三、同步发电机突然三相短路仿真

三、同步发电机突然三相短路仿真
三、同步发电机突然三相短路仿真

第五章

无穷大功率电源供电系统三相短路仿真

同步发电机突然三相短路暂态过程的仿真方法

发电机端突然三相短路时id,iq及if的电流仿真波形图

发电机端突然三相短路时的定子电流仿真图

发电机端突然两相短路时的三相定子电流仿真波形图

中性点不接地系统的仿真模型及计算

零序电流

零序电压

三相短路电压

6.3-同步发电机突然三相短路的物理过程及短路电流分析资料

6.3-同步发电机突然三相短路的物理过程及短路电流分析资料

6.3 同步发电机突然三相短路的物理过程及短路电流分析 6.3.1 同步发电机在空载情况下突然三相短路的物理过程 上一节讨论了无限大电源供电电路发生三相对称短路的情况。实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。 同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。 图6-6 凸极式同步发电机示意图 图6-6为凸极同步发电机的示意图。定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。转子逆时针旋转为正方向,轴超前轴90o。励磁绕组的轴线与轴重合。阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。 定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。下面分析发电机空载突然短路的暂态过程。 1.定子回路短路电流 设短路前发电机处于空载状态,气隙中只有励磁电流产生的磁链,忽略漏磁链后,穿过主磁路为主磁链匝链定子三相绕组,又设为转子轴与A相绕组轴线的初始夹角。由于转子以同步转速旋转,主磁链匝链定子三相绕组的磁链随着的变化而变化,因此 (6-17)

基于MATLAB的同步发电机突然短路设计

第1章绪论 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。随着电力工业的发展,电力系统的规模越来越大。在这种情况下,许多大型的电力科研试验很难进行,一是实际的条件难以满足;二是从系统的安全角度来讲也是不允许进行实验的。因此,寻求一种最接近于电力系统实际运行状况的数字仿真工具必不可少。而在众多的仿真工具中,MATLAB 以其优越的运算能力、方便和完善的绘图功能脱颖而出。 1.1设计目的 让学生综合运用Matlab/Simulink仿真工具箱,建立电力系统仿真模型,对系统三相短路和单相短路等故障形式进行设计、仿真、分析,加深对供电和电力系统知识的了解,并进一步熟悉MATLAB电力系统这一仿真工具。 1.2设计任务 1.运用Simulink建立简单的单机-无穷大系统进行仿真,对系统运行出现短路情况时的仿真结果进行详细的分析。 2.建立带励磁系统的发电机系统,通过仿真结果分析带上励磁系统时电压和电流的变化情况。 1.3设计要求 1.要求每个学生独立完成设计任务。 2.针对每个仿真要给出详细的结果分析。 3.完成实训任务书。 4.要求提交成果:报告书一份。

第2章MATLAB语言的概述 2.1 MATLAB简介 MATLAB是将计算、可视化、程序设计融合在一起的功能强大的平台,所具有的程序设计灵活,直观,图形功能强大的优点使其已经发展成为多学科,多平台的强大的大型软件。MATLAB提供的Simulink工具箱是一个在MATLAB环境下用于对动态系统进行建模、仿真和分析的软件包。它提供了用方框图进行建模的接口,与传统的仿真建模相比,更加直观、灵活。Simulink的作用是在程序块间的互联基础上建立起一个系统。每个程序块由输入向量,输出向量以及表示状态变量的向量等3个要素组成。在计算前,需要初始化并赋初值,程序块按照需要更新的次序分类。然后用 ODE计算程序通过数值积分来模拟系统。MATLAN含有大量的 ODE计算程序,有固定步长的,有可变步长的为求解复杂的系统提供了方便。MATLAB在电力系统建模和仿真的应用主要由电力系统仿真模块SimPowerSystem 来完成的。 由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。MATLAB 的出现给电力系统仿真带来了新的方法和手段。通过MATLAB 的 SimPowerSystem的模块对电力系统中的应用进行仿真,从而说明其在电力系统仿真中的运用电力系统的仿真可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,通过故障仿真得出了相关的电压稳定性方面的结论,从而证明了这种仿真的正确性和在分析应用中的可行性。 2.2 Simulink简介 Simulink是Matlab软件下的一个附加组件,是一个用来对动态系统进行建模、仿真和分析的MATLAB软件包。支持连续、离散以及两者混合的线性和非线性系统,同时它也支持具有不同部分拥有不同采样率的多种采样速率的仿真系统。 由于 Simulink可以很方便地创建和维护一个完整的模型,评估不同算法和结构并验证系统性能,另外Simulink还可以与MATLAB中的DSP工具箱、信号处理工具箱以及通讯工具箱等联合使用,进而实现软硬件的接口,从而成为实用的

同步发电机短路实验

同步发电机突然短路的分析 一、实验目的 1.学会使用MATLAB软件对电力系统进行时域仿真分析,加深对电力系统短路时暂态过程的理解。 2.通过实验,进一步理解有限容量系统和无穷大系统短路时暂态过程的不同 二、实验原理 同步电机是电力系统中的重要元件,由多个有磁耦合关系的绕组构成,同步电机突然短路的暂态过程要比恒定电压源电路复杂很多,所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响。 同步电机短路时,由于定子绕组中周期分量电流突变将对转子产生电枢反应,该反应产生交链励磁绕组的磁链。为了维持励磁绕组在短路瞬间总磁链不变,励磁绕组内将产生直流电流分量,其方向与原有的励磁电流方向相同,它产生的磁通也有一部分要穿过定子绕组,从而使定子绕组的周期分量电流增大。因此在有限容量系统突然发生三相短路时,短路电流的初值将大大超过稳态短路电流,最终衰减为稳态短路电流。 三、实验内容 电力系统时域分析实例(仿真) 范例:同步电机突然短路模型如图所示—使用简化的同步电机(Simplified Synchronous Machine),使用三相并联RLC负载并通过三相电路短路故障发生器元件实现同步电机的三相短路。 图1 同步电机突然短路电路模型

1、从电机元件库选择简化的同步电机(Simplified Synchronous Machine)元件,设置参数如下 2、从测量元件库中选择三相电压—电流测量元件,进行参数设置。电压测 量选项中选择测量相电压(phase-to-ground)用来测量同步发电机突然短路后三相电压的变化。 3.从线路元件库中选择三相短路故障发生器(3-phase-Fault),双击将三 相故障同时选中并设置转换时间。 4.从线路元件库中选择三相并联RLC负载元件,参数设置如下:

同步发电机突然三相短路的仿真研究_高仕红

第26卷第1期 湖北民族学院学报(自然科学版) V o.l26 N o.1 2008年3月 J ourna l o fHubei Institute for N ati ona liti es(N at ural Science Editi on) M a r.2008同步发电机突然三相短路的仿真研究 高仕红 (湖北民族学院电气工程系,湖北恩施445000) 摘要:同步发电机的突然三相短路,是电力系统最严重的故障,对电机本身和相关的电气设备都可能产生严重的影响,研究它有着非常重要的意义.在d-p坐标系统下,构建了同步发电机的数学模型以及动态等效电路.利用M a tlab7.1/Si m uli nk6.3的强大功能,构建了同步发电机机端突然三相短路的仿真模型,并对同步发电机的各物理量在短路期间进行了仿真研究.通过理论和仿真对比分析,同步发电机的各物理量在突然短路的暂态过程中产生很大的冲击和振荡,最后稳定在短路前的状态,仿真结果与理论分析相吻合.此方法还可用来研究同步发电机某些动态过程,从而为电机的优化设计提供必要的理论依据. 关键词:同步发电机;突然三相短路;数学模型;动态等效电路;仿真模型 中图分类号:TM301文献标识码:A文章编号:1008-8423(2008)01-0036-05 Si m ul ati on Study of Synchronous G enerator on Sudden Three-phase Short C ircuit GAO Sh i-hong (Depart m ent o f E l ec trical Eng i neeri ng,H ube i Institute f o r N a ti ona li ties,Enshi445000,Chi na) Abst ract:Three-phase short circuit of synchr onous generator is a seri o us fau lt i n t h e electric po w er sys-te m,wh ich is like l y to i n fl u ence bad l y on the nou m enon of electr icm ach i n e and correlati v e electric equ i p-m en,t so it is i m portant to study i.t In the reference fra m e,m athe m atic m ode l and dyna m ic equivalent c ir-cu itw as bu il.t By m aking use of po w erful f u ncti o n ofM atlab7.1/S i m uli n k6.3,si m ulati o n mode l of syn-chronous generator on sudden three-phase short circu it w as buil,t vari o us physica l quantities were stud-ied by si m u lation duri n g t h e short c ircu i.t By co mpari n g theoretics w ith si m ulati o n,various physica l quan-tities o f synchronous generator produced tre m endous i m pact and surge duri n g the sudden circu it and they stabilized in the pr oceedi n g state of short c ircu i.t The e m u lational resu lts are consi s tent w ith theore tic a-nalysis.Th ism ethod is a lso for the use o f researching certa i n dyna m ic course of synchronous generator, w hich provided necessary theoreti c basis for opti m u m desi g n of e lectric m ach i n e. K ey w ords:synchronous generator;sudden three-phase short c ircu i;t m athe m atic m ode;l dyna m ic equ i v-alent circu i;t si m ulati o n m odel 同步发电机是电力系统中最重要和最复杂的元件,由多个具有电磁耦合关系的绕组构成.同步发电机突然短路的暂态过程所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响,因此对同步发电机动态特性的研究历来是电力系统中的重要课题之一[1~3].而同步电机的突然三相短路,是电力系统的最严重的故障,它是人们最为关心、研究最多的过渡过程.虽然短路过程所经历的时间是极短的(通常约为0.1~0.3s),但对电枢短路电流和转子电流的分析计算,却有着非常重要的意 收稿日期:2007-12-12. 基金项目:湖北省教育厅科学研究计划项目(B20082908). 作者简介:高仕红(1971-),男,硕士,讲师,主要从事电机控制和同步电机励磁控制.

同步发电机突然三相短路中的几个问题

第2章作业参考答案 2-1 为何要对同步发电机的基本电压方程组及磁链方程组进行派克变换? 答:由于同步发电机的定子、转子之间存在相对运动,定转子各个绕组的磁路会发生周期性的变化,故其电感系数(自感和互感)或为1倍或为2倍转子角θ的周期函数(θ本身是时间的三角周期函数),故磁链电压方程是一组变系数的微分方程,求解非常困难。因此,通过对同步发电机基本的电压及磁链方程组进行派克变换,可把变系数微分方程变换为常系数微分方程。 2-2 无阻尼绕组同步发电机突然三相短路时,定子和转子电流中出现了哪些分量?其中哪些部分是衰减的?各按什么时间常数衰减?试用磁链守恒原理说明它们是如何产生的? 答:无阻尼绕组同步发电机突然三相短路时,定子电流中出现的分量包含:a)基频交流分量(含强制分量和自由分量),基频自由分量的衰减时间常数为T d’。 b)直流分量(自由分量),其衰减时间常数为T a。 c)倍频交流分量(若d、q磁阻相等,无此量),其衰减时间常数为T a。 转子电流中出现的分量包含: a)直流分量(含强制分量和自由分量),自由分量的衰减时间常数为T d’。 b)基频分量(自由分量),其衰减时间常数为T a。 产生原因简要说明: 1)三相短路瞬间,由于定子回路阻抗减小,定子电流突然增大,电枢反应 使得转子f绕组中磁链突然增大,f绕组为保持磁链守恒,将增加一个自

由直流分量,并在定子回路中感应基频交流,最后定子基频分量与转子 直流分量达到相对平衡(其中的自由分量要衰减为0). 2)同样,定子绕组为保持磁链守恒,将产生一脉动直流分量(脉动是由于d、 q不对称),该脉动直流可分解为恒定直流以及倍频交流,并在转子中感 应出基频交流分量。这些量均为自由分量,最后衰减为0。 2-3 有阻尼绕组同步发电机突然三相短路时,定子和转子电流中出现了哪些分量?其中哪些部分是衰减的?各按什么时间常数衰减? 答:有阻尼绕组同步发电机突然三相短路时,定子电流和转子电流中出现的分量与无阻尼绕组的情况相同。衰减时间常数如下: a)定子基频自由分量的衰减时间常数有3个: ' d T 、 " d T 、 " q T ,分别对应于f 绕组、D绕组和Q绕组。 b)定子直流分量和倍频分量(自由分量),其衰减时间常数均为Ta。 c)转子自由直流分量的衰减时间常数为 " d T 、 ' d T 。 d)转子基频分量(自由分量),其衰减时间常数为T a。 产生原因说明:f绕组与无阻尼绕组的情况相同。另外增加了D绕组和Q绕组,这两个绕组中与f绕组类似,同样要产生直流分量和基频交流分量(f 绕组与D绕组间要相互感应自由直流分量),但全部为自由分量,最后衰减为0。定子绕组中也有相应分量与之对应。 2-4 为什么要引入暂态电势E q’、E q”、E d”、E”? 答:不计阻尼回路时,E q’为暂态电动势,它与励磁绕组磁链Ψf有关,故在扰动前后瞬间不变,可用来计算短路后瞬间的基频交流分量。当计及阻尼回路时,

同步发电机突然三相短路的物理过程及短路电流分析

6.3 同步发电机突然三相短路的物理过程及短路电流分析 6.3.1 同步发电机在空载情况下突然三相短路的物理过程 上一节讨论了无限大电源供电电路发生三相对称短路的情况。实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。 同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。 图6-6 凸极式同步发电机示意图 图6-6为凸极同步发电机的示意图。定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。转子逆时针旋转为正方向,轴超前轴90o。励磁绕组的轴线与轴重合。阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。 定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。下面分析发电机空载突然短路的暂态过程。 1.定子回路短路电流 设短路前发电机处于空载状态,气隙中只有励磁电流产生的磁链,忽略漏磁链后,穿过主磁路为主磁链匝链定子三相绕组,又设为转子轴与A相绕组轴线的初始夹角。由于转子以同步转速旋转,主磁链匝链定子三相绕组的磁链随着的变化而变化,因此

基于MATLAB的同步发电机短路故障仿真研究

毕业设计(论文) 题目基于MATLAB的同步发电机短路故障仿真研究学院计算机与控制工程学院 专业班级电气xxx 学生姓名 指导教师 成绩 2014 年6 月26 日

摘要 众所周知,同步发电机在电力系统中发挥着至关重要的作用,现代社会中使用的电能几乎由同步发电机所产生,同步发电机在人类社会的生活生产中占据着非常重要的地位。为了更直观地了解同步发电机短路故障状态下的特性指标,尽量避免发生短路故障或及时对短路故障做出相应的正确措施,更合理选择保护装置,研究同步发电机的短路故障状态就成了当务之急的问题。随着科技进步与自动化水平的提高,人们要求能够快速分析故障和解决故障,在电力系统中,因运行环境、可操作性问题的限制,现场对同步发电机测试不太现实,因此,利用软件仿真的方法对同步发电机进行仿真研究就显得极其重要。本论文通过MATLAB软件建立同步发电机的仿真模型,对常见的短路故障进行仿真研究,以便更好地掌握同步发电机短路故障状态下的各特性,并设计了GUI 用户界面,更好的实现了人机交互。文中对各短路故障进行了仿真实验,从仿真结果可以看出,本文所设计的仿真系统满足对同步发电机短路故障的研究需求,实现论文设计的目标。 关键词:同步发电机;短路故障;MATLAB;GUI I

Abstract As is known to all, synchronous generator plays an important role in power system. Now the electric power used in our society almost produce by synchronous generators.Synchronous generator occupies a very important position in human society.In order to learning the characteristic parameters of synchronous generator more intuitive in fault condition, and trying to avoid short circuit fault or to make corresponding measures to correct vision in time or to protect device in the method of reasonable, studying the synchronous generator fault status has become an urgent problems. With the progress of science and technology and the improvement of automation level, people require to be able to quickly analyze fault and solve the problem in the electric power system. With the limitation of the environment in running a synchronous generator, doing a test of generators directly is unlikely.Therefore, with the aid of MATLAB software powerful computing and graphics processing simulation to study the synchronous generator is extremely important.In this paper, a simulation model of the synchronous generator is established by MATLAB software in order to better grasp the performance index of synchronous generator in fault condition.And we also design the Graphical User Interface(GUI) for better realizing the human-computer interaction. Each short circuit fault simulation experiments was carried out in this paper, as can be seen from the simulation results, the simulation system is designed to satisfy demands for synchronous generator short circuit fault research, realizing the target of this paper. Key words: Synchronous generator;Short circuit fault;MATLAB;GUI II

同步发电机突然三相短路分析.

2 同步发电机突然三相短路分析 2.1电磁场有关的几个概念 磁场:随着电荷或运动电荷而产生的特殊物质,不具有原子、分子的构成以及可见的形态,但具有可被检测的运动速度、能量和动量,占用空间,具有真实的客观存在,是物质存在的一种形式。 磁感应强度B:反映磁场中某点(运动电荷所受)的磁场力的大小和方向的量(矢量)。单位为T(特斯拉)或Gs(高斯)。1T=1(N.s)/(C.m)=104Gs。 磁通量:磁感应强度B在某曲面S上的面积分,称为该曲面所通过的磁通量。磁通量与线圈的匝数和电流的乘积成正比。多匝线圈所交链磁通量的总和称为磁链。 磁路、磁阻、磁动势:磁通量所通过的闭合环路称为磁路;与电路电阻类似,磁路可用磁阻表示。类似于电路欧姆定律的电压、电流、电阻关系,磁场中为磁动势、磁通量、磁阻。

自感L。自感磁链与通过线圈的电流之比称为自感系数(电感、自感)。单位H 互感M:线圈1对线圈2的互感定义为:由线圈1所产生的与线圈2交链的磁链与线圈1电流之比(可为正、负) 法拉第电磁感应定律:导线回路交链的磁通量随时间变化时,回路中将产生一感应电势。时变磁场能够产生电场,运动电荷(电流)能够产生磁场,电场和磁场相互作用,构成一个的统一电磁场。 楞次定律:感应电动势引起的电流总是倾向于反抗回路中磁通量的变化。?=?d? dt 2.2 同步发电机的基本方程

同步发电机是电力系统中最重要的元件,其运行特性对电力系统具有决定性的作用。 暂态过程中,其基本方程是理想同步发电机的各个绕组间电磁关系的一组数学方程,由各绕组磁链方程和电动势方程二部分组成。 发电机各个绕组:定子3个(a相、b相、c相),转子3个(励磁绕组f、直轴阻尼绕组D,交轴阻尼绕组Q)。(如图2-11示意图,包括定义的各个绕组磁链的正方向) 磁链方程:

实验报告1:同步发电机三相短路仿真实验

《电力系统暂态分析》课程实验报告 姓名: **** 学号: ********* 一、实验目的 1. 学会用PSCAD软件搭建简单电力系统的仿真模型。 2. 在考虑和不考虑发电机的阻尼绕组的情况下,发电机空载运行时设置 永久性的三相对称短路故障,观察短路电流的衰减变化。 3. 学会正确分析仿真结果,与教材上的相关内容进行对比,并总结规律。 二、实验内容及步骤 1.在PSCAD软件中搭建如图1所示仿真模型。 图1 仿真模型示意图 2.选择标准同步发电机,其参数设置如图2所示。 3.选择三相两绕组变压器,其参数设置如图3所示。 4.选择三相负荷,其参数设置如图4所示。 5.选择三相故障装置,故障类型设为A、B、C三相故障。故障开始时间 为0.2 s,故障持续时间为25s,设置如图5所示。

图2 发电机参数图3 变压器参数 图4 负荷参数图5 故障控制时间6.搭建模型截图如图6所示 图6 单机无穷大系统仿真模型

7. 运行图6所示模型,0.2s发生三相短路,仿真时间为1s。测量短路电压Ea,短路电流I,以及各相电流分量Ia、Ib、Ic,励磁电流If,依次截图如图7所示。 图7 短路电流和励磁电流仿真曲线 回答问题: 1. 图7所示,如果改变故障开始时间,分别设置为0.1s和0.8s,对于故障电压电流有没有影响,有何影响?

由图可见改变故障开始时间对故障电压和电流会产生影响。若时间过短,相关电量还未进入稳态状态便故障突变,其中对励磁电流的影响较大,励磁电流增加的更大。 2. 图7中,励磁电流的直流和交流分量的衰减与哪些因素相关?定子电流的直流和交流分量的衰减与哪些因素相关? 答:励磁电流的直流分量的衰减和励磁绕组有关。交流分量衰减和转子回路的参数有关;定子电流的直流分量的衰减和定子回路的电感有关。交流分量衰减与转子回路参数有关。

同步发电机突然三相短路暂态过程分析

MATLAB/Simulink 电力系统建模与仿真 题目:同步发电机突然短路的暂态过程仿真 专业:电气工程及自动化 班级:电气201303 姓名:白辉 学号:201309611

同步发电机突然短路的暂态过程仿真 仿真题目: 假设有一台有阻尼绕组同步发电机,P N =2000W ,U N 213.8 Kv ,f N 2100z , x d 1380,x q 1086,x d ′108.0,x d "10803,x q "108.3,r108000,x σf 1083 ,x ∝D 1083,x σq 10800,T d0′10s ,T D 10s ,T q "1384s,若发电机空载,端电压为额定电压,端子突然发生三相短路,且∝010,利用matlab 对突然三相短路后的定子电流进行数值计算基本步骤如下: 参数计算: 计算各衰减时间常数 T a = 2x d "x q "ωr(x d "+x q ")12×0.21×0.3150×2π×(0.21+0.31)10836s T q "=x q "x q T q0"10.310.6×1.4s =0870s x αd ′=x ∝x αd x ∝+x αd =0.15×0.850.15+0.85 =0.128 x f ′=x σf +x αd ′=0.18+0.128=0.308 x D ′=x ∝D +x αd ′=0.10+0.128=0.228 T f ′=x f ′x f T d0′=0.3080.18+0.85 ×5s =1.5s T d ′=x D ′x D T D =0.2280.10+0.85 ×2s =0.48s σfd f =1?(x αd ′)2x f ′×x D ′=1?0.1282 0.308×0.228 =0.767 q =√1? 4σfd f T f ′T d ′(T f ′+T d ′)2=√1?4×0.767×1.5×0.48(1.5+0.48)2=0.66 T d "=12×(1?q )(T f ′+T d ′)=12 ×(1?0.66)(1.5+0.48)s =0.34s T d ′=12×(1+q )(T f ′+T d ′)=12 ×(1+0.66)(1.5+0.48)s =1.64s 根据公式

永磁同步电机匝间短路故障在线检测方法

第37卷第3期2018年3月 电工电能新技术 AdvancedTechnologyofElectricalEngineeringandEnergy Vol.37,No.3Mar.2018 收稿日期:2017?03?29 作者简介:彭一伟(1991?),男,重庆籍,硕士研究生,研究方向为电动汽车用交流电机的控制; 赵一峰(1979?),男,陕西籍,研究员,研究方向为电动汽车用交流电机的控制三 永磁同步电机匝间短路故障在线检测方法 彭一伟1,2,赵一峰1,3,4,王永兴1,3,4,关天一1,2 (1.中国科学院电工研究所,北京100190;2.中国科学院大学,北京100049; 3.中国科学院电力电子与电气驱动重点实验室,北京100190; 4.电驱动系统大功率电力电子器件封装技术北京市工程实验室,北京100190) 摘要:本文提出了简单的永磁同步电机(PMSM)匝间短路故障在线检测方法三首先对不同状态PMSM定子电流谐波成分展开分析,提出一个融合了-fe及?3fe谐波成分的故障特征量Ft三针对采用快速傅立叶变换方法计算特征量实时性差的问题,在连续细化傅立叶变换方法基础上引入布莱克曼窗,从而改善了连续细化傅立叶变换方法的幅值辨识精度,实现了故障特征量快速且准确的求取三仿真及实验结果表明,特征量Ft能够正确反映PMSM匝间短路故障是否发生,本文提出的在线检测方法在不增加任何硬件设备的基础上实现了PMSM匝间短路故障的检测三关键词:永磁同步电机;匝间短路故障;故障特征量;在线检测;连续细化傅立叶变换 DOI:10 12067/ATEEE1703103一一一文章编号:1003?3076(2018)03?0041?08一一一中图分类号:TM351 1一引言 永磁同步电机(PMSM)具有高转矩/惯量比二高功率密度二高效率二响应快等优点三近年来,随着永磁性能不断提高,PMSM在电动汽车中的应用越来越广泛[1]三永磁同步电机在长期运行的过程中不可避免会出现各种故障,严重影响其在电动汽车应用中的可靠性和安全性三永磁同步电机驱动系统中,由匝间短路引起的定子绕组故障是最为常见的故障之一[2]三在早期的匝间短路故障阶段,电机仍然可以正常运行,然而由于大的短路电流的存在,短路回路会产生大量热量,从而引起更多的绝缘失效三因此,早期匝间短路故障的检测对于避免驱动系统失效二避免危害人身安全具有十分重要的作用三目前,已有许多学者展开了永磁同步电机定子 故障检测方面的工作[3?11]三这些研究主要包括基于磁通密度传感器的方法[3]二基于测得的定子电压和电流构建状态观测器的方法[4]二基于频域及时频分析工具的定子电流特征分析的方法[5?10]二智能控制(如人工神经网络)方法[11]等故障检测方案三其中,定子电流特征分析方法因其低成本而受到国内 外学者最广泛的关注三文献[5]提出将负序电流幅值作为反映匝间短路故障严重程度的特征量,并采用负序dq轴结合低通滤波器的方案成功提取出负序电流幅值三文献[6]利用傅立叶变换的方法对定子电流信号进行分析,通过对比正常电机和故障电机定子电流频谱,指出故障电机定子电流3次谐波含量增加,故以此作为故障的判定依据三文献[7]在文献[6]的基础上提出以q轴2次谐波幅值为特征量代替定子电流3次谐波电流的提取,简化了故障检测算法三傅立叶变换将原有电流信号从时域变换到频域进行分析,难以应对系统非线性工况下的特征量提取三针对这一问题,文献[8,9]分别采用离散小波变换(DWT)和小波包变换对动态情况下匝间短路故障的定子电流进行分析三仿真和实验结果表明,该方法在电机变速二中速二低速二高速情况下,根据3次谐波所在频段能量进行分析均可判定短路故障是否发生三文献[10]采用经验模态分解(EMD)方法对定子电流进行分析,得到一个本征模态函数IMF的集合,然后用时频分析方法对包含故障谐波的模态进行分析得到故障对应的瞬时频率,仿真和实验表明了该诊断方法的有效性三时频分析

同步电机三相短路电流和转矩计算

同步电机三相短路电流与电磁转矩计算 编写 佘名寰 本文就是按照陈珩教授所著得‘同步电机运行基本理论与计算机算法’一书介绍得算法与例题计算同步电机得三相短路电流。计算程序用MATLAB 语言编写,计算结果与书中结果基本一致。本文可供电力系统电气技术人员与大专院校电力专业学生参考。 1. 计算方法 1、1初始数据计算 由短路前得机端电压u [0], 定子绕组电流i [o], 与功率因数角φ[0] 求得短路前得功率角 δ0=tan ?1 u [0]sinφ[0]+x q i [0]u [0]cosφ[0]+ri [0] ?φ[0] 从而得u [0], i [0] 得正、交轴分量 u d[0]=u [0]sin δ0 u q[0]=u [0]cos δ0 i d[0]=i [0]sin(δ0+φ[0]) i q[0]=i [0]cos(δ0+φ[0]) 短路前得空载电势就是 E q[0]=u q[0]+ri q[0]+x d i d[0] 励磁电流为 i f[0]= E q[0]/x af 式中 x d 为同步电机正轴同步电抗 x q 同步电机交轴同步电抗 x af 定子绕组与劢磁绕组间得互感电抗 r 定子绕组电阻 1、2电流变化量得状态空间方程式 同步电机突然短路时各绕组电流得变化量 ?i d ?i q ?i f ?i D ?i Q 得计算可运用 以派克分量表示得状态空间方程式 [ ?u d ?u q ?u f 00] =[ ?x d x af x aD ?x q x aQ ?x af x f x fD ?x aD x fD x D ?x aQ x Q ] [ ?i d ?i q ?i f ?i D ?i Q ] +[ ?r x q ?x aQ ?x d ?r x af x aD r f r D r Q ] [ ?i d ?i q ?i f ?i D ?i Q ]

电机匝间短路与相间短路

电机匝间短路及相间短路问题解答 一、什么是电机匝间短路 就是同一个绕组是由很多圈(匝)线绕成的,如果绝缘不好的话,叠加在一起的线圈之间会短路,这样一来,相当于一部分线圈直接被短路掉不起作用了。匝间短路后,电机的绕组因为一部分被短路掉,磁场就和以前不同了,不对称了,而且剩余的线圈电流比以前大了,电机运行中会振动增大,电流增大,出力相对减小。 二、发生电机匝间短路,会有以下现象: 1)被短路的线圈中将流过很大的环流(常达正常电流的2---10倍),使线圈严重发热; 2)三相电流不平衡,电动机转矩降低; 3)产生杂音; 4)短路严重时,电动机不能带负载起动。 匝间短路在刚开始时,可能只有两根导线因交叠处绝缘磨坏而接触。 由于短路线匝内产生环流,使线圈迅速发热,进一步损坏邻近导线的绝缘,使短路的匝数不断增多、故障扩大。 短路匝数足够多时,会使熔断器烧断,甚至绕组烧焦冒烟。 当三相绕组有一相发生匝间短路时,相当于该相绕组匝数减少,定子三相电流就不平衡。不平衡的三相电流使电动机振动,同时发出不正常的声音。电动机平均转矩显著下降,拖动负载时就显得无力。

三、电动机绕组短路故障现象和原因是什么? 答:由于电动机电流过大、电源电压变动过大、单相运行、机械碰伤、制造不良等造成绝缘损坏所至,分绕组匝间短路、绕组间短路、绕组极间短路和绕组相间短路。 1.故障现象 离子的磁场分布不均,三相电流不平衡而使电动机运行时振动和噪声加剧,严重时电动机不能启动,而在短路线圈中产生很大的短路电流,导致线圈迅速发热而烧毁。 2.产生原因 电动机长期过载,使绝缘老化失去绝缘作用;嵌线时造成绝缘损坏;绕组受潮使绝缘电阻下降造成绝缘击穿;端部和层间绝缘材料没垫好或整形时损坏;端部连接线绝缘损坏;过电压或遭雷击使绝缘击穿;转子与定子绕组端部相互摩擦造成绝缘损坏;金属异物落入电动机内部和油污过多。相间短路的电机短路点会瞬间烧断融化,导致电机无法工作。 匝间短路的电机会电流不正常,稍后冒烟甚至起火,烧毁至电机无法工作。维修时一眼就能鉴别出来。 *异步电机与同步电机区别:

同步发电机突然三相短路控制系统仿真

同步发电机突然三相短路控制系统仿真 1引言 同步发电机是电力系统中最重要和最复杂的元件,由多个具有电磁耦合关系的绕组构成。同步发电机突然短路的暂态过程所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响,因此对同步发电机动态特性的研究历来是电力系统中的重要课题之一。而同步电机的突然三相短路,是电力系统的最严重的故障,它是人们最为关心、研究最多的过渡过程。虽然短路过程所经历的时间是极短的(通常约为0.1~0.3s),但对电枢短路电流和转子电流的分析计算,却有着非常重要的意义。 为了保证发电机、变压器、断路器、互感器等的可靠运行,必须计算短路电流的最大瞬时值,为了决定继电保护装置的工作条件,需要知道短路电流的变化规律,此外,为了保证励磁系统的可靠运行以及强行励磁对短路电流的影响,需要进行励磁电流的计算。电机动态过程的仿真一般是先建立电机的数学模型,在此基础上在编程进行仿真。传统编程语言的编程效率不高,作动态响应曲线也不够方便快捷,而Matlab 语言扩展能力强,能方便地调用C 语言的已有程序,特别适用于矩阵计算,并且在数学建模、动态仿真及图形描述等方面都有其它高级语言难以比拟的优点。 2 同步发电机的数学模型 为了方便计算,做如下假定:①只考虑电机气隙基波磁场的作用(气隙谐波磁场只在差漏磁场中加以考虑);②忽略齿谐波的作用;③不计磁路饱和、磁滋和涡流;④就纵轴或横轴而言,转子在结构上是对称的。在这样的假设下,建立起来的方程是线性的。在d-P 坐标系统下,可得出以基值系统表示的三相同步电机(有阻尼绕组)的状态方程(用标幺值表示)。 2.1回路电压方程 定子回路:a a a a a a a a a a i r dt d i r e i r u ψ ψ +-=+-=+-= dt d e ψ =,正电流产生负磁链: b b b b b b b b b b i r dt d i r e i r u ψ ψ +-=+ -=+-= c c c c c c c c c c i r dt d i r e i r u ψ ψ +-=+ -=+-=

基于MATLAB的同步发电机短路故障仿真研究

摘要:同步发电机在电力系统中发挥着至关重要的作用,现代社会中使用的电能几乎由同步发电机所产生,同步发电机在人类社会的生活生产中占据着非常重要的地位。随着科技进步与自动化水平的提高,人们要求能够快速分析故障和解决故障,在电力系统中,因运行环境的限制,现场对同步发电机测试不太现实,因此,利用软件仿真的方法对同步发电机进行仿真研究就显得极其重要。文中对各短路故障用MA TLAB软件进行了仿真实验,从仿真结果可以看出,本文所设计的仿真系统满足对同步发电机短路故障的研究需求,实现论文设计的目标。 关键字:同步发电机;短路故障;MA TLAB;GUI 1 引言 电能得到广泛的应用得益于电力系统的出现,进而推动了各个领域的社会生产的变化。社会发展离不开可靠的、高品质的电能供应,在对同步发电机进行故障分析时,使用真实电机在实际的工作应用场合进行现场实验研究是不大切合实际的。人们要求能够快速分析各种短路状态同步发电机的各项性能指标,利用计算机仿真技术来研究同步发电机短路故障是一种快速便捷的好方法,并且,采用仿真技术去研究发电机的运行状态显得越来越重要,通过MATLAB软件仿真研究,掌握同步发电机的性能有助于实践中维护电机和对其功能的扩展[1-3]。 2 同步发电机的理论分析 2.1 同步发电机的基本工作原理 如图2.1所示,给出了同步发电机的工作原理示意图。通过滑环上的电刷将外界的直流电供给励磁绕组产生N极和S极。当转子在原动机的驱动下旋转时,相当于定子的三相绕组就处于旋转磁场中,绕组切割磁场感生出感应电势,机端输出给升压变压器,进而给电网供电[4]。 图2.1 工作原理示意图 2.2 同步发电机的基本方程 如图2.2所示,已标出电流和电压的方向,从三相绕组向负荷侧看,压降的正向与三相电流的正向相同,转子方面的励磁回路,压降的正向与励磁电流的正向相同,由于阻尼绕组为闭合回路,因此回路没有压降,即电压为零。

短路电流计算总结

短路电流计算总结 短路电流计算的目的: (1)确定供电系统的结线和运行方式。 (2)选择电气设备。 (3)选择限流电抗器。 (4)选择和整定继电保护装置。 (5)另外接地装置需根据短路电流进行设计;在设计户外高压配电装置时,需按短路条 件校验软导线的相问和相对地的安全距离。 电力系统短路电流计算方法: 1、手工计算。设计人员需要手工计算所有过程,优点是比较准确,缺点是工作量大。目前设计人员普遍认为手工计算在进行网络变换和短路计算时计算过程繁琐,不仅耗时耗力,还容易出现错误。 2、查表计算。这种方法的优点是直接查表得到短路电流,节约时间;但缺点是查表数值准确度不高,一般都是范围值。 3、计算机算法。大型电力系统故障计算,尤其高压电网短路计算中,一般采用计算机算法进行计算,使用简便,但一些软件中采用的计算机算法在低压小型电网短路电流计算时不够准确。 电力系统三相短路计算主要任务: 1、次暂态电流I"的计算(t=0时短路电流周期分量的有效值)、冲击电流i imp的计算(短路电流最大瞬时值),以及短路电流最大有效值和短路容量S D的计算。计算结果(I")主要用于检验断路器的开断电流和继电保护的整定计算中,主要用于电气设备的动稳定校验。 2、三相短路暂态过程中,某一时刻短路电流周期分量有效值I t的计算。计算结果主要应用于电气设备的热稳定校验。 一、次暂态电流I"的计算 步骤1:确定系统各元件的次暂态参数。 (1)发电机。在突然短路瞬间,同步发电机的次暂态电动势保持着短路前瞬间的数值 ().根据短路前瞬间发电机的相量图,发电机电动势可按以下关系计算: 或 实用计算中,汽轮机和有阻尼绕组的凸极发电机,次暂态电抗可以取X" = X"d,若在计算中忽略负荷,则所有电源的次暂态电动势均取为额定电压,E"0 = U|0| = 1,而当短路 点远离电源时,可将发电机端电压母线看作恒定电压源,电压值取额定电压。 (2)短路点附近的大型异步(或同步)电动机。电力系统负荷中包含大量的异步电动机,

相关文档
最新文档