s曲线的分析

s曲线的分析
s曲线的分析

s曲线的分析

Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

学号:姓名:

作业

根据下面给定的两篇短文,完成题目。要求写在A4纸上。

对S曲线的分析:

首先,此S曲线图表征某一特定产品的技术性能随时间的变化情况。此S曲线刚开始阶段的平缓部分表示的是新的技术刚刚进入市场。因为是全新的技术,因此开发起来难度会非常的大,投入成本也会很高,有很多的不确定因素存在,投入和回报很可能不成正比。这个时期进行这项新技术开发的企业很少,并且技术性能很低,波动性较大。随着技术的发展,瓶颈逐渐被突破,曲线有了上扬的趋势,慢慢就到达了B点,这个阶段开始有大量的企业加入到此项新技术的生产应用之中,市场上出现了许多应用该技术生产的产品,S曲线的腿部渐渐形成。由于有很多企业都参与了进来,在大家的竞争之下,使得这一特定产品的技术性能迅速得到提升,市场上存在大量的应用该技术生产的产品,S曲线的迅速增长阶段出现,渐渐就到达了A点。随着时间的推移这一特定产品的技术逐渐走向成熟,这个时候技术人员想让此技术性能有进一步的提升就显得非常的困难,S曲线就变得平缓了。这个时期很多竞争力弱的企业被淘汰,只有那些对此项技术掌握的非常好的企业生存下来。此时,有的企业就会渴望开发更新的技术来提高产品性能,从而保证自己在竞争市场中具有一定的优势。

开发项目组合:

如果某一特定产品的性能正处于A 点,那么说明产业已经处于技术成为驱动力的时期。那些对这一特定产品的性能做了大量改进的企业占据着较大的市场份额,这种特定产品的市场已经饱和。这个公司想要生存,就应该认识到这是投

资探索新技术的恰当时期,让更先进的技术性能出现在市场中。为了这个目的,公司要先进行市场调查了解顾客的需求,了解他们对产品新性能的渴望程度从而决定如何选择开发项目组合。有两种方案可供选择:一,全新产品。这种项目包括根本不同的产品或生产技术,并可能进入一个新的、人们不熟知的市场。这种项目有更大的内在风险,但是,公司的长期成功可能要依赖从这种重要项目中得来的知识;二,对已有产品的改进。这种项目只是对已有产品的特点进行增加或改进,以使生产线跟上潮流和具有竞争力。

如果某一产品的技术性能正处于B点,那么说明此技术的瓶颈已被突破并开始处于突飞猛进的时期,生产同类产品的企业间的竞争也是最激烈的。因此,企业就要推出大量新版本的产品,并挖掘出消费者的潜在需求,然后在较短时间内开发出能满足这些需求的产品,以使自己能占有一定的市场份额。在这一阶段,企业也不要过分控制成本。产品开发项目也有两种方案可供选择:一,已有产品平台的派生产品。这种项目对已有产品平台进行扩展,用一种或多种新产品更好的占有相关市场;二,新产品平台。这种类型的项目包括研制一个新的通用平台基础上的一个新产品家族的主要开发工作。这一新产品家族将进入相关市场和产品领域中。

炉温测试板制作及曲线测试规范(20200517094721)

炉温测试板制作及曲线测试规范 1、目的: 规范SMT炉温测试方法,为炉温设定、测试、分析提供标准,确保产品质量。为炉温曲线的 制作、确认和跟踪过程的一致性提供准确的作业指导; 2、范围: 本规范适用于公司PCBA部SMT车间所有炉温设定、测试、分析及监控。 3.定义: 3.1升温阶段:也叫预热区,从室温到120度,用以将PCBA从环境温度提升到所要求的活性 温度;升温斜率不能超过3°C度/s;升温太快会造成元件损伤、会出现锡球现象,升 温太慢锡膏会感温过度从而没有足够的时间达到活性温度;通常时间控制在60S左右; 3.2恒温阶段:也叫活性区或浸润区,用以将PCBA从活性温度提升到所要求的回流温度; 一是允许不同质量的元件在温度上同质;二是允许助焊剂活化,锡膏中挥发性物质得到 有利挥发,一般普遍的锡膏活性温度是120-150度,时间在60-120S之间,升温斜率一 般控制在1度/S左右;PCBA上所有元件要达到熔锡的过程,不同金属成份的锡膏熔点 不同,无铅锡膏(SN96/AG3.5/CU0.5)熔点一般在217-220度,有铅(SN63/PB37)一 般在183度含银(SN62/PB36/AG2)为179度; 3.3回流阶段:也叫峰值区或最后升温区,这个区将锡膏在活性温度提升到所推荐的峰值温 度,加热从熔化到液体状态的过程;活性温度总是比熔点低,而峰值温度总在熔点之上, 典型的峰值温度范围是(SN63/PB37)从205-230度;无铅(SN96/AG3.5/CU0.5)从235-250 度;此段温度设定太高会使升温斜率超过2-5度/S,或达到比所推荐的峰值高,这种情 况会使PCB脱层、卷曲、元件损坏等;峰值温度:PCBA在焊接过程中所达到的最高温度; 3.4冷却阶段:理想的冷却曲线一般和回流曲线成镜像,越是达到镜像关系,焊点达到的固 态结构越紧密,焊点的质量就越高,结合完整性就越好,一般降温斜率控制在4度/S; 4、职责: 4.1 工程部 4.1.1工程师制定炉温测试分析标准,炉温测试员按此标准测试、分析监控炉温。 4.1.2 指导工艺技术员如何制作温度曲线图; 4.1.3 定义热电偶在PCB上的测试点,特别是对一些关键的元件定位; 4.1.4基于客户要求和公司内部标准来定义温度曲线的运行频率;

温度曲线设定

如何正确设定回流炉温度曲线 正确设定回流炉温度曲线是获得优良焊接质关键 前言 红外回流焊是SMT大生产中重要的工艺环节,它是一种自动群焊过程,成千上万个焊点在短短几分钟内一次完成,其焊接质量的优劣直接影响到产品的质量和可靠性,对于数字化的电子产品,产品的质量几乎就是焊接的质量。做好回流焊,人们都知道关键是设定回流炉的炉温曲线,有关回流炉的炉温曲线,许多专业文章中均有报导,但面对一台新的红外回流炉,如何尽快设定回流炉温度曲线呢?这就需要我们首先对所使用的锡膏中金属成分与熔点、活性温度等特性有一个全面了解,对回流炉的结构,包括加热温区的数量、热风系统、加热器的尺寸及其控温精度、加热区的有效长度、冷却区特点、传送系统等应有一个全面认识,以及对焊接对象--表面贴装组件(SMA)尺寸、组件大小及其分布做到心中有数,不难看出,回流焊是SMT工艺中复杂而又关键的一环,它涉及到材料、设备、热传导、焊接等方面的知识。 本文将从分析典型的焊接温度曲线入手,较为详细地介绍如何正确设定回流炉温度曲线,并实际介绍BGA以及双面回流焊的温度曲线的设定。 理想的温度曲线 图1是中温锡膏(Sn63/Sn62)理想的红外回流温度曲线,它反映了SMA通过回流炉时,PCB上某一点的温度随时间变化的曲线,它能直观反映出该点在整个焊接过程中的温度变化,为获得最佳焊接效果提供了科学的依据,从事SMT焊接的工程技术人员,应对理想的温度曲线有一个基本的认识,该曲线由四个区间组成,即预热区、保温区/活性区、回流区、冷却区,前三个阶段为加热区,最后一阶段为冷却区,大部分焊锡膏都能用这四个温区成功实现回流焊。故红外回流炉均设有4-5个温度,以适应焊接的需要。 图1 理想的温度曲线

温度曲线的设定及其依据

回流返修焊接中温度曲线的设定依据 温度曲线是保证焊接质量的关键,实时温度曲线和焊膏温度曲线的升温斜率和峰值温度应基本一致。160℃前的升温速度控制在1—2℃/s。如果升温斜率速度太快,一方面使元器件及PCB受热太快,易损坏元器件和造成PCB变形。另一方面,焊膏中的熔剂挥发速度太快,容易溅出金属成份,产生锡珠。峰值温度一般设定在比焊膏金属熔点高30-40℃左右(例如63Sn/37Pb焊膏的熔点为183℃,峰值温度应设置在215℃左右),回流时间为30~60s。峰值温度低或回流时间短,会使焊接不充分,严重时会造成锡球不熔。峰值温度过高或回流时间过长,容易造成金属粉末氧化,影响焊接质量,甚至会损坏元器件和印刷电路板。 ●预热阶段:在这一段时间内使PCB均匀受热升温,并刺激助焊剂活跃。一般升温的速度不要过快,防止线路板受热过快而产生较大的变形。尽量将升温速度控制在3℃/秒以下,较理想的升温速度为2℃/秒。时间控制在60 ~ 90 秒之间。 ●浸润阶段:这一阶段助焊剂开始挥发。温度在150℃~ 180℃之间应保持60 ~ 120 秒,以便助焊剂能够充分发挥其作用。升温的速度一般在0.3 ~ 0.5℃/秒。 ●回流阶段:这一阶段的温度已经超过焊膏的熔点温度,焊膏熔化成液体,元器件引脚上锡。该阶段中温度在183℃以上的时间应控制在60 ~ 90 秒之间。 如果时间太少或过长都会造成焊接的质量问题。其中温度在220 +/- 10 ℃范围内的时间控制相当关键,一般控制在10~ 20 秒为最佳。 ●冷却阶段:这一阶段焊膏开始凝固,元器件被固定在线路板上。同样的是降温的速度也不能够过快,一般控制在4℃/秒以下,较理想的降温速度为3℃/秒。由于过快的降温速度会造成线路板产生冷变形,它会引起BGA焊接的质量问题,特别是BGA外圈引脚的虚焊。设 设置回流返修焊接温度曲线的依据: 1.根据使用焊膏的温度曲线进行设置。不同金属含量的锡球有不同的温度曲线,应按照焊膏供应商提供的温度曲线进行具体产品的回流焊温度曲线设置。 2.根据PCB板的材料、厚度、层数多少、尺寸大小等进行设置。 3.根据PCB板表面搭载元器件的密度、元器件的大小以及有无BGA、CSP等特殊元器件进行设置。 4.此外,根据设备的具体情况,例如加热区的长度、加热源的材料、回流焊炉的构造和热传导方式等因素进行设置。热风加热器和红外加热器有很大区别,红外加热器主要是辐射传导,其优点是热效率高,温度陡度大,易控制温度曲线;双面焊时,PCB上、下温度易控制;其缺点是温度不均匀。 5.根据温度传感器的实际位置确定各温区所设置的温度,若温度传感器位置在发热体内部,设置温度比实际温度高30℃左右。 6.根据排风量的大小进行设置。一般返修焊接系统对排风量都有具体要求,但实际排风量因各种原因有时会有所变化,确定一个产品的温度曲线时,因考虑排风量,并定时测量。

波峰焊温度曲线图及温度控制标准

波峰焊温度曲线图及温度控制标准介绍 发表于2017-12-20 16:08:55 工艺/制造 +关注 波峰焊是指将熔化的软钎焊料(铅锡合金),经电动泵或电磁泵喷流成设计要求的焊料波峰,亦可通过向焊料池注入氮气来形成,使预先装有元器件的印制板通过焊料波峰,实现元器件焊端或引脚与印制板焊盘之间机械与电气连接的软钎焊。 波峰焊是让插件板的焊接面直接与高温液态锡接触达到焊接目的,其高温液态锡保持一个斜面,并由特殊装置使液态锡形成一道道类似波浪的现象,所以叫“波峰焊”,其主要材料是焊锡条。 波峰焊焊接方法 波峰焊方法或工艺的采用取决于产品的复杂程度以及产量,如果要做复杂的产品以及产量很高,可以考虑用氮气工艺比如CoN▼2▼Tour波峰来减少锡渣并提高焊点的浸润性。如果使用一台中型的机器,其工艺可以分为氮气工艺和空气工艺。用户仍然可以在空气环境下处理复杂的板子,在这种情况下,可根据客户的要求使用腐蚀性助焊剂,在焊接后再进行清洗,或者使用低固态助焊剂。 波峰焊温度曲线图介绍 在预热区内,电路板上喷涂的助焊剂中的溶剂被挥发,可以减少焊接时产生气体。同时,松香和活化剂开始分解活化,去除焊接面上的氧化层和其他污染物,并且防止金属表面在高

温下再次氧化。印制电路板和元器件被充分预热,可以有效地避免焊接时急剧升温产生的热应力损坏。电路板的预热温度及时间,要根据印制板的大小、厚度、元器件的尺寸和数量,以及贴装元器件的多少而确定。在PCB表面测量的预热温度应该在90~130℃间,多层板或贴片套件中元器件较多时,预热温度取上限。预热时间由传送带的速度来控制。如果预热温度偏低或预热时间过短,助焊剂中的溶剂挥发不充分,焊接时就会产生气体引起气孔、锡珠等焊接缺陷;如预热温度偏高或预热时间过长,焊剂被提前分解,使焊剂失去活性,同样会引起毛刺、桥接等焊接缺陷。为恰当控制预热温度和时间,达到佳的预热温度,也可以从波峰焊前涂覆在PCB底面的助焊剂是否有粘性来进行判断。 合格温度曲线必须满足: 1:预热区PCB板底温度范围为﹕90-120oC. 2:焊接時锡点温度范围为﹕245±10℃ 3. CHIP与WAVE间温度不能低于180℃

分子筛温度曲线的研究与事例分析教学总结

分子筛温度曲线的研究与事例分析 张晨 一、分子筛纯化器的工作原理及结构特点 我国第六代制氧机的一个重要特点就是采用吸附法净化空气中的水分、二氧化碳、乙炔和其它碳氢化合物。吸附法就是用活性氧化铝、分子筛等吸附剂在常温下将空气中所含的水分、二氧化碳这些吸附质吸附在其表面上(没有化学反应),加热再生时利用吸附剂高温下吸附容量减小的特性,再把吸附质解吸出来,从而达到连续净化空气的目的。 我厂1﹟、2﹟14000m3/h制氧机以及新建的23000m3/h制氧机的分子筛纯化系统均选用卧式双层床结构的纯化器,纯化器下部装填活性氧化铝,上部装填分子筛(四车间分子筛纯化器内活性氧化铝和13X分子筛的充装量分别为5000Kg和11000Kg,五车间的为12571Kg和17512Kg,23000m3/h制氧机为15000Kg和20000Kg)。空压机后经空冷塔冷却的低温饱和空气从纯化器下部进入分子筛,先由活性氧化铝将其所含的大部分水分吸附掉,然后再由分子筛吸附二氧化碳、乙炔和其它碳氢化合物。 双层床结构的分子筛纯化器相比只充填分子筛的单层床纯化器具有增强吸附效果、延长使用时间、降低再生能耗、延长使用寿命的特点。具体分析如下:活性氧化铝对于含水量较高的空气,吸附容量比较大,而且对水分的吸附热也比分子筛小,其大量吸附水分后使空气温升较小,有利于后部分分子筛对二氧化碳的吸附,而且双层床纯化器净化空气的程度比单层床更高,空气的干燥程度可以由原来露点的-60℃降到-66~-70℃,净化后空气中的二氧化碳含量也更低;采用双层吸附床,可以延长纯化器的使用时间,经试验得出:双层床结构的分子筛纯化器比单床层结构的有效工作时间可延长25~30%;活性氧化铝解吸水分容易,而分子筛较为困难,分子筛再生时其冷吹峰值需要达到120℃以上才能保证其再生完善,而活性氧化铝只需要达到80℃左右即可,这样一来就可以降低整个系统的再生温度,从而节省了再生能耗(对于双层床结构的分子筛纯化器一般将冷吹峰值控制在100℃以上,作为其再生完善的主要标志);活性氧化铝颗粒较大,且坚硬,机械强度较高,吸水不龟裂、粉化,所以双层床的活性氧化铝可以减少分子筛粉化,延长分子筛寿命,活性氧化铝处于加工空气入口处,还可以起到均匀分配空气的作用;铝胶还具有抗酸性,对分子筛能起到保护作用。 二、分子筛曲线研究: 分子筛纯化器利用常温吸附、高温解吸来达到连续净化空气的目的,在这一交变过程中,特别需要对其进、出口温度加以监控,以掌握其使用情况。在吸附过程中,空气进、出纯化器的两条温度变化曲线被称为“吸附温度曲线”;在再生过程中,污氮气进、出纯化器的两条温度变化曲线被称为“再生温度曲线”。 1、吸附温度曲线: 一般情况下,只要空气预冷系统正常,空气进纯化器温度就不会变化,因而温度曲线是一条水平的直线。而空气出纯化器温度除刚开始的一段时间较高外,以后变化也极小,因而也近似是一条直线。典型的吸附温度曲线如图1所示。 空气在经过纯化器后,温度会有所升高。这是因为空气中的水分和二氧化碳被分子筛吸附,而吸附是个放热过程。对于全低压流程空分设备而言,空气进纯化器压力在0.5Mpa(G)左右,空气进纯化器温度约为10~15℃左右。在这种情况下,空气进出纯化器温度之差约为4~6℃。

热机械分析报告法测定聚合物的温度-形变曲线

热机械分析法测定聚合物的温度-形变曲线 热机械分析法(TMA)是测定聚合物力学性质变化的一种重要方法。它是在程序控制温度下,测定聚合物在非振动负荷下形变与温度关系的一种技术。实验时对具有一定形状的聚合物样品上施加恒定外力,在一定范围内改变温度,观察样品随温度变化而发生形变的情况,以形变或相对形变对温度作图,所得的曲线,通常称为温度-形变曲线,又称为热机械曲线。根据所测样品的温度-形变曲线就可以得到样品在不同温度时的力学性质。 一.实验目的: 1.掌握测定聚合物温度-形变曲线的方法。 2.测定聚甲基丙烯酸甲酯(PMMA)的玻璃化转变温度Tg,粘流温度Tf;加深对线型非晶聚合物的三种力学状态理论的认识。 3.掌握现代精密仪器热机械分析仪(NETZSCH TMA202)的使用 二、实验原理: 材料的力学性质是由其内部结构通过分子运动所决定的,对于聚合物材料,由于其结构单元的多重性而导致了运动单元的多重性。它们的运动又具有温度依赖性,所以,在不同的温度下,外力恒定时,聚合物可以呈现不同的力学行为,这些性质及转变都可以被温度-形变曲线反映出来。测定温度-形变曲线,是研究聚合物力学性质的一种重要方法。聚合物的许多结构因素(包括化学结构、分子量、结晶、交联、增塑和老化)的改变,都会在温度形变曲线上有明显的反映,因而材料的温度-形变曲线,也可以提供许多关于试样内部结构的信息,了解聚合物分子运动与力学性能的关系,并分析聚合物的结构形态,如结晶、交联、增塑、分子量等,可以得到聚合物的特性转变温度,如:玻璃化转变温度Tg,,粘流温度Tf和熔点等,对于评价被测试样的使用性能,确定适用温度范围和选择加工条件很有实用意义。 对于线型非晶聚合物有三种不同的力学状态:玻璃态,高弹态,粘流态。温度足够低时,高分子链和链段的运动被“冻结”,外力的作用只能引起高分子键长和键角的变化,因此,聚合物的弹性模量大,形变-应力关系服从虎克定律,其机械

炉温工艺曲线的设置方法

炉温工艺曲线的设置方法 Prepared on 22 November 2020

如何设定出合格的炉温工艺曲线什么是回流焊: 回流焊是英文Reflow是通过重新熔化预先分配到印制板焊盘上的膏装软钎焊料,实现表面组装元器件焊端或引脚与印制板焊盘之间机械与电气连接的软钎焊。回流焊是将元器件焊接到PCB板材上,回流焊是专门针对SMD表面贴装器件的。 回流焊是靠热气流对焊点的作用,胶状的焊剂在一定的高温气流下进行物理反应达到SMD的焊接;之所以叫"回流焊"是因为气体在焊机内循环来回流动产生高温达到焊接目的。 (回流焊温度曲线图) “产品质量是生产出来的,不是检验出来,只有在生产过程中的每个环节,严格按照生产工艺和作业指导书要求进行,才能保证产品的质量。 电子厂SmT贴片焊接车间在SmT生产流程中,回流炉参数设置的好坏是影响焊接质量的关键,通过温度曲线,可以为回流炉参数的设置提供准确的理论依据,在大多数情况下,温度的分布受组装电路板的特性、焊膏特性和所用回流炉能力的影响。 如何正确的设定回流焊温度曲线: 首先我们要了解回流焊的几个关键的地方及温度的分区情况及回流焊的种类. 影响炉温的关键地方是: 1:各温区的温度设定数值 2:各加热马达的温差 3:链条及网带的速度 4:锡膏的成份

5:PCB板的厚度及元件的大小和密度 6:加热区的数量及回流焊的长度 7:加热区的有效长度及泠却的特点等 回流焊的分区情况: 1:预热区(又名:升温区) 2:恒温区(保温区/活性区) 3:回流区 4 :泠却区 回流焊焊接影响工艺的因素: 1.通常PLCC、QFP与一个分立片状元件相比热容量要大,焊接大面积元件就比小元件更困难些。 2.在回流焊炉中传送带在周而复使传送产品进行回流焊的同时,也成为一个散热系统,此外在加热部分的边缘与中心散热条件不同,边缘一般温度偏低,炉内除各温区温度要求不同外,同一载面的温度也差异。 3.产品装载量不同的影响。回流焊的温度曲线的调整要考虑在空载,负载及不同负载因子情况下能得到良好的重复性。负载因子定义为: LF=L/(L+S);其中L=组装基板的长度,S=组装基板的间隔。回流焊工艺要得到重复性好的结果,负载因子愈大愈困难。通常回流焊炉的最大负载因子的范围为~。这要根据产品情况(元件焊接密度、不同基板)和再流炉的不同型号来决定。要得到良好的焊接效果和重复性,实践经验很重要的。 一、初步炉温设定:

炉温曲线设定

怎样设定锡膏回流温度曲线 “正确的温度曲线将保证高品质的焊接锡点。” 在使用表面贴装元件的印刷电路板(PCB)装配中,要得到优质的焊点,一条优化的回流温度曲线是最重要的因素之一。温度曲线是施加于电路装配上的温度对时间的函数,当在笛卡尔平面作图时,回流过程中在任何给定的时间上,代表PCB上一个特定点上的温度形成一条曲线。 几个参数影响曲线的形状,其中最关键的是传送带速度和每个区的温度设定。带速决定机板暴露在每个区所设定的温度下的持续时间,增加持续时间可以允许更多时间使电路装配接近该区的温度设定。每个区所花的持续时间总和决定总共的处理时间。 每个区的温度设定影响PCB的温度上升速度,高温在PCB与区的温度之间产生一个较大的温差。增加区的设定温度允许机板更快地达到给定温度。因此,必须作出一个图形来决定PCB的温度曲线。接下来是这个步骤的轮廓,用以产生和优化图形。 在开始作曲线步骤之前,需要下列设备和辅助工具:温度曲线仪、热电偶、将热电偶附着于PCB的工具和锡膏参数表。可从大多数主要的电子工具供应商买到温度曲线附件工具箱,这工具箱使得作曲线方便,因为它包含全部所需的附件(除了曲线仪本身)。 现在许多回流焊机器包括了一个板上测温仪,甚至一些较小的、便宜的台面式炉子。测温仪一般分为两类:实时测温仪,即时传送温度/时间数据和作出图形;而另一种测温仪采样储存数据,然后上载到计算机。 热电偶必须长度足够,并可经受典型的炉膛温度。一般较小直径的热电偶,热质量小响应快,得到的结果精确。 有几种方法将热电偶附着于PCB,较好的方法是使用高温焊锡如银/锡合金,焊点尽量最小。 另一种可接受的方法,快速、容易和对大多数应用足够准确,少量的热化合物(也叫热导膏或热油脂)斑点覆盖住热电偶,再用高温胶带(如Kapton)粘住。 还有一种方法来附着热电偶,就是用高温胶,如氰基丙烯酸盐粘合剂,此方法通常没有其它方法可靠。附着的位置也要选择,通常最好是将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间 图一、将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间

炉温曲线标准

炉温曲线标准 1.目的 提供回流炉焊接曲线参考范围,确保产品焊接质量。 2.范围 该工艺规范适用于SMT 回流炉生产单双面板。 3.定义 无. 4.职责 工艺工程师: 制定维护回流温度控制工艺规范, 在试产中过程中产品工艺工程师针对不同产品进行回流曲线设置, 曲线设置参数作为技术文件在量产后移交给制造部.工艺工程师在量产后根据产品品质状况进行优化回流曲线参数设置, 继续对炉温参数设置进行优化调整.现场工程师(设备/工艺) : 确认回流炉温度曲线是否正常. 工艺技术员: 回流温度曲线测试. IPQC:确认回流曲线是否经过工程师确认,并发现异常情况进行反馈给工艺工程师. 5.作业内容 5.1回流炉设定温度参照下表执行,不同的产品可参考该范围进行回流曲线设置。 锡铅合金焊接工艺: 5.2回流炉温度曲线示意图:(锡铅焊接工艺参考曲线) 250

220℃ 180℃ 备注:该图形仅供参考,温度设定参考上表数据进行, 在实际测的曲线与该参数范围内有少许差异时, 工程师根据现场品质状况与测试板的状态进行现场分析确认, 如工程师判为合格则签字 确认. 5.3采用无铅焊料合金焊接的回流炉温度要求。 5.3.1无铅焊料合金的选择 无铅焊料合金采用锡/银/铜(Sn/Ag/Cu,简称:SAC305),合金成份范围(重量%):Sn/ (96.5%),Ag/(3.0%),Cu(0.5%) ,合金熔点:217℃` 5.3.2回流焊接的峰值温度和220℃熔点以上的时间 峰值温度范围:245℃+/-5℃;217℃熔点以上的时间:50秒-90秒;升温速度<3℃/秒; 降温速度:-1℃/秒_-5℃/秒。 5.3.3. 助焊剂活化温度 150℃-180℃之间的保温时间为: 50-90秒. 6.附件 无 第 2 页共2 页

温度曲线的设定

温度曲线的设定 温度曲线是由回流焊炉的多个参数共同作用的结果,其中起决定性作用的两个参数是传送带速度和温区的温度设定。传送带速度决定了印刷线路板暴露在每个温区的持续时间,增加持续时间可以使印刷线路板上元器件的温度更加接近该温区的设定温度。每个温区所用的持续时间的总和又决定了整个回流过程的处理时间。每个温区的温度设定影响印刷线路板通该温区时温度的高低。印刷线路板在整个回流焊接过程中的升温速度则是传送带速和各温区的温度设定两个参数共同作用的结果。因此只有合理的设定炉温参数才能得到理想的炉温曲线。 现以最为常用的RSS曲线为例介绍一下炉温曲线的设定方法。 链速的设定:设定温度曲线时第一个要考虑参数是传输带的速度设定,该设定将决定印刷线路板通过加热通道所花的时间。传送带速度的设定可以通过计算的方法获得。这里要引入一个指标,负载因子。负载因子:F=L/(L+s) L=基板的长,S=基板与基板间的间隔。负载因子的大小决定了生产过程中炉内的印刷线路板对炉内温度的影响程度。负载因子的数值越大炉内的温度越不稳定,一般取值在0.5~0.9之间。在权衡了效率和炉温的稳定程度后建议取值为0.7-0.8。在知道生产的板长和生产节拍后就可以计算出传送带的传送速度(最慢值)。传送速度(最慢值)=印刷线路板长/0.8/生产节拍。传送速度(最快值)由锡膏的特性决定,绝大多数锡膏要求从升温开始到炉内峰值温度的时间应不少于180秒。这样就可以得出传送速度(最大值)=炉内加热区的长度/180S。在得出两个极限速度后就可以根据实际生产产品的难易程度选取适当的传送速度一般可取中间值。

温区温度的设定:一个完整的RSS炉温曲线包括四个温区。分别为: 预热区:其目的是将印刷线路板的温度从室温提升到锡膏内助焊剂发挥作用所需的活性温度135℃,温区的加热速率应控制在每秒1~3℃,温度升得太快会引起某些缺陷,如陶瓷电容的细微裂纹。 保温区:其目的是将印刷线路板维持在某个特定温度范围并持续一段时间,使印刷线路板上各个区域的元器件温度相同,减少他们的相对温差,并使锡膏内部的助焊剂充分的发挥作用,去除元器件电极和焊盘表面的氧化物,从而提高焊接质量。一般普遍的活性温度范围是135-170℃(以SN63PB37为例),活性时间设定在60-90秒。如果活性温度设定过高会使助焊剂过早的失去除污的功能,温度太低助焊剂则发挥不了除污的作用。活性时间设定的过长会使锡膏内助焊剂的过度挥发,致使在焊接时缺少助焊剂的参与使焊点易氧化,润湿能力差,时间太短则参与焊接的助焊剂过多,可能会出现锡球,锡珠等焊接不良。从而影响焊接质量。 回流区:其目的是使印刷线路板的温度提升到锡膏的熔点温度以上并维持一定的焊接时间,使其形成合金,完成元器件电极与焊盘的焊接。该区的温度设定在183℃以上,时间为30-90秒。(以SN63PB37为例)峰值不宜超过230℃,200℃以上的时间为20-30秒。如果温度低于183℃将无法形成合金实现不了焊接,若高于230℃会对元器件带来损害,同时也会加剧印刷线路板的变形。如果时间不足会使合金层较薄,焊点的强度不够,时间较长则合金层较厚使焊点较脆。 冷却区:其目的是使印刷线路板降温,通常设定为每秒3-4℃。如速率过高会使焊点出现龟裂现象,过慢则会加剧焊点氧化。理想的冷却曲线应该是

回流焊炉温曲线的设定及异常情况分析

回流焊温度曲线的设定及异常情况分析正确设定回流焊温度曲线是获得优良焊接质关键 前言 红外回流焊是SMT大生产中重要的工艺环节,它是一种自动群焊过程,成千上万个焊点在短短几分钟内一次完成,其焊接质量的优劣直接影响到产品的质量和可靠性,对于数字化的电子产品,产品的质量几乎就是焊接的质量。做好回流焊,人们都知道关键是设定回流炉的炉温曲线,有关回流炉的炉温曲线,许多专业文章中均有报导,但面对一台新的红外回流炉,如何尽快设定回流炉温度曲线呢?这就需要我们首先对所使用的锡膏中金属成分与熔点、活性温度等特性有一个全面了解,对回流炉的结构,包括加热温区的数量、热风系统、加热器的尺寸及其控温精度、加热区的有效长度、冷却区特点、传送系统等应有一个全面认识,以及对焊接对象--表面贴装组件(SMA)尺寸、组件大小及其分布做到心中有数,不难看出,回流焊是SMT工艺中复杂而又关键的一环,它涉及到材料、设备、热传导、焊接等方面的知识。 本文将从分析典型的焊接温度曲线入手,较为详细地介绍如何正确设定回流炉温度曲线,并实际介绍BGA以及双面回流焊的温度曲线的设定。 理想的温度曲线 图1是中温锡膏(Sn63/Sn62)理想的红外回流温度曲线,它反映了SMA通过回流炉时,PCB上某一点的温度随时间变化的曲线,它能直观反映出该点在整个焊接过程中的温度变化,为获得最佳焊接效果提供了科学的依据,从事SMT焊接的工程技术人员,应对理想的温度曲线有一个基本的认识,该曲线由四个区间组成,即预热区、保温区/活性区、回流区、冷却区,前三个阶段为加热区,最后一阶段为冷却区,大部分焊锡膏都能用这四个温区成功实现回流焊。故红外回流炉均设有4-5个温度,以适应焊接的需要。 图1 理想的温度曲线 为了加深对理想的温度曲线的认识,现将各区的温度、停留时间以及焊锡膏在各区的变化情况,介绍如下:1、预热区 预热区通常指由室温升至150℃左右的区域。在这个区域,SMA平稳升温,在预热区,焊膏中的部分溶剂能够及时挥发,元器件特别是IC器件缓缓升温,以适应以后的高温。但SMA表面由于元器件大小不一,其温度有不均匀现象,在预热区升温的速率通常控制在1.5℃-3℃/sec。若升温太快,由于热应力的作用,导致陶瓷电容的细微裂纹、PCB变形、IC芯片损坏,同时锡膏中溶剂挥发太快,导致飞珠的发生。炉子的预热区一般占加热信道长度的1/4-1/3,其停留时间计算如下:设环境温度为25℃,若升温速率按3℃/sec

炉温曲线图 精品

炉温曲线图 一、回流温度曲线在生产中地位: 回流焊接是在SMT工业组装基板上形成焊接点的主要方法,在SMT工艺中回流焊接是核心工艺。因为表面组装PCB的设计,焊膏的印刷和元器件的贴装等产生的缺陷,最终都将集中表现在焊接中,而表面组装生产中所有工艺控制的目的都是为了获得良好的焊接质量,如果没有合理可行的回流焊接工艺,前面任何工艺控制都将失去意义。而回流焊接工艺的表现形式主要为回流温度曲线,它是指PCB的表面组装器件上测试点处温度随时间变化的曲线。因而回流温度曲线是决定焊接缺陷的重要因素。因回流曲线不适当而影响的缺陷形式主要有:部品爆裂/破裂、翘件、锡粒、桥接、虚焊以及生半田、PCB脱层起泡等。因此适当设计回流温度曲线可得到高的良品率及高的可靠度,对回流温度曲线的合理控制,在生产制程中有着举足轻重的作用。 二、回流温度曲线的一般技术要求及主要形式: 1.回流温度曲线各环节的一般技术要求: 一般而言,回流温度曲线可分为三个阶段:预热阶段、回流阶段、冷却阶段。 ①预热阶段: 预热是指为了使锡水活性化为目的和为了避免浸锡时进行急剧高温加热引起部品不具合为目的所进行的加热行为。 ?预热温度:依使用锡膏的种类及厂商推荐的条件设定。一般设定在80~160℃范围内使其慢慢升温(最佳曲线);而对于传统曲线恒温区在140~160℃间,注意温度高则氧化速度会加快很多(在高温区会线性增大,在150℃左右的预热温度下,氧化速度是常温下的数倍,铜板温度与氧化速度的关系见附图)预热温度太低则助焊剂活性化不充分。 ?预热时间视PCB板上热容量最大的部品、PCB面积、PCB厚度以及所用锡膏性能而定。一般在80~160℃预热段内时间为60~120see,由此有效除去焊膏中易挥发的溶剂,减少对元件的热冲击,同时使助焊剂充分活化,并且使温度差变得较小。 ?预热段温度上升率:就加热阶段而言,温度范围在室温与溶点温度之间慢的上升率可望减少大部分的缺陷。对最佳曲线而言推荐以0.5~1℃/sec的慢上升率,对传统曲线而言要求在3~4℃/sec以下进行升温较好。 ②回流阶段: ?回流曲线的峰值温度通常是由焊锡的熔点温度、组装基板和元件的耐热温度决定的。一般最小峰值温度大约在焊锡熔点以上30℃左右(对于目前Sn63 - pb焊锡,183℃熔融点,则最低峰值温度约210℃左右)。峰值温度过低就易产生冷接点及润湿不够,熔融不足而致生半田,一般最高温度约235℃,过高则环氧树脂基板和塑胶部分焦化和脱层易发生,再者超额的共界金属化合物将形成,并导致脆的焊接点(焊接强度影响)。 ?超过焊锡溶点以上的时间:由于共界金属化合物形成率、焊锡内盐基金属的分解率等因素,其产生及滤出不仅与温度成正比,且与超过焊锡溶点温度以上的时间成正比,为减少共界金属化合物的产生及滤出则超过熔点温度以上的时间必须减少,一般设定在45~90秒之间,此时间限制需要使用一个快速温升率,从熔点温度快速上升到峰值温度,同时考虑元件承受热应力因素,上升率须介于2.5~3.5℃/see之间,且最大改变率不可超过4℃/sec。 ③冷却阶段: 高于焊锡熔点温度以上的慢冷却率将导致过量共界金属化合物产生,以及在焊接点处易发生大的晶粒结构,使焊接点强度变低,此现象一般发生在熔点温度和低于熔点温度一点的温度范围内。快速冷却将导致元件和基板间太高的温度梯度,产生热膨胀的不匹配,导致焊接点

炉温工艺曲线的设置方法

如何设定出合格的炉温工艺曲线 什么是回流焊: 回流焊是英文Reflow是通过重新熔化预先分配到印制板焊盘上的膏装软钎焊料,实现表面组装元器件焊端或引脚与印制板焊盘之间机械与电气连接的软钎焊。回流焊是将元器件焊接到PCB板材上,回流焊是专门针对SMD 表面贴装器件的。 回流焊是靠热气流对焊点的作用,胶状的焊剂在一定的高温气流下进行物理反应达到SMD的焊接;之所以叫"回流焊"是因为气体在焊机内循环来回流动产生高温达到焊接目的。 (回流焊温度曲线图) “产品质量是生产出来的,不是检验出来,只有在生产过程中的每个环节,严格按照生产工艺和作业指导书要求进行,才能保证产品的质量。 電子廠SmT贴片焊接车间在SmT生产流程中,回流炉参数设置的好坏是影响焊接质量的关键,通过温度曲线,可以为回流炉参数的设置提供准确的理论依据,在大多数情况下,温度的分布受组装电路板的特性、焊膏特性和所用回流炉能力的影响。 如何正确的设定回流焊温度曲线: 首先我们要了解回流焊的几个关键的地方及温度的分区情况及回流焊的种类. 影响炉温的关键地方是: 1:各温区的温度设定数值

2:各加热马达的温差 3:链条及网带的速度 4:锡膏的成份 5:PCB板的厚度及元件的大小和密度 6:加热区的数量及回流焊的长度 7:加热区的有效长度及泠却的特点等 回流焊的分区情况: 1:预热区(又名:升温区) 2:恒温区(保温区/活性区) 3:回流区 4 :泠却区 回流焊焊接影响工艺的因素: 1.通常PLCC、QFP与一个分立片状元件相比热容量要大,焊接大面积元件就比小元件更困难些。 2.在回流焊炉中传送带在周而复使传送产品进行回流焊的同时,也成为一个散热系统,此外在加热部分的边缘与中心散热条件不同,边缘一般温度偏低,炉内除各温区温度要求不同外,同一载面的温度也差异。 3.产品装载量不同的影响。回流焊的温度曲线的调整要考虑在空载,负载及不同负载因子情况下能得到良好的重复性。负载因子定义为: LF=L/(L+S);其中L=组装基板的长度,S=组装基板的间隔。回流焊工艺要得到重复性好的结果,负载因子愈大愈困难。通常回流焊炉的最大负载因子的范围为0.5~0.9。这要根据产品情况(元件焊接密度、不同基板)和再流炉的不同型号来决定。要得到良好的焊接效果和重复性,实践经验很重要的。 一、初步炉温设定: 1、看锡膏类型,有铅还是无铅?还要考虑锡膏特性,焊膏是由合金粉末、糊状助焊剂均匀混和而成的膏体。焊膏中的助焊剂(点击助焊剂的特性)主要由溶剂、松香或合成树脂、活性剂及抗垂流剂四类原物质构成。溶剂决定了焊膏所需的干燥时间,为了增加焊膏的粘度使之具备良好流变性加入了合成树脂或松香,活性剂是用来除去合金所产生的氧化物以清洁板面焊盘,抗垂流剂的加入有助于合金粉末在焊膏中呈现悬浮状态,避免沉降现象。 衡量焊膏品质的因素很多,在实际生产中应重点考虑以下的焊膏特性。 (1)根据电路板表面清洁度的要求决定焊膏的活性与合金含量;

炉温工艺曲线的设置方法

炉温工艺曲线的设置方法 High quality manuscripts are welcome to download

如何设定出合格的炉温工艺曲线 什么是回流焊: 回流焊是英文Reflow是通过重新熔化预先分配到印制板焊盘上的膏装软钎焊料,实现表面组装元器件焊端或引脚与印制板焊盘之间机械与电气连接的软钎焊。回流焊是将元器件焊接到PCB板材上,回流焊是专门针对SMD表面贴装器件的。 回流焊是靠热气流对焊点的作用,胶状的焊剂在一定的高温气流下进行物理反应达到SMD的焊接;之所以叫"回流焊"是因为气体在焊机内循环来回流动产生高温达到焊接目的。 (回流焊温度曲线图) “产品质量是生产出来的,不是检验出来,只有在生产过程中的每个环节,严格按照生产工艺和作业指导书要求进行,才能保证产品的质量。 电子厂SmT贴片焊接车间在SmT生产流程中,回流炉参数设置的好坏是影响焊接质量的关键,通过温度曲线,可以为回流炉参数的设置提供准确的理论依据,在大多数情况下,温度的分布受组装电路板的特性、焊膏特性和所用回流炉能力的影响。 如何正确的设定回流焊温度曲线: 首先我们要了解回流焊的几个关键的地方及温度的分区情况及回流焊的种类. 影响炉温的关键地方是: 1:各温区的温度设定数值 2:各加热马达的温差

3:链条及网带的速度 4:锡膏的成份 5:PCB板的厚度及元件的大小和密度 6:加热区的数量及回流焊的长度 7:加热区的有效长度及泠却的特点等 回流焊的分区情况: 1:预热区(又名:升温区) 2:恒温区(保温区/活性区) 3:回流区 4 :泠却区 回流焊焊接影响工艺的因素: 1.通常PLCC、QFP与一个分立片状元件相比热容量要大,焊接大面积元件就比小元件更困难些。 2.在回流焊炉中传送带在周而复使传送产品进行回流焊的同时,也成为一个散热系统,此外在加热部分的边缘与中心散热条件不同,边缘一般温度偏低,炉内除各温区温度要求不同外,同一载面的温度也差异。 3.产品装载量不同的影响。回流焊的温度曲线的调整要考虑在空载,负载及不同负载因子情况下能得到良好的重复性。负载因子定义为: LF=L/(L+S);其中L=组装基板的长度,S=组装基板的间隔。回流焊工艺要得到重复性好的结果,负载因子愈大愈困难。通常回流焊炉的最大负载因子的范围为~。这要根据产品情况(元件焊接密度、不同基板)和再流炉的不同型号来决定。要得到良好的焊接效果和重复性,实践经验很重要的。

如何设置回流焊温度曲线

一、回流温度曲线在生产中地位: 回流焊接是在SMT工业组装基板上形成焊接点的主要方法,在SMT工艺中回流焊接是核心工艺。因为表面组装PCB的设计,焊膏的印刷和元器件的贴装等产生的缺陷,最终都将集中表现在焊接中,而表面组装生产中所有工艺控制的目的都是为了获得良好的焊接质量,如果没有合理可行的回流焊接工艺,前面任何工艺控制都将失去意义。而回流焊接工艺的表现形式主要为回流温度曲线,它是指PCB的表面组装器件上测试点处温度随时间变化的曲线。因而回流温度曲线是决定焊接缺陷的重要因素。因回流曲线不适当而影响的缺陷形式主要有:部品爆裂/破裂、翘件、锡粒、桥接、虚焊以及生半田、PCB脱层起泡等。因此适当设计回流温度曲线可得到高的良品率及高的可靠度,对回流温度曲线的合理控制,在生产制程中有着举足轻重的作用。 二、回流温度曲线的一般技术要求及主要形式: 1.回流温度曲线各环节的一般技术要求:一般而言,回流温度曲线可分为三个阶段:预热阶段、回流阶段、冷却阶段。①预热阶段:预热是指为了使锡水活性化为目的和为了避免浸锡时进行急剧高温加热引起部品不具合为目的所进行的加热行为。?预热温度:依使用锡膏的种类及厂商推荐的条件设定。一般设定在80~160℃范围内使其慢慢升温(最佳曲线);而对于传统曲线恒温区在140~160℃间,注意温度高则氧化速度会加快很多(在高温区会线性增大,在150℃左右的预热温度下,氧化速度是常温下的数倍,铜板温度与氧化速度的关系见附图)预热温度太低则助焊剂活性化不充分。?预热时间视PCB板上热容量最大的部品、PCB面积、PCB厚度以及所用锡膏性能而定。一般在80~160℃预热段内时间为60~120sec,由此有效除去焊膏中易挥发的溶剂,减少对元件的热冲击,同时使助焊剂充分活化,并且使温度差变得较小。?预热段温度上升率:就加热阶段而言,温度范围在室温与溶点温度之间慢的上升率可望减少大部分的缺陷。对最佳曲线而言推荐以0.5~1℃/sec的慢上升率,对传统曲线而言要求

波峰焊炉温设定、管理方法

1.目的: 指导具体操作人员针对特定产品合理设定波峰焊炉温度,以保证产品的焊接质量。 2.范围: 适用于公司内部所有产品的波峰焊炉温设置、管理与确认。 3.参考文件: STK/WI 760-05 《RCM-5炉温测试仪使用方法》 4.职责范围: 4.1.对通用产品的波峰焊标准温度曲线由本文件附页规定; 4.2.对客户有特定要求的波峰焊温度曲线要求由技术部以特定机种作业指导书的形式做出规定; 4.3.回流焊炉的炉温设置、测量与调整由生产部波峰焊炉操作人员负责; 4.4.回流焊炉的温度设定与要求是否相符由品管人员进行评价。 5.工具: 5.1.回流焊炉温测试; 5.2.特定产品实装基板; 5.3.DIP TESTER: 5.4.模拟基板。 6.工作流程: 6.1.控制用炉温曲线的获得: 6.1.1.用回流焊测试仪和特定产品实装基板测试炉温曲线,使炉温曲线满足标准温度曲线或客户推荐的波 峰焊炉温曲线要求; 6.1.2.在采用特定产品实装基板测试炉温曲线时,热电偶的设置位置要求为: 6.1.2.1.通道A:基板上热容量最大的部件引脚(焊接面); 6.1.2.2.通道B:基板上热容量最小的部件引脚(焊接面); 6.1.2.3.通道C:基板中央的部件引脚(焊接面); 6.1.2.4.通道D:耐热性差的部件引脚/元件表面(部品面); 6.1.2.5.通道E:热容量最大的元器件引脚(部品面); 6.1.3.标准炉温曲线是否满足条件的判定依据: 6.1.3.1.通道B的曲线必须满足所有条件; 6.1.3.2.通道A的曲线数据可以低于条件要求但必须保证大热容量的元器件焊接状态良好; 6.1.3.3.通道D的最高温度必须低于部件规定的受热温度。

2020高教社杯全国大学生数学建模竞赛赛题-炉温曲线

2020年高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、

195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行±10oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称最低值最高值单位 温度上升斜率03oC/s 温度下降斜率?30oC/s 温度上升过程中在150oC~190oC的时间60120s 温度大于217oC的时间4090s 峰值温度240250oC 请你们团队回答下列问题: 问题1 请对焊接区域的温度变化规律建立数学模型。假设传送带过炉速度为78 cm/min,各温区温度的设定值分别为173oC(小温区1~5)、198oC(小温区6)、230oC(小温区7)和257oC(小温区8~9),请给出焊接区域中心的温度变化情况,列出小温区3、6、7中点及小温区8结束处焊接区域中心的温度,画出相应的炉温曲线,并将每隔0.5 s焊接区域中心的温度存放在提供的result.csv 中。 问题2 假设各温区温度的设定值分别为182oC(小温区1~5)、203oC(小温区6)、237oC(小温区7)、254oC(小温区8~9),请确定允许的最大传送带过炉速度。 问题3 在焊接过程中,焊接区域中心的温度超过217oC的时间不宜过长,峰值温度也不宜过高。理想的炉温曲线应使超过217oC到峰值温度所覆盖的面积(图2中阴影部分)最小。请确定在此要求下的最优炉温曲线,以及各温区的设定温度和传送带的过炉速度,并给出相应的面积。

相关文档
最新文档