03 DRA系统原理概述

WCDMA系统网络结构图

WCDMA系统网络结构图 1.Uu:UE和UTRAN(陆地无线接入网)之间的接口,用户终端。 2.UE: 3G网络中,用户终端就叫做UE包含手机,智能终端,多媒体设备, 流媒体设备等。 3.ME: 4.UTRAN:陆地无线接入网。UTRAN由NODE B和无线网络控制器(RNC) 构成,NODE B相当于GSM BTS,RNC相当于GSM BSC。3g由核心网(CN)、UMTS 陆地无线接入网(UTRAN)、用户设备(UE)三大部分组成,CN主要完成用户认证、位置管理、呼叫连接控制、用户信息传送等功能。UTRAN 分为无线不相关和无线相关两部分,前者完成与CN 的接口,实现向用户提供QOS 保证的信息处理和传送以及用户和网络控制信息的处理和传送;无线相关部分处理与UE 的无线接入(用户信息传送、无线信道控制、资源管理等)。UE 主要完成无线接入、信息处理等。 Node B:无线收发信机。主要功能是扩频、调制、信道编码及解扩、解调、信道解码、还包括基带信号和射频信号的转化。

5.Lub:逻辑单元块 6.RNC:无线网络控制器是3G网络的一个关键网元。它是接入网的组成 部分,用于提供移动性管理、呼叫处理、链接管理和切换机制。 7.Lu:逻辑单元(LU)连接陆地无线接入网(UTRAN)和CN(核心网) 8.Lur:用于呼叫切换的RNC到RNC连接,通常通过OC-3链路实现。 https://www.360docs.net/doc/cb17209126.html,:核心网将业务提供者与接入网,或者,将接入网与其他接入网连 接在一起的网络。通常指除接入网和用户驻地网之外的网络部分。10.Msc: 移动交换中心。核心网CS域功能节点。MSC/VLR的主要功能是提 供CS域的呼叫控制、移动性管理、鉴权和加密等功能。 11.VLR: 拜访位置寄存器, VLR动态地保存着进入其控制区域内的移动用户 的相关数据,如位置区信息及补充业务参数等,并为已登记的移动用户提供建立呼叫接续的必要条件。VLR从该移动用户归属的HLR中获取并保存用户数据,并在MSC处理用户的移动业务时向MSC提供必要的用户数据。VLR一般都与MSC在一起综合实现。 12.HLR: 归属位置寄存器, 存放着所有归属用户的信息,如用户的有关号 码(IMSI和MSISDN)、用户类别、漫游能力、签约业务和补充业务等。 此外,HLR还存储着每个归属用户有关的动态数据信息,如用户当前漫游所在的MSC/VLR地址(即位置信息)和分配给用户的补充业务。13.AUC是GSM系统的安全性管理单元,存储用以保护移动用户通信不受 侵犯的必要信息。AUC一般与HLR合置在一起,在HLR/AUC内部,AUC 数据作为部分数据表存在。 14.OMC:操作维护中心。包括设备管理系统和网络管理系统。设备管理系

WCDMA系统概述

WCDMA是目前全球两种主要的第3代移动通信体制之一,是未来移动通信的发展趋势。 目前,WCDMA系统标准规范的制订者—3GPP正在紧锣密鼓地制订其商用化的规范。全球各大通信设备制造商、研究机构和高等院校等都在投入大量的人力物力对其进行研究,以便在未来的竞争中占有一席之地。世界著名电信公司如Erics-son、DoCoMo等都斥巨资开发了实验系统,在2002年左右将会推出商用系统。中国对WCDMA的研究始于1998年中国评估组(ChEG)对IMT-2000的几种体制的评估。 此后,一些高校、研究机构和公司投入到对WCDMA的研究中。 1WCDMA系统结构 WCDMA系统由核心网(CN)、无线接入网(UTRAN)和用户装置(UE)3 部分组成。 CN与UTRAN的接口定义为Iu接口,UTRAN与UE的接口定义为Uu接口。 1.1通用协议结构 Uu和Iu接口协议分为两部分?押 用户平面协议 这些协议是实现真正的无线接入承载业务的协议。 控制平面协议 这些协议是用于在移动终端和网络间在不同的方面(包括请求业务、控制不同的传输资源和切换等)控制无线接入承载和连接,还包括非接入层(NAS)的透明传输机制。 1.2UTRAN结构 UTRAN包括许多通过Iu接口连接到CN的无线网络子系统(RNS)。一个RNS包括一个无线网络控制器(RNC)和一个或多个NodeB。NodeB通过Iub接口连接到RNC上,它支持FDD模式、TDD模式或双模。NodeB包括一个或多 个小区。 RNC负责决定UE的切换,它具有合并/分离功能,用以支持在不同NodeB之间的宏分集。UTRAN内部,RNSs中的RNCs能通过Iur接口交互信息,Iu接口和Iur接口是逻辑接口。Iur接口可以是RNC之间物理的直接相连或通过适当的 传输网络实现。 1.3UTRAN功能 UTRAN的功能如下: 系统接入控制功能包括:接入控制、拥塞控制、系统信息广播、无线信道加密和解密。 移动性功能包括:切换、SRNS重布置。 无线资源管理和控制包括:无线资源配置和操作、无线环境调查、宏分集控制、无线承载控制、无线协议功能、RF功控、RF功率设置、无线信道编码和译码、随机接入检测和处 理。 2WCDMAUTRAN接口协议 WCDMAUTRAN主要涉及Uu、Iub、Iur和Iu这4个接口。

微型计算机原理及应用课后答案侯晓霞

微型计算机原理及应用课后答案侯晓霞 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

CH01微型计算机概述 习题与思考题 1.微型计算机由哪些部件组成各部件的主要功能是什么 解答: 2.8086/8088 CPU由哪两部分组成它们的主要功能各是什么是如何协调工作的 解答: 协调工作过程: 总线接口部件和执行部件并不是同步工作的,它们按以下流水线技术原则来协调管理: ①每当8086的指令队列中有两个空字节,或者8088的指令队列中有一个空字节时,总线接口部件就会自动把指令取到指令队列中。 ②每当执行部件准备执行一条指令时,它会从总线接口部件的指令队列前部取出指令的代码,然后用几个时钟周期去执行指令。在执行指令的过程中,如果必须访问存储器或者输入/输出设备,那么,执行部件就会请求总线接口部件进入总线周期,完成访问内存或者输入/输出端口的操作;如果此时总线接口部件正好处于空闲状态,那么,会立即响应执行部件的总线请求。但有时会遇到这样的情况,执行部件请求总线接口部件访问总线时,总线接口部件正在将某个指令字节取到指令队列中,此时总线接口部件将首先完成这个取指令的操作,然后再去响应执行部件发出的访问总线的请求。 ③当指令队列已满,而且执行部件又没有总线访问请求时,总线接口部件便进入空闲状态。 ④在执行转移指令、调用指令和返回指令时,由于程序执行的顺序发生了改变,不再是顺序执行下面一条指令,这时,指令队列中已经按顺序装入的字节就没用了。遇到这种情况,指令队列中的原有内容将被自动消除,总线接口部件会按转移位置往指令队列装入另一个程序段中的指令。 3.8086/8088 CPU中有哪些寄存器各有什么用途标志寄存器F有哪些标志位各在什么情况下置位 解答:

(华为WCDMA系统基本原理)第1章_WCDMA系统概述

第1章WCDMA系统概述 1.1 移动通信的发展 现代的移动通信发展至今,主要走过了两代,而第三代现在正处于预商用阶 段,不少厂家已经在欧洲、亚洲进行实验网的商用试运行。 第一阶段是模拟蜂窝移动通信网。时间是上世纪七十年代中期至八十年代中 期。这一阶段相对于以前的移动通信系统,最重要的突破是贝尔实验室在七 十年代提出的蜂窝网的概念。蜂窝网,即小区制,由于实现了频率复用,大 大提高了系统容量。 第一代移动通信系统的典型代表是美国的AMPS系统和后来的改进型系统 TACS,以及NMT和NTT等。AMPS(先进的移动电话系统)使用模拟蜂窝 传输的800MHz频带,在北美、南美和部分环太平洋国家广泛使用;TACS (总接入通信系统)使用900MHz频带,分ETACS(欧洲)和NTACS(日 本)两种版本,英国、日本和部分亚洲国家广泛使用此标准。 第一代移动通信系统的主要特点是采用频分复用,语音信号为模拟调制,每 隔30KHz/25KHz一个模拟用户信道。其主要弊端有: (1) 频谱利用率低 (2) 业务种类有限 (3) 无高速数据业务 (4) 保密性差,易被窃听和盗号 (5) 设备成本高 (6) 体积大,重量大 为了解决模拟系统中存在的这些根本性技术缺陷,数字移动通信技术应运而 生,这就是以GSM和IS-95为代表的第二代移动通信系统,时间是从八十年 代中期开始。第二代数字蜂窝移动通信系统的典型代表是美国的DAMPS系 统、IS-95和欧洲的GSM系统。 GSM(全球移动通信系统)发源于欧洲,它是作为全球数字蜂窝通信的TDMA 标准而设计的,支持64Kbps的数据速率,可与ISDN互连。GSM使用900MHz 频带,使用1800MHz频带的称为DCS1800。GSM采用FDD双工方式和 TDMA多址方式,每载频支持8个信道,信号带宽200KHz。 DAMPS (先进的数字移动电话系统)也称IS-54(北美数字蜂窝),使用 800MHz频带,是两种北美数字蜂窝标准中推出较早的一种,指定使用TDMA 多址方式。

WCDMA基本网络结构

2008-04-08 12:26 WCDMA是3G三种主流标准的一种。WCDMA系统可以分为无线接入和网络结构两部分,本文介绍其网络结构部分。WCDMA网络结构可分为无线接入网和核心网两部分,本文首先重点阐述了无线接入网的结构,对Iu、Iur、Iub接口协议模型进行了分析;接着对R99的核心网和全IP的核心网结构和相关功能实体进行了概述。 引言 WCDMA是目前全球三种主要的第三代移动通信体制之一,是未来移动通信的发展趋势。WCDMA系统是IMT-2000家族的一员,它由CN(核心网)、UTRAN(UMTS陆地无线接入网)和UE(用户装置)组成。UTRAN 和UE采用WCDMA无线接入技术。WCDMA网络在设计时遵循以下原则:无线接入网与核心网功能尽量分离。即对无线资源的管理功能集中在无线接入网完成,而与业务和应用相关功能在核心网执行。无线接入网是连接移动用户和核心网的桥梁和纽带。其满足以下目标: -允许用户广泛访问电信业务,包括一些现在还没定义的业务,象多媒体和高速率数据业务。 -方便的提供与固定网络相似的高质量的业务(特别是话音质量)。 -方便的提供小的、容易使用的、低价的终端,它要有长的通话和待机时间。 - 提供网络资源有效的使用方法(特别是无线频谱)。 目前,WCDMA系统标准的R99版本已经基本稳定,其R4、R5和R6版本还在紧锣密鼓的制订中。WCDMA系统的网络结构如图1所示。 图1 WCDMA系统结构 WCDMA系统由三部分CN(核心网)、UTRAN(无线接入网)和UE(用户装置)组成。

CN与UTRAN的接口定义为Iu接口,UTRAN与UE的接口定义为Uu接口。 本文将重点阐述WCDMA系统的网络结构。其网络结构的基本特点是核心网从GSM的核心网逐步演进和过渡;而无线接入网则是革命性的变化,完全不同于GSM的无线接入网;而业务是完全兼容GSM的业务,体现了业务的连续性。 无线接入网 UTRAN包括许多通过Iu接口连接到CN的RNS。一个RNS包括一个RNC和一个或多个Node B。Node B通过Iub接口连接到RNC上,它支持FDD模式、TDD模式或双模。Node B 包括一个或多个小区。 UTRAN内部,RNSs中的RNCs能通过Iur接口交互信息, Iu接口和Iur接口是逻辑接口。Iur接口可以是RNC之间物理的直接相连或通过适当的传输网络实现。UTRAN结构如图2所示。 图2 UTRAN结构 Iu、Iur、Iub接口分别为CN与RNC、RNC与RNC、RNC与Node B之间的接口。图3所示为UTRAN接口通用协议模型。此结构依据层间和平面间相互独立原则而建立。

WCDMA移动通信系统基本知识介绍解析

WCDMA移动通信系统基本知识介绍技术研发部毕猛 内容提要 1. WCDMA导论 2. 物理层 3. 移动性管理 4.无线资源管理 Section 1 W-CDMA 导论 主要内容 多址接入及双工技术 WCDMA新特点 WCDMA与GSM的主要区别 业务分类 UMTS系统结构 DS-CDMA 码字 Rake接收机 发射分集 频率

时间功率 频率 时间功率 频率时间功率FDMA TDMA CDMA 通信系统中有三种多址接入技术:?频分多址Fre ?时分多址Fre+Ts ?码分多址Fre+Code 多址接入 双工间隔:190MHz FDD 时间 频率 功率 5 MHz 5 MHz 码复用& 频分双工UL DL UMTS 用户1 UMTS 用户2 时间

频率 功率 TDD 5 MHz DL UL DL 码复用&时分双工 DL 666.67 μs UL UMTS 用户2UMTS 用户1 W-CDMA: FDD or TDD 双工技术 WCDMA的新特点 WCDMA的新特点 9提供高速的数据速率,最高可达到2Mbps,将来如果采用HSDPA将提高到8~10Mbps(甚至到20Mbps,如果采用MIMO 天线技术。 9可变比特速率。(可变扩频因子 9采用异步方式,无需GPS精确定时,方便室内规划。 9支持上、下行不对称的业务,如视频点播和网页浏览,下 行业务远大于上行业务。

9更高的频谱利用率,频率复用度为1。 91500Hz的快速功率控制,更好地克服快衰落的影响。 0.5、1、1.5、2 dB (可变 功率控制步长1500Hz 功率控制频率软切换,更软切换,硬切换切换 666.7us 时隙长10ms (包含15个时隙帧长2Mbps (for Release99&Release4最大业务速率 3.84Mcps 码片速率上行BPSK ,下行QPSK 调制方式分组和电路交换数据类型Node B :-121dBm ,MS :-117dBm (BER 为10-3接收机灵敏度Rake 接收机 接收机异步方式同步方式卷积编码,Turbo 编码(对高速业务信道编码8种速率的AMR 编码(4.75~12.2kbps语音编码 4.4~5.2MHz 载波间隔1 频率复用度2×5MHz 最小频率需求上行:1920~1980MHz,下行:2110~2170MHz 规划频段频率栅格与定标频率 WCDMA 的主要参数 语音和低速数据业务(理论最大171.2kbps ,实际几十kbps AMR 语音(4.75~12.2kbps、CS64kbps 、最大2Mbps 的分组数据业务。 业务 硬容量,不受覆盖和干扰的影响软容量,受覆盖和干扰影响

(完整版)微机原理答案1

第 1 章微型计算机系统概述 习题参考答案 1-1.微型计算机包括哪几个主要组成部分,各部分的基本功能是什么? 答:微型计算机由CPU、存储器、输入/输出接口及系统总线组成。 CPU是微型计算机的核心部件,一般具有下列功能:进行算术和逻辑运算。暂存少量数据。对指令译码并执行指令所规定的操作。与存储器和外设进行数据交换的能力。提供整个系统所需要的定时和控制信号。响应其他部件发出的中断请求;总线是计算机系统各功能模块间传递信息的公共通道,一般由总线控制器、总线发送器、总线接收器以及一组导线组成;存储器是用来存储数据、程序的部件;I/O接口是微型计算机的重要组成部件,在CPU和外设之间起适配作用。1-2.CPU 执行指令的工作过程。 答:指令执行的基本过程: (1)开始执行程序时,程序计数器中保存第一条指令的地址,指明当前将要执行的指令存放在存储器的哪个单元。 (2)控制器:将程序计数器中的地址送至地址寄存器MAR,并发出读命令。存储器根据此地址取出一条指令,经过数据总线进入指令寄存器IR。 (3)指令译码器译码,控制逻辑阵列发操作命令,执行指令操作码规定的操作。 (4)修改程序计数器的内容。 1-3.果微处理器的地址总线为20 位,它的最大寻址空间为多少? 答:220=1048576=1MB 1-4.处理器、微型计算机和微型计算机系统之间有什么关系? 答: 微处理器是微型计算机的核心部件。微处理器配上存储器、输入/输出接口及相应的外设构成完整的微型计算机。以微型计算机为主体,配上系统软件和外部设备以后,就构成了完整的微型计算机系统。 1-5.下面十进制数分别转换为二进制、八进制和十六进制数:128,65535,1024 答: 128,二进制:10000000B,八进制:200O,十六进制:80H 65535,二进制:1111111111111111B,八进制:177777O,十六进制:FFFFH 1024,二进制:10000000000B,八进制:2000O,十六进制:400H

WCDMA系统网络结构图

W C D M A系统网络结构 图 Last revision on 21 December 2020

WCDMA系统网络结构图 1.Uu:和(陆地无线接入网)之间的接口,用户终端。 2.UE: 3G网络中,用户终端就叫做UE包含手机,智能终端,多媒体设备,流媒 体设备等。 3.ME: 4.:陆地无线接入网。UTRAN由NODE B和无线网络控制器(RNC)构成,NODE B 相当于GSM BTS,RNC相当于GSM BSC。3g由核心网(CN)、UMTS 陆地无线接入网(UTRAN)、用户设备(UE)三大部分组成,CN主要完成用户认证、位置管理、呼叫连接控制、用户信息传送等功能。UTRAN分为无线不相关和无线相关两部分,前者完成与CN 的接口,实现向用户提供QOS 保证的信息处理和传送以及用户和信息的处理和传送;无线相关部分处理与UE 的无线接入(用户信息传送、控制、资源管理等)。UE 主要完成无线接入、信息处理等。 Node B:无线收发信机。主要功能是扩频、调制、信道编码及解扩、解调、信道解码、还包括基带信号和射频信号的转化。 5.Lub:逻辑单元块 6.RNC:无线网络控制器是3G网络的一个关键网元。它是接入网的组成部分, 用于提供移动性管理、呼叫处理、链接管理和切换机制。 7.Lu:逻辑单元(LU)连接陆地无线接入网()和CN(核心网) 8.Lur:用于呼叫切换的RNC到RNC连接,通常通过OC-3链路实现。 https://www.360docs.net/doc/cb17209126.html,:核心网将业务提供者与接入网,或者,将接入网与其他接入网连接在一 起的网络。通常指除接入网和用户驻地网之外的网络部分。 10.Msc: 移动交换中心。核心网CS域功能节点。MSC/VLR的主要功能是提供CS

微型计算机原理及应用答案汇总

CH01微型计算机概述 习题与思考题 1.微型计算机由哪些部件组成?各部件的主要功能是什么?解答: 算术逻辑部件(ALU)微处理 器累加器、寄存器 (CPU) 控制器系统总线:AB、CB、DB (功能:为CPU和其他部件之间提供数据、地址微型计算机和控制 信息的传输通道) 微机系统输入/输出(I/O)接口:串/并行接口等 (功能:使外部设备和微型机相连) 存储器:只读存储器(ROM)、随机存储器(RAM) (功能:用来存储信息) 操作系统(OS)系统软件 系统实用程序:汇编、编译、编辑、调试程序等外围设备:打印机、键盘、CRT、磁盘控制器等 (注:CPU的功能--①可以进行算术和逻辑运算; ②可保存少量数据; ③能对指令进行译码并执行规定的动作; ④能和存储器、外设交换数据; ⑤提供整修系统所需要的定时和控制; ⑥可以响应其他部件发来的中断请示。) 2.8086/8088 CPU 由哪两部分组成?它们的主要功能各是什么?是如何协调工作的?解答: 总线接口部件(BIU):负责与存储器、I/O端口传送数据 微处理器 (CPU) 执行部件(EU):负责指令的执行

协调工作过程:总线接口部件和执行部件并不是同步工作的,它们按以下流水线技术原则来协调管理: ①每当8086 的指令队列中有两个空字节,或者8088 的指令队列中有一个空字节时,总线接口部件就会自动把指令取到指令队列中。 ②每当执行部件准备执行一条指令时,它会从总线接口部件的指令队列前部取出指令的代码,然后用几个时钟周期去执行指令。在执行指令的过程中,如果必须访问存储器或者输入/输出设备,那么,执行部件就会请求总线接口部件进入总线周期,完成访问内存或者 输入/输出端口的操作;如果此时总线接口部件正好处于空闲状态,那么,会立即响应执行 部件的总线请求。但有时会遇到这样的情况,执行部件请求总线接口部件访问总线时,总线接口部件正在将某个指令字节取到指令队列中,此时总线接口部件将首先完成这个取指令的操作,然后再去响应执行部件发出的访问总线的请求。 ③当指令队列已满,而且执行部件又没有总线访问请求时,总线接口部件便进入空闲状态。 ④在执行转移指令、调用指令和返回指令时,由于程序执行的顺序发生了改变,不再是顺序执行下面一条指令,这时,指令队列中已经按顺序装入的字节就没用了。遇到这种情况,指令队列中的原有内容将被自动消除,总线接口部件会按转移位置往指令队列装入另一个程序段中的指令。 3.8086/8088 CPU 中有哪些寄存器?各有什么用途?标志寄存器F 有哪些标志位?各在 什么情况下置位?解答: PF、CF。 标志寄存器F 的各标志位置位情况: · CF:进位标志位。做加法时出现进位或做减法时出现借位,该标志位置1;否则清0。 ·PF:奇偶标志位。当结果的低8 位中l 的个数为偶数时,该标志位置1;否则清0。

微型计算机原理及应用

微型计算机原理及应用 内容提要 本书以主流机IBM PC系列及兼容机为主要对象,系统地叙述了微型计算机的组成及各组成部分的工作原理;叙述了汇编语言程序设计的思路、方法和技术;阐述了微型计算机的接口技术及应用。全书共分8章,内容包括计算机基础、微处理器,存储器,8086/8088的结构,指令系统和汇编语言语法,分支、循环、子程序的设计,DOS系统功能调用,ROM BIOS中断调用,磁盘文件管理等。涵盖了几乎所有常用典型接口技术,包括存储器接口、并行接口、人-机接口、串行通信接口、D/A和A/ D接口、硬磁盘机接口,并对接口问题的一些共性技术,如I/O接口地址译码、总线、中断、DMA和定时/计数技术等集中讨论。每章开始列出该章内容提要和学习目标,结尾列有本章内容小结、练习和思考题。 本书既涉及微型计算机的共性技术,也涉及计算机系统中各类常用外部设备的接口技术,内容丰富,层次分明,实例丰富,便于教学、自学和应用。本书既可供高等学校工科计算机和非计算机类有关专业作为本科生、研究生或高层次专业技术培训教材,也可供从事计算机应用与开发的科研及工程技术人员自学参考。 编辑推荐 本书在内容组织上既注重全面性和实用性,又强调系统性与新颖性。全书由浅入深、全面系统地介绍了微型计算机的组成、工作原理、接口电路和典型应用等,使读者建立微型计算机系统的整体概念,掌握微型计算机系统软硬件开发的初步方法,了解简单计算机应用系统的工作原理和设计方法。每章中都有大量的例题和综合应用实例。 目录 绪论 第一章微型计算机基础

第一节计算机中数的表示方法及运算 第二节微型计算机概述 第二章微处理器(CPU) 第一节8086CPU 第二节各种常见的CPU特点简介 第三章存储器 第一节存储器的分类 第二节存储器的工作原理 第三节8086的存储器结构 第四节CPU与存储器的连接 第四章8086指令系统 第一节概述 第二节8086的寻址方式 第三节8086指令系统 第五章汇编语言程序设计 第一节汇编语言基本语法 第二节常用伪指令 第三节汇编语言程序结构 第四节DOS和BIOS服务程序调用 第五节汇编语言程序设计 第六章输入输出接口电路 第一节I/O接口概述 第二节I/O接口电路地址译码技术 第三节总线技术 第四节并行接口 第五节串行通信接口 第七章CPU与接口间信息传送及定时/计数器第一节中断技术 第二节DMA技术 第三节定时/计数器8253/8254 第八章D/A和A/D转换器接口 第一节D/A转换器接口 第二节A/D转换器接口 第三节微型计算机系统的A/D、D/A通道 第四节高速微机数据采集系统 参考文献

WCDMA系统网络结构图

WCDMA系统网络结构图 2. UE: 3G网络中,用户终端就叫做UE包含手机,智能终端,多媒体设备, 流媒体设备等。 3. ME: 4. UTRAN :陆地无线接入网。UTRAN由NODE B和无线网络控制器(RNQ 构 成,NODE B相当于GSM BTSRNC相当于GSM BSC3g由核心网(CN)、UMTS陆地无线接入网(UTRAN)用户设备(UE)三大部分组成,CN主要完成用户认证、位置管理、呼叫连接控制、用户信息传送等功能。UTRAN 分为无线不相关和无线相关两部分,前者完成与CN的接口,实现向用户提供QOS保证的信息处理和传送以及用户和网络控制信息的处理和 传送;无线相关部分处理与UE的无线接入(用户信息传送、无线信道控制、资源管理等)。UE主要完成无线接入、信息处理等。 Node B:无线收发信机。主要功能是扩频、调制、信道编码及解扩、解调、 信道解码、还包括基带信号和射频信号的转化

5. Lub:逻辑单元块 6. RNC:无线网络控制器是3G网络的一个关键网元。它是接入网的组成部分, 用于提供移动性管理、呼叫处理、链接管理和切换机制。 7. Lu:逻辑单元(LU)连接陆地无线接入网(UTRAN)和CN(核心网) 8. Lur:用于呼叫切换的RNC到RNC连接,通常通过0C-3链路实现。 9. CN:核心网将业务提供者与接入网,或者,将接入网与其他接入网连接在一起 的网络。通常指除接入网和用户驻地网之外的网络部分。 10. Msc:移动交换中心。核心网CS域功能节点。MSC/VLR的主要功能是提供 CS域的呼叫控制、移动性管理、鉴权和加密等功能。 11. VLR:拜访位置寄存器,VLR动态地保存着进入其控制区域内的移动用户的相 关数据,如位置区信息及补充业务参数等,并为已登记的移动用户提供建立呼叫接续的必要条件。VLR从该移动用户归属的HLR中获取并保存用户数据,并在MSC处理用户的移动业务时向MSC提供必要的用户数据。 VLR—般都与MSC在一起综合实现。 12. HLR: 归属位置寄存器, 存放着所有归属用户的信息,如用户的有关号 码(IMSI和MSISDN、用户类别、漫游能力、签约业务和补充业务等。此外,HLR还存储着每个归属用户有关的动态数据信息,如用户当前漫游所在的MSC/VLR地址(即位置信息)和分配给用户的补充业务。 13. AUC是GSM系统的安全性管理单元,存储用以保护移动用户通信不受 侵犯的必要信息。AUC一般与HLR合置在一起,在HLR/AUC内部,AUC 数据作为部分数据表存在。

微机原理__课后答案

第1章概述 一、填空题 1.电子计算机主要由运算器、控制器、存储器、输入设备和输出设备等五部分组成。 2.运算器和控制器集成在一块芯片上,被称作CPU。 3.总线按其功能可分数据总线、地址总线和控制总线三种不同类型的总线。 4.计算机系统与外部设备之间相互连接的总线称为系统总线(或通信总线);用于连接微型机系统内各插件板的总线称为系统内总线(板级总线);CPU内部连接各寄存器及运算部件之间的总线称为内部总线。 5.迄今为止电子计算机所共同遵循的工作原理是程序存储和程序控制的工作原理。这种原理又称为冯·诺依曼型原理。 二、简答题 1.简述微处理器、微计算机及微计算机系统三个术语的内涵。 答:微处理器是微计算机系统的核心硬件部件,它本身具有运算能力和控制功能,对系统的性能起决定性的影响。微处理器一般也称为CPU;微计算机是由微处理器、存储器、

I/O接口电路及系统总线组成的裸机系统。微计算机系统是在微计算机的基础上配上相应的外部设备和各种软件,形成一个完整的、独立的信息处理系统。三者之间是有很大不同的,微处理器是微型计算机的组成部分,而微型计算机又是微型计算机系统的组成部分。 2.什么叫总线?为什么各种微型计算机系统中普遍采用总线结构? 答:总线是模块与模块之间传送信息的一组公用信号线。 总线标准的建立使得各种符合标准的模块可以很方便地挂在总线上,使系统扩展和升级变得高效、简单、易行。因此微型计算机系统中普遍采用总线结构。 3.微型计算机系统总线从功能上分为哪三类?它们各自的功能是什么? 答:微型计算机系统总线从功能上分为地址总线、数据总线和控制总线三类。地址总线用于指出数据的来源或去向,单向;数据总线提供了模块间数据传输的路径,双向;控制总线用来传送各种控制信号或状态信息以便更好协调各功能部件的工作。

第1章 WCDMA系统概述分析

第1章 WCDMA系统概述 1.1 移动通信的发展 现代的移动通信发展至今,主要走过了两代,而第三代现在正处于预商用阶 段,不少厂家已经在欧洲、亚洲进行实验网的商用试运行。 第一阶段是模拟蜂窝移动通信网。时间是上世纪七十年代中期至八十年代中 期。这一阶段相对于以前的移动通信系统,最重要的突破是贝尔实验室在七 十年代提出的蜂窝网的概念。蜂窝网,即小区制,由于实现了频率复用,大 大提高了系统容量。 第一代移动通信系统的典型代表是美国的AMPS系统和后来的改进型系统 TACS,以及NMT和NTT等。AMPS(先进的移动电话系统)使用模拟蜂窝 传输的800MHz频带,在北美、南美和部分环太平洋国家广泛使用;TACS (总接入通信系统)使用900MHz频带,分ETACS(欧洲)和NTACS(日 本)两种版本,英国、日本和部分亚洲国家广泛使用此标准。 第一代移动通信系统的主要特点是采用频分复用,语音信号为模拟调制,每 隔30KHz/25KHz一个模拟用户信道。其主要弊端有: (1) 频谱利用率低 (2) 业务种类有限 (3) 无高速数据业务 (4) 保密性差,易被窃听和盗号 (5) 设备成本高 (6) 体积大,重量大 为了解决模拟系统中存在的这些根本性技术缺陷,数字移动通信技术应运而 生,这就是以GSM和IS-95为代表的第二代移动通信系统,时间是从八十年 代中期开始。第二代数字蜂窝移动通信系统的典型代表是美国的DAMPS系 统、IS-95和欧洲的GSM系统。 GSM(全球移动通信系统)发源于欧洲,它是作为全球数字蜂窝通信的TDMA 标准而设计的,支持64Kbps的数据速率,可与ISDN互连。GSM使用900MHz 频带,使用1800MHz频带的称为DCS1800。GSM采用FDD双工方式和 TDMA多址方式,每载频支持8个信道,信号带宽200KHz。

微机原理答案 (1)

第1章微型计算机系统概述 1.1 学习指导 简要介绍了微型计算机系统的硬件组成和基本工作方法,以及微型计算机的软件和操作系统。要求了解计算机的硬件组成结构、Intel微处理器的主要成员、系统总线的概念。理解微型计算机的基本操作过程以及指令、程序等基本概念。理解操作系统的重要作用,掌握DOS基本命令的使用。 1.2 习题 1. 简述微型计算机系统的组成。 2. 简述计算机软件的分类及操作系统的作用。 3. CPU是什么?写出Intel微处理器的家族成员。 4. 写出10条以上常用的DOS操作命令。

第2章 计算机中的数制和码制 2.1 学习指导 介绍计算机中数制和码制的基础知识,主要包括各种进制数的表示法及相互转换、二进制数的运算、有符号二进制数的表示方法及运算时的溢出问题、实数的二进制表示法、BCD 编码和ASCII 字符代码等内容。要求重点掌握各种进制数的表示及相互转换、有符号数的补码表示及补码运算。 2.2 补充知识 1. 任意进制数的表示 任意一个数N 可表示成p 进制数: () ∑??==1n m i i i p p k N 其中,数N 表示成m 位小数和n 位整数。 1,,1,0?=p k i L 2. 数制之间的变换 十进制到任意进制(设为p 进制)的变换规则:(1)整数部分:N 除以p 取余数;(2)纯小数部分:N 乘以p 取整数。 任意进制(设为p 进制)到十进制的变换规则:按权展开。 3. 有符号数的补码表示 对于任意一个有符号数N,在机器字长能表示的范围内,可分两步得到补码表示:(1)取N 的绝对值,并表示成二进制数N1;(2)如果N 为负数,则对N1中的每一位(包括符号位)取反,再在最低位加1。这样得到的N1就是有符号数N 的补码表示。 4. 常用字符的ASCII 码 数字0~9:30H~39H;字母A~Z:41H~5AH;字母a~z:61H~7AH;空格:20H;回车(CR):0DH;换行(LF):0AH;换码(ESC):1BH。 2.3 习 题 1. 将下列十进制数转换成二进制数: (1)49;(2)73.8125;(3)79.75; 2. 将二进制数变换成十六进制数: (1)101101B ;(2)1101001011B ;(3)1111111111111101B ; (4)100000010101B ;(5)1111111B ;(6)10000000001B 3. 将十六进制数变换成二进制数和十进制数: (1)FAH ;(2)5BH ;(3)78A1H ;(4)FFFFH 4. 将下列十进制数转换成十六进制数: (1)39;(2)299.34375;(3)54.5625 5. 将下列二进制数转换成十进制数:

wcdma技术简介

WCDMA技术简介 一.通信系统概述 第一代移动通信系统是模拟制式的蜂窝移动通信系统,时间是本世纪七十年代中期至八十年代中期,1978年美国贝尔实验室研制成功先进移动电话系统AMPS,建成了蜂窝式移动通信系统。其它工业化国家也相继开发出蜂窝式移动通信网。这一阶段相对于以前的移动通信系统,最重要的突破是贝尔实验室在七十年代提出的蜂窝网的概念,蜂窝网,即小区制,由于实现了频率复用,大大提高了系统容量。 第一代移动通信系统的典型代表是美国的AMPS系统(先进移动电话系统)和后来的改进型系统TACS (总接入通信系统)等。AMPS使用800MHz频带,在北美、南美和部分环太平洋国家广泛,使用TACS使用900MHz频带,分ETACS(欧洲)和NTACS(日本)两种版本,英国、日本和部分亚洲国家广泛使用此标准。 第一代移动通信系统的主要特点是采用频分复用FDMA 模拟制式,语音信号为模拟调制,每隔30kHz/25kHz一个模拟用户信道。第一代系统在商业上取得了巨大的成功,但是其弊端也日渐显露出来: (1)频谱利用率低 (2) 业务种类有限 (3) 无高速数据业务 (4) 保密性差易被窃听和盗号 (5) 设备成本高 (6) 体积大重量大 第二代数字蜂窝移动通信系统的典型代表是美国的DAMPS系统、IS-95和欧洲的GSM系统。GSM(全球移动通信系统)发源于欧洲,它是作为全球数字蜂窝通信的TDMA标准而设计的,支持64kbit/s的数据速率,可与ISDN互连。GSM使用900MHz频带,使用1800MHz频带的称为DCS1800。GSM采用FDD双工方式和TDMA多址方式,每载频支持8个信道,信号带200kHz ,GSM标准体制较为完善,技术相对成熟,不足之处是相对于模拟系统其容量增加不多,仅仅为模拟系统的两倍左右,无法和模拟系统兼容。 DAMPS(先进的数字移动电话系统)也称IS-54(北美数字蜂窝),使用800MHz频带,是两种北美数字蜂窝标准中推出较早的一种,使用TDMA多址方式。 IS-95是北美的另一种数字蜂窝标准,使用800MHz或1900MHz频带,使用CDMA多址方式,已成为美国PCS 个人通信系统网的首选技术。 由于第二代移动通信以传输话音和低速数据业务为目的,从1996年开始,为了解决中速数据传输问题,又出现了2.5代的移动通信系统,如GPRS和IS-95B。 CDMA系统容量大。相当于模拟系统的10~20倍,与模拟系统的兼容性好。美国、韩国、香港等地已经开通了窄带CDMA系统,对用户提供服务。由于窄带CDMA技术比GSM成熟晚等原因,使得其在世界范围内的应用远不及GSM ,国内有北京、上海、广州、西安四地的窄带CDMA系统在运行。但从发展前景看,由于自有的技术优势,CDMA技术已经成为第三代移动通信的核心技术。 移动通信现在主要提供的服务仍然是语音服务以及低速率数据服务。由于网络的发展,数据和多媒体通信有了迅猛的发展势头,所以第三代移动通信的目标就是宽带多媒体通信。 第三代移动通信系统是一种能提供多种类型、高质量的多媒体业务,能实现全球无缝覆盖,具有全球漫游能力,与固定网络相兼容,并以小型便携式终端在任何时候、任何地点进

WCDMA简介

WCDMA WCDMA全名是WidebandCDMA,中文译名为“宽带分码多工存取”,它可支持384Kbps到2Mbps不等的数据传输速率,在高速移动的状态,可提供384Kbps的传输速率,在低速或是室内环境下,则可提供高达2Mbps 的传输速率。而GSM系统目前只能传送9.6Kbps,固定线路Modem也只是56Kbps的速率,由此可见WCDMA 是无线的宽带通讯。在同一些传输通道中,它还可以提供电路交换和分包交换的服务,因此,消费者可以同时利用交换方式接听电话,然后以分包交换方式访问因特网,这样的技术可以提高移动电话的使用效率,使得我们可以超过越在同一时间只能做语音或数据传输的服务的限制。 W-CDMA(宽带码分多址)是一个ITU(国际电信联盟)标准,它是从码分多址(CDMA)演变来的,从官方看被认为是IMT-2000的直接扩展,与现在市场上通常提供的技术相比,它能够为移动和手提无线设备提供更高的数据速率。WCDMA采用直接序列扩频码分多址(DS-CDMA)、频分双工(FDD)方式,码片速率为3.84Mcps,载波带宽为5MHz.基于Release 99/ Release 4版本,可在5MHz的带宽内,提供最高384kbps的用户数据传输速率。W-CDMA能够支持移动/手提设备之间的语音、图象、数据以及视频通信,速率可达2Mb/s(对于局域网而言)或者384Kb/s(对于宽带网而言)。输入信号先被数字化,然后在一个较宽的频谱范围内以编码的扩频模式进行传输。窄带CDMA使用的是200KHz宽度的载频,而W-CDMA使用的则是一个5MHz宽度 WCDMA(Wideband Code Division Multiple Access ):WCDMA源于欧洲和日本几种技术的融合。WCDMA采用直扩(MC)模式,载波带宽为5MHz,数据传送可达到每秒2Mbit(室内)及384Kbps(移动空间)。它采用MC FDD双工模式,与GSM网络有良好的兼容性和互操作性。作为一项新技术,它在技术成熟性方面不及CDMA2000,但其优势在于GSM的广泛采用能为其升级带来方便。因此,近段时间也倍受各大厂商的青睐。

相关文档
最新文档