全纯函数的某些性质

全纯函数的某些性质
全纯函数的某些性质

函数的基本性质——单调性与最大(小)值

函数的基本性质——单调性与最大(小)值 【教学目标】 1.知识与技能:了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思 2.过程与方法:理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间 3.情感、态度与价值观:掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性 【教学重难点】 教学重点:函数的单调性的概念。 教学难点:利用函数单调的定义证明具体函数的单调性 【教学过程】 一、复习引入。 1 分别画函数2x y =和3x y =的图象。2 x y =的图象如图1,3x y =的图象如图2. 2.引入:从函数2x y = 的图象(图1)看到: 图象在y 轴的右侧部分是上升的,也就是说,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,即如果取21,x x ∈[0,+∞),得到1y =)(1x f ,2y =)(2x f ,那么当 1x <2x 时,有1y <2y 。 这时我们就说函数y =)(x f =2x 在[0,+∞)上是增函数。图象在y 侧部分是下降的,也就是说,当x 在区间(-∞,0)上取值时,随着x 的增大,相应的y 值反而随着减小,即如果取21,x x ∈(-∞,0),得到1y =)(1x f , 2y =)(2x f ,那么当1x <2x 时,有1y >2y 。

这时我们就说函数y =)(x f =2x 在(-∞,0)上是减函数。函数的这两个性质,就是今天我们要学习讨论的。 二、讲解新课。 1.增函数与减函数。 定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值 21,x x ,(1)若当1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在这个区间上是 增函数(如图3);(2)若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在这个区间上是减函数(如图4)。 说明:函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间上是增函数,而在另一些区间上不是增函数。例如函数2 x y =(图1),当x ∈[0,+∞)时是增 函数,当x ∈(-∞,0)时是减函数。 2.单调性与单调区间。 若函数y=f (x )在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间。此时也说函数是这一区间上的单调函数。 在单调区间上,增函数的图象是上升的,减函数的图象是下降的。 说明:(1)函数的单调区间是其定义域的子集; (2)应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在21,x x 那样的特定位置上,虽然使得)(1x f >)(2x f , (3)除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“)(1x f <)(2x f 或)(1x f >)(2x f ,”改为“)(1x f )(2x f 或) (1x f ≥ )(2x f ,”即可; (4)定义的内涵与外延: 内涵是用自变量的大小变化来刻划函数值的变化情况; 外延①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减。 ②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数。 三、讲解例题。

指数函数及其性质教学设计

一、标题与单位 指向数学学科核心素养的课堂教学设计 ——指数函数及其性质 《数学5 必修A版》(人教版)第二章(2.1.2) 建宁一中肖秀勇 二、教学设计 (一)内容和内容解析 本节课的内容在知识体系上起到承上启下的作用。这是在学生已掌握了函数的一般性质和简单的指数运算的基础上进一步研究指数函数以及指数函数的图像与性质。在实际生活中应用也非常广泛。它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。这节课在授课的时候借助了空间认识事物的位置关系、形态变化与运动规律;利用图形描述、分析数学问题;建立形与数的联系;构建数学问题的直观模型,探索解决问题的思路。 我根据所教班级的实际情况,我把这部分内容分为两节课来讲。其一,探究图象及其性质;其二,指数函数及其性质的应用。这是第一节课,所以所讲的内容是“探究图象及其性质”。作为常见函数,它一方面可以进一步深化学生对函数的理解,使学生得到较系统的函数知识和研究函的方法,另一方面也为学习对数函数、幂函数以及等比数列的学打习下坚实的基础。 (二)目标和目标解析 1、知识目标:理解并掌握指数函数的定义,熟悉指数函数的图像特点及其性质。能画出指数函数的简图,会判断指数函数的单调性,并能根据指数函数的单调性判断同底幂的大小。 2、能力目标:一方面培养学生运用信息技术解决数学问题的能力;另一方面提高学生观察分析、类比归纳和问题探究的能力。 3、情感目标:通过主动探究,合作交流学习,使学生养成积极思考,勇于探索的思想,同时培养学生的团队合作精神。 在直观想象核心素养的形成过程中,学生能够进一步发展几何直观和空间想象能力,增强运用图形和空间想象思考问题的意识,提升数形结合的能力,感悟事物的本质,培养创新思维。在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。 (三)教学问题诊断分析

函数的基本性质解析

1 第二讲 函数的性质(一) 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2 当x 1f (x 2) ,那么就说函数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是 或,则称函数y =f (x )在这一区间上具有(严格的)单调性, 叫做y =f (x )的单调区间. 3、单调性的判定方法 (1)定义法: 利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤: ○ 1 任取x 1,x 2∈D ,且x 1

二次函数的图像与性质知识点及练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2,y=a(x-h)2 ,y =a(x-h)2 +k 和c bx ax y ++=2图象,能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质:

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左 加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 六、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

指数函数及其性质教案

指数函数及其性质教案 课题:指数函数及其性质(第1课时) 教材:普通高中课程标准试验教科书人教社A版,数学必修1 教学内容:第二章,基本初等函数(I),指数函数及其性质 教学目标 知识目标:理解指数函数的概念,初步掌握指数函数的图像和性质 能力目标:通过定义的引入,图像特征的观察,培养学生的探索发现能力,在学习过程中体会从具体到一般及数形结合的方法 情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。 | 教学重点﹑难点 重点:指数函数的概念和图像 难点:用数形结合的方法从具体到一般地探索﹑概括指数函数的性质 教学流程设计 (一)指数函数概念的构建 1.探究:本节问题2中函数的解析式与问题1中函数的解析式有什么共同特征 师生活动:教师提出问题引导学生把对应关系概括到的形式,学生思考归纳概括共同特征 2.给出指数函数的概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域是 & 3.剖析概念 (1)规定底数大于零且不等于1的理由: 如果=0, 如果等等时,在实数范围内实数值不存在 如果是一个常量,对它就没有研究的必要 (2)形式上的严格性 指数函数是形式定义的函数,就像初中所学的一次函数﹑反比例函数都是形式定义的概念,因此把握指数函数的形式非常重要。在指数函数的定义表达式中,前的系数必须是1,自变量在指数的位置上,否则,不是指数函数,比如等,都不是指数函数 (二)指数函数的图像及性质 ) 1.提出问题:同学们能类比前面讨论函数性质时的思路,提出研究指数函数性质的方法吗 师生活动:教师引导学生回顾需要研究函数的那些性质,讨论研究指数函数性质的方法,强调数形结合,强调函数图像在研究性质中的作用,注意从具体到一般的思想方法的应用,渗透概括能力的培养,学生独立思考,提出研究指数函数性质的基本思路 2.画出函数的图像 师生活动:学生用描点法独立画图,教师课堂巡视,个别辅导,展示画的较好的学生的图像

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ○ 1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f (-x )与f (x )的关系; ○ 3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数); 注意: ○ 1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○ 2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1

二次函数的性质

20.4二次函数的性质 教学目标: 1.从具体函数的图象中认识二次函数的基本性质. 2.了解二次函数与二次方程的相互关系. 3.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念,会求二次函数的最值,并能根据性质判断函数在某一范围内的增减性 教学重点:二次函数的最大值,最小值及增减性的理解和求法. 教学难点:二次函数的性质的应用. 教学过程: 一、复习引入 二次函数: y=ax2 +bx + c (a 1 0)的图象是一条抛物线,它的开口由什么决定呢? 补充: 当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立. 二、新课教学: 1.探索填空: 根据下边已画好抛物线y= -2x2的顶点坐标 是, 对称轴是,在侧,即x_____0时, y随着x的增大而增大;在侧,即x_____0时, y随着x的增大而减小. 当x= 时,函数y最大值是____. 当x____0时,y<0. 2. 探索填空::据上边已画好的函数图象填空:抛物线y= 2x2的顶点坐标 是, 对称轴是,在侧,即x_____0时, y随着x的增大而减少;在侧,即x_____0时, y随着x的增大而增大. 当x= 时,函数y最小值是____. 当x____0时,y>0

3.归纳: 二次函数y=ax2+bx+c(a≠0)的图象和性质 (1).顶点坐标与对称轴 (2).位置与开口方向 (3).增减性与最值 当a ﹥0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当时,函数y有最小值。当a ﹤0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当时,函数y有最大值 4.探索二次函数与一元二次方程 二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示. (1).每个图象与x轴有几个交点? (2).一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗? (3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系? 归纳: (3).二次函数y=ax2+bx+c的图象和x轴交点有三种情况: ①有两个交点, ②有一个交点, ③没有交点. 当二次函数y=ax2+bx+c的图象和x轴有交点时, 交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax2+bx+c=0的根.

【浙教版初中数学】《二次函数的性质》综合练习

1.3 二次函数的性质 一、基础训练 1.若抛物线y=x2-2x+m与x轴只有一个公共点,则m=______. 2.如图所示的抛物线是二次函数y=ax2-3x+a-1的图象,那么a的值是_____. 3.若抛物线y=x2+(m-2)x-m与x轴的两个交点关于y轴对称,则m=______.4.二次函数y=-x2+4x+m的值恒小于0,则m的取值范围是______.5.不论k取任何实数,抛物线y=a(x+k)2+k(a≠0)的顶点都在()A.直线y=x上B.直线y=-x上C.x轴上D.y轴上 6.已知抛物线y=ax2+bx+c上的两点(2,0),(4,0),那么它的对称轴是直线() A.x=-3 B.x=1 C.x=2 D.x=3 7.已知直角三角形的两直角边之和为4,求斜边长的最小值及当斜边长达到最小值时的两条直角边长. 1

8.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越强. (1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低? (2)第几分钟,学生的接受能力最强? 二、提高训练 9.已知二次函数y=x2-4x-a,下列说法正确的是() A.当x<0时,y随x的增大而减小 B.若图象与x轴有交点,则a≤4 2

C.当a=3时,不等式x2-4x+a>0的解集是1

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法 单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。那么,有哪些求函数单调性的方法呢? 方法一:定义法 对于函数f(x)的定义域I 内某个区间A 上的任意两个值12,x x (1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数; (2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。 例如:根据函数单调性的定义,证明:函数 在 上是减函数。 要证明函数f (x )在定义域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为 0,不妨设20x ≠,那么222222121123()24 x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。 方法二:性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: 1. f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; 2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; 3.当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。 这道题很简单,我们根据单调性的性质,很容易就能判断它是增函数。 方法三:同增异减法(处理复合函数的单调性问题) 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域), 可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中, 若有两个函数单调性相同,则第三个函数为增函数;

二次函数y=ax^2+bx+c(a≠0)的图象与性质—知识讲解(基础)

二次函数y=ax 2 +bx+c(a ≠0)的图象与性质—知识讲解(基础) 撰稿:张晓新 审稿:杜少波 【学习目标】 1. 会用描点法画二次函数2 (0)y ax bx c a =++≠的图象;会用配方法将二次函数2 y ax bx c =++的解析式写成2 ()y a x h k =-+的形式; 2.通过图象能熟练地掌握二次函数2 y ax bx c =++的性质; 3.经历探索2 y ax bx c =++与2()y a x h k =-+的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想. 【要点梳理】 要点一、二次函数2 (0)y ax bx c a =++≠与=-+≠2 ()(0)y a x h k a 之间的相互关系 1.顶点式化成一般式 从函数解析式2 ()y a x h k =-+我们可以直接得到抛物线的顶点(h ,k),所以我们称 2()y a x h k =-+为顶点式,将顶点式2()y a x h k =-+去括号,合并同类项就可化成一般式2y ax bx c =++. 2.一般式化成顶点式 22 2 2222b b b b y ax bx c a x x c a x x c a a a a ?? ??????=++=++=++-+?? ? ? ?????????? ? 2 2424b ac b a x a a -? ?=++ ?? ?. 对照2 ()y a x h k =-+,可知2b h a =-,244ac b k a -=. ∴ 抛物线2 y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24,24b ac b a a ??-- ??? . 要点诠释: 1.抛物线2 y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24,24b ac b a a ??-- ???,可以当作公 式加以记忆和运用. 2.求抛物线2 y ax bx c =++的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.

函数的基本性质

函数的基本性质 一、单调性定义 1.单调性定义:设函数f(x)的定义域为A,区间M?A,若对于任意的x1,x2∈M,当x10,则 1 f x 为减 (增)函数,f x为增(减)函数. 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数.5.奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反. 三、函数单调性的应用有: (1)比较函数值或自变量值的大小. (2)求某些函数的值域或最值. (3)解证不等式. (4)作函数图象. 四、函数的最大(小)值: 定义:一般地,设函数y=f(x)定义域为Ⅰ,如果存在实数M满足: (1)对任意x∈Ⅰ,都有f(x)≤M(或f(x)≥M); (2)存在x0∈Ⅰ,使得f(x0)=M. 称M是函数y=f(x)的最大(或最小)值. 五、复合函数的单调性 对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调增(减)函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,那么函数y=f[g(x)]在区间(a,b)上的单调性由以下表格所示,实施该法则时首先应考虑函数的定义域.

二次函数图像与性质总结

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.

概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我 们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对 称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

函数的单调性的题型分类及解析

函数的单调性 知识点 1、增函数定义、减函数的定义: (1)设函数)(x f y =的定义域为A ,区间M ?A ,如果取区间M 中的任意两个值21,x x ,当改变量012>-=?x x x 时,都有0)()(12>-=?x f x f y ,那么就称函数)(x f y =在区间M 上是增函数,如图(1)当改变量012>-=?x x x 时,都有0)()(12<-=?x f x f y ,那么就称 函 数)(x f y =在区间M 上是减函数,如图(2) 注意:单调性定义中的x 1、x 2有什么特征:函数单调性定义中的x 1,x 2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间. 1、 根据函数的单调性的定义思考:由f (x )是增(减)函数且f (x 1)x 2) 2、我们来比较一下增函数与减函数定义中y x ??,的符号规律,你有什么发现没有? 3、如果将增函数中的“当012>-=?x x x 时,都有0)()(12>-=?x f x f y ”改为当 012<-=?x x x 时,都有0)()(12<-=?x f x f y 结论是否一样呢? 4、定义的另一种表示方法 如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,若 0) ()(2 121>--x x x f x f 即 0>??x y ,则函数y=f(x)是增函数,若0)()(2 121<--x x x f x f 即0

二次函数的图像和性质知识点与练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2 ,y=a(x-h)2,y =a(x-h)2 +k 和c bx ax y ++=2 图象, 能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2 中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质: x y O

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式() 2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字 “左加右减,上加下减”. 方法二:

函数的单调性

函数的单调性(教学设计) 一、本节内容在教材中的地位与作用: 《函数的单调性》系人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。 二、学情、教法分析: 按现行新教材结构体系,学生只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。依据现有认知结构,学生只能根据函数的图象观察出“随着自变量的增大,函数值增大”的变化趋势,而不能用符号语言进行严密的代数证明,只能依据形的直观性进行感性判断而不能进行“思辩”的理性认识。所以在教学中要找准学生学习思维的“最近发展区”进行有意义的建构教学。在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。 三、教学目标与教学重、难点的制定: 依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为:

函数的基本性质

§1.3函数的基本性质 教材分析 函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。 学情分析 学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。 教学建议 以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。 教学目标 ?知识与技能 (1)能理解函数单调性、最值、奇偶性的图形特征 (2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性 (3)单调性与奇偶性的综合题 (4)培养学生观察、归纳、推理的抽象思维能力 ?过程与方法 (1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念 (2)渗透数形结合的数学思想进行习题课教学 ?情感、态度与价值观 (1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳

(2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达 课时安排 (1)概念课:单调性2课时,最值1课时,奇偶性1课时 (2)习题课:5课时 第一课时 单调性 教学重点 借助图象、自然语言和符号语言形成对增(减)函数的形式化定义,并能用定义解决简单函数的单调性问题 教学难点 (1)在形成增函数、减函数形式化定义的过程中,如何从图象升降的直观认识过渡到数学符号的语言表述 (2)用定义证明单调性的规范写法(主要是学生对“在定义域的指定区间上任意取21,x x ,且21x x <”的理解) 教学过程 一、由特殊到一般,引入课题 学生画图x y =与x y -=,老师引导观察图象特点,说出自己关于图象的直观感受. 提示:统一从左往右看,函数图象有什么图形特征?函数值有什么样的变化特点?能否借助函数定义中x 和y 的对应来表达这种变化的规律? 二、新课教学 老师提问:上述两个函数图象仅仅是众多函数中比较典型的两类,那么对于一般的函数无非是从左往右或升或降,那么如何用数学语言描述一般函数的这种变化规律?(统一从左往右看意即我们规定自变量x 越来越大的情况下,上升意味着函数值y 越来越大,下降意味着函数值y 越来越小.) 一般地,设函数)(x f 的定义域为I : 如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有

二次函数的基本性质

一、全面理解二次函数的定义 (1)二次函数有四种表达形式 ①二次一项式型:形如y=ax2(a是常数,且a≠0),x取任意实数。 ②二次二项式型:形如y=ax2+bx(a是常数,且a≠0,b是常数,b≠0),x取任意实数。 ③二次二项式型:形如y=ax2+c(a是常数,且a≠0,c是常数,c≠0),x取任意实数。 ④二次三项式型:形如y=ax2+bx +c(a是常数,且a≠0,b是常数,b≠0,c是常数,c≠0),x取任意实数。 (2)不论是哪一种表示形式,都必须规定a≠0,否则,就没有了二次项,二次函数就没有意义了。 (3)二次函数解析式的三种形式 二、掌握二次函数的图像和性质 ①y=ax2(a是常数,且a≠0)的图像和性质

②y=ax 2+bx (a 是常数,且a ≠0,b 是常数,b ≠0)的图像和性质 ③y=ax 2+c (a 是常数,且a ≠0,c 是常数,c ≠0)的图像和性质 ④y=ax 2+bx +c (a 是常数,且a ≠0,b 是常数,b ≠0,c 是常数,c ≠0)的性质 a >0时 ,开口向上;a <0时,开口向下 顶点坐标是(-a b 2, a b ac 442-),对称轴是直线x=-a b 2。 当a >0时 ,函数有最小值,y=a b ac 442-;a <0时,函数有最大值,y=a b ac 442 -; 性质:

当a>0时,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大;当a<0时,在对称轴的左边,y随x的增大而增大,在对称轴的右边,y随x的增大而减小. 一、填空题 1.已知a≠0, (1)抛物线y=ax2的顶点坐标为______,对称轴为______. (2)抛物线y=ax2+c的顶点坐标为______,对称轴为______. (3)抛物线y=a(x-m)2的顶点坐标为______,对称轴为______. 2.若函数 1 22 ) 2 1 (+ + - =m m x m y 是二次函数,则m=______. 3.抛物线y=2x2的顶点,坐标为______,对称轴是______.当x______时,y随x增大而减小;当x______时,y随x增大而增大;当x=______时,y有最______值是______.4.抛物线y=-2x2的开口方向是______,它的形状与y=2x2的形状______,它的顶点坐标是______,对称轴是______. 5.抛物线y=2x2+3的顶点坐标为______,对称轴为______.当x______时,y随x的增大而减小;当x=______时,y有最______值是______,它可以由抛物线y=2x2向______平移______个单位得到. 6.抛物线y=3(x-2)2的开口方向是______,顶点坐标为______,对称轴是______.当x______时,y随x的增大而增大;当x=______时,y有最______值是______,它可以由抛物线y=3x2向______平移______个单位得到. 二、选择题 7.要得到抛物线 2 )4 ( 3 1 - =x y ,可将抛物线 2 3 1 x y= ( ) A.向上平移4个单位 B.向下平移4个单位 C.向右平移4个单位 D.向左平移4个单位 8.下列各组抛物线中能够互相平移而彼此得到对方的是( ) A.y=2x2与y=3x2 B. 2 2 12 + =x y 与2 1 22+ =x y C.y=2x2与y=x2+2 D.y=x2与y=x2-2 9.顶点为(-5,0),且开口方向、形状与函数 2 3 1 x y- = 的图象相同的抛物线是( )

相关文档
最新文档