry.The ex ample that of to research DNA damage was introduced.It is approved that the technology and analy zer were advanced and practical. Key words ultra-w eak chemiluminescence analy zer, DNA damage DNA微阵列(或芯片)技术原理及应用 何志巍 姚开泰 (湖南医科大学肿瘤研究所,卫生部癌变原理重点实验室,长沙410078) 摘要 DNA微阵列或芯片(DNA microarray or chip)技术是近年发展起来的又一新的分子生物学研究工具.它是利用光导化学合成、照相平板印刷以及固相表面化学合成等技术,在固相表面合成成千上万个寡核苷酸探针,或将液相合成的探针由微阵列器或机器人点样于尼龙膜或硅片上,再与放射性同位素或荧光物标记的DNA或cDNA杂交,用于分析DNA突变及多态性、DNA测序、监测同一组织细胞在不同状态下或同一状态下多种组织细胞基因表达水平的差异、发现新的致病基因或疾病相关基因等多个研究领域. 关键词 DNA微阵列(或芯片),原理,应用 学科分类号 Q785 从人类基因组计划启动至今,已积累了大量基因序列数据库,而它们在疾病和发育中的生物学意义尚知之甚少[1,2].目前人们正在由研究基因的结构及染色体定位的结构基因组学,向研究这些基因表达调控、在机体发育分化及疾病中作用的功能基因组学转变[3].而将多学科、多技术融合而成的DNA微阵列或芯片技术可研究同一或不同组织细胞在不同生理、病理条件下成千上万个基因结构、功能改变以及基因表达间相互作用的关系,发现致病基因或疾病相关基因,这必将为功能基因组学产生巨大的推动作用.本文主要介绍了该技术的概念、原理及在基因表达、基因突变或多态性分析及DNA测序等方面研究的最新进展. 1 概念理论依据 美国加州Affymetrix公司的Lipshutz等[4]较早地介绍了高密度寡核苷酸微阵列的制造、检测、软件及应用,随后该公司将照相平板印刷技术、计算机、激光共聚焦扫描、固相表面合成寡核苷酸及核酸分子杂交等结合起来,研制出DNA芯片. DNA微阵列或芯片是指在大规模集成电路所控制的机器人在尼龙膜或硅片固相支持物表面,有规律地合成成千上万个代表不同基因的寡核苷酸“探针”,或液相合成探针后由阵列器(arrayer)或机器人点样于固相支持物表面.这些“探针”可与用放射标记物如32P或荧光物如荧光素、丽丝胺等标记的目的材料中的DNA或cDNA互补核酸序列相结合,通过放射自显影或激光共聚焦显微镜扫描后,对杂交结果进行计算机软件处理分析,获得杂交信号的强度及分布模式图,以此反映目的材料中有关基因表达强弱的表达谱.该技术仍以基因连锁、连锁不平衡、限制性长度多态性、可变串联重复序列及单核苷酸多态性标记等基因定位方法为基础,采用分子杂交等多种技术方法为手段,进行遗传作图,对不同材料中的多个基因表达模式进行平行对比分析,是一种高产出的、新的基因分析方法.以尼龙膜为固相支持物的DNA微阵列和以硅片为固相支持物的DNA芯片,二者在原理上相同,仅在支持物及检测手段等方面略有不同.  收稿日期:1998-10-08,修回日期:1999-01-19

微化学工程中的微反应技术

第17卷第2期 化学反应工程与工艺 V ol17,N o2 2001年6月 Che m ical R eacti on Engineering and T echnol ogy June, 2001 文章编号:1001-7631(2001)02-0174-06 专 论 微化学工程中的微反应技术 王乐夫, 张美英, 李雪辉, 黄仲涛 (华南理工大学化学工程系,广东 广州 510640) 摘要: 微化学工程包括微型单元操作设备,如微型构造的传质、传热、混合、分离和反应设备等,微型传感技 术,以及利用微型构造设备进行化学化工研究和生产的微化学工艺体系。其中微反应技术代表了新的化学加 工途径。本文重点介绍微反应技术的概念和一些研究应用实例。 关键词:微化学工程; 微反应技术; 微反应器 中图分类号:O611 文献标识码:A 1 前 言 出于对化学工业的环境性、安全性、技术性和商业性的要求需要有新的化学制备方法。微反应器和化学微反应体系代表了新的化学加工途径。除了可以节省时间,减少设备空间和构造材料,降低操作费用外,它们是更环境友好的和更安全的,而且可以制备某些传统常规反应器难以制备的产品,因此有了许多新的应用和开发[1]。 随着精密工程技术的进步,在化学工程的新领域—微反应技术中的快速发展正越来越受到重视。从许多文献中可以看出,相关的学术兴趣和研究活动正在不断增加。例如,在2000年3月举行了第四届微反应技术国际会议[2],该会议的主题包括微反应器的设计与制造、微反应、微流体、生产过程中的微反应器、微反应器在药物生产及生物技术中的应用、用于能量转换及贮存中的微反应器及商业化微反应技术等八个部分的专题。不少从事化学研究的机构和工业界正在着手开发流体性元件的小型化,并要求这种小型化可以进行化学体系中的许多重要标准单元操作。这些新型的元件可以为加工工程提供最新的方法,并可促进微尺度工程的研究。 上面的论述会引出下列问题:化学设备的微型化对于化学工业甚至石油化学工业是有价值的吗?微反应技术将满足微尺度元件和大规模生产相结合的挑战吗?能够在微通道反应器中有效地生产产品,而且将来的市场增长足以满足工业的期望值吗?微通道反应器仍然只是生活在象牙塔中的学术界的微型玩具吗?和某些商业专家的想法相一致吗?为了探索这些问题,本文介绍有关微反应技术的一些基本概念,并结合一些研究开发实例展望它的发展前景。 收稿日期:2000-06-27;修订日期:2000-09-07 作者简介:王乐夫(1956-),男,硕士,教授,博士生导师;李雪辉,(1970-),男,博士,讲师,通讯联系人。 基金项目:广东省自然科学基金(编号:000428)及中国石油化工集团公司(编号:X598011)资助项目

相关文档
最新文档