数字信号处理-王雪梅老师

数字信号处理-王雪梅老师
数字信号处理-王雪梅老师

时域离散随机信号处理及实现(王雪梅老师)作业1

(1)按下表整理复习离散傅立叶变化相关内容

作业2

(1)用脉冲响应不变法设计数字低通滤波器,要求通带和阻带具有单调下降特性。具体指标参数:πω2.0=p ,dB p 1=α,πω35.0=s ,dB s 10=α. (2)用双线性变换法设计上述数字低通滤波器。 (3)对上述两种方法所求结果进行分析、比较。

(1)脉冲响应不变法

相应的模拟滤波器的指标,取采样周期T=1s ,

0.2,1p

p p rad s db

T

ωπαΩ===

0.35,10s

s s rad s db

T

ωπαΩ=

==

题设要求通带和阻带具有单调下降特性,所以选择巴特沃斯滤波器。

通带波纹幅度参数:0.5088ε==

阻带波纹幅度参数:20

10 3.1623s A α==

过度比:

47p s k =ΩΩ=

偏离参数:

10.1696

k ==

巴特沃斯滤波器阶数:()()1lg lg 3.1704

N k k ==,可取N=4

3db 截至频率:)

1210.2659N

c s

A rad s

πΩ=Ω-=

根据:

()()121221

,k N

i N N c k k k D s s p p e

π-??+ ???

==-Ω=∏

查表

可得p 1=-0.3827+j0.9239,p 2=-0.3827-j0.9239,p 3=-0.9239+j0.3827,p 4=-0.9239-j0.3827 归一化系统函数:

()()()()()12341

G p p p p p p p p p =

----

去归一化,得到模拟低通滤波器的系统函数:

()()()()()()1234|c c

a p s c c c c H s G p s p s p s p s p =ΩΩ==

-Ω-Ω-Ω-Ω

将H a (s)化为:()4

1k

a k k A H s s s ==-∑

形式。

其中

k c k s p =Ω?

A 1=0.094+0.0939i, A 2=0.094-0.0939i,A 3=-0.227+0.2221i,A 3=-0.227-0.2221i 可以得到脉冲响应不变法所求数字滤波器

()324

1

4

3210.04560.10270.01541 1.9184 1.65460.68530.1127k k s T k A z z z

H z e

z z z z z -=++==--+-+∑

脉冲响应法设计的数字滤波器频率无非线性畸变,耗损函数与模拟滤波器相似,在接近采样频率处衰减明显小于模拟滤波器,出现混叠失真。

(2)双线性变换设计数字低通滤波器 取T=2s

非线性预畸变

()tan tan 0.10.3249,1p p p rad s db

T ωπα??

Ω==== ??? ()tan tan 0.1750.6128,10s s s rad s db

T ωπα??

Ω==== ???

通带波纹幅度参数:0.5088ε==

阻带波纹幅度参数:20

10 3.1623s A α==

过度比:

0.5302

p s k =ΩΩ=

偏离参数:

10.1696

k ==

巴特沃斯滤波器阶数:()()1lg lg 2.7966

N k k ==,可取N=3 3db 截至频率:

()

12210.4249N

c s

A rad s

Ω=Ω-=

去归一化,得到模拟低通滤波器的系统函数:

()()()()()()

32220.07671|0.42490.42490.1805c c

a p s c c c H s G p s s s s s s =ΩΩ===

+Ω+Ω+Ω+++

双线性变换:

()()11123

123

110.033530.10060.10060.03353|10.42490.88270.19a z s z

z z z H z H s z z z ---------=++++==-+-

由图可见频率非线性畸变会造成数字滤波器的耗损函数与模拟滤波器耗损函数不同,双线性变换没有频谱混叠。

作业

3

(1)对模拟信号进行低通滤波处理,要求通带KHz f 5.10≤≤内衰减小于dB 1,阻带∞≤≤f KHz 5.2上衰减大于dB 40。希望对模拟信号采样后用线性相位FIR 数字滤波器实现上述滤波要求,采样频率KHz F s 10=。用窗函数法设计满足要求的FIR 数字滤波器,求出)(n h ,并画出损耗函数曲线和相频特性曲线。为了降低运算量,希望滤波器阶数尽量低。

数字滤波器指标

2/2 1.5/100.3p p s f F ωπππ

==?=

2/2 2.5/100.5s s s f F ωπππ==?=

为了使滤波器的阶数尽量低,选择凯塞窗,由

40s dB α=,则

()()0.4

0.5842210.07886 3.3953

21s s βαα=-+-=

数字滤波器过度带宽度:

0.2s p βωωπ

?=-=

滤波器阶数:

8

2.28522.2887

s M B

α-=

=?,取M=23

所以窗长度取N=24

理想低通滤波器的通带截止频率()20.4c s p ωωωπ

=+=

希望逼近的频率响应函数

(),0,j c

j d c e H e ωτ

ω

ωωωωπ-?≤?=?

<≤??

其中

()1211.5

N τ=-=

傅里叶反变换得到

()()()

sin 0.411.51.2151c

c

j i n d n h n e e d n ωωτωω

πωπ

π--

-????

=

=

-?

对理想响应函数加窗可得满足要求的线性相位FIR 数字滤波器

()()()()()

()

2411.5sin 0.1154.d n h n h n n n n πωωπ-????

==

-

作业4

(1)3.17(用matlab 仿真)

(1)

可以看出fft 快速算法计算计算自相关函数与直接公式计算自相关函数基本重合,但fft 快速算法计算计算自相关函数用时0.000844 秒,直接公式计算自相关函数用时0.035199 秒。计算时间大幅减少。

作业5

用matlab 编程仿真分析:

(1)3.17(3) AR 参数谱

(1)实际计算中,常对ω在2π内均匀采样,则可以用计算模型参数a k 的FFT 变换得到p 阶AR 模型的功率谱

2

22210

???j l p M AR M j

lk M

k

k S e a

e ππ

σ--=??= ???

其中,M为采样点数。

作业6

(1)242

P,6-15,用RLS和LMS算法实现)

(n

u的线性预测。并对两种方法进行分析、比较。

(1)RLS算法

单次实验结果如下图:

(2)LMS算法

单次实验结果如下图:

作业7

1、考虑AR 过程)(n u ,其差分方程)()2()1()(21n v n u a n u a n u +-+--=,其中

)(n v 是零均值、方差为0731.02=v σ的加性白噪声。AR 参数975.01-=a ,

95.02=a 。

(1)产生512=N 点的),...,2,1)((N n n u =样本序列。

(2)令)(n u 为二阶线性预测器)2(LP 的输入,在05.0=μ、005.0=μ的情况下用LMS 滤波器来估计1w 和2w 。

(3)在(2)的参数条件下,滤波器进行100次独立实验,通过平均

预测误差)(?)()(n u

n u n e -=的平均值,计算剩余均方误差和失调参数,并画出学习曲线。

(4)改变005.0=μ,其它参数不变,计算剩余均方误差和失调参数,并画出学习曲线,比较05.0=μ和005.0=μ是二者学习曲线的区别。

由图可见步长越大收敛速度越快。

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

数字信号处理的应用和发展前景

数字信号处理的应用与发展趋势 作者:王欢 天津大学信息学院电信三班 摘要: 数字信号处理是应用于广泛领域的新兴学科,也是电子工业领域发展最为迅速的技术之一。本文就数字信号处理的方法、发展历史、优缺点、现代社会的应用领域以及发展前景五个方面进行了简明扼要的阐述。 关键词: 数字信号处理发展历史灵活稳定应用广泛发展前景 数字信号处理的简介 1.1、什么是数字信号处理 数字信号处理简称DSP,英文全名是Digital Signal Processing。 数字信号处理是利用计算机或专用处理设备以数字的形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 DSP系统的基本模型如下: 数字信号处理是一门涉及许多学科且广泛应用于许多领域的新兴学科。它以众多的学科为理论基础,所涉及范围及其广泛。例如,在数学领域、微积分、概率统计、随即过程、数值分析等都是数字信号处理的基本工具;同时与网络理论、信号与系统、控制论、通信理论、故障诊断等学科也密切相关。近年来的一些新兴学科,如人工智能、模式识别、神经网络等,都是与数字信号处理密不可分的。数字信号处理可以说许多经典的理论体系作为自己的理论基础,同时又使自己成为一门新兴学科的理论基础。 1.2、数字信号系统的发展过程 数字信号处理技术的发展经历了三个阶段。 70 年代DSP 是基于数字滤波和快速傅里叶变换的经典数字信号处理, 其系统由分立的小规模集成电路组成, 或在通用计算机上编程来实现DSP 处理功能, 当时受到计算机速度和存储量的限制,一般只能脱机处理, 主要在医疗电子、生物电子、应用地球物理等低频信号处理方面获得应用。 80 年代DSP 有了快速发展, 理论和技术进入到以快速傅里叶变换(FFT) 为主体的现代信号处理阶段, 出现了有可编程能力的通用数字信号处理芯片, 例如美国德州仪器公司(TI公司) 的TMS32010 芯片, 在全世界推广应用, 在雷达、语音通信、地震等领域获得应用, 但芯片价格较贵, 还不能进 入消费领域应用。 90 年代DSP 技术的飞速发展十分惊人, 理论和技术发展到以非线性谱估计为代表的更先进的信号处理阶段, 能够用高速的DSP 处理技术提取更深层的信息, 硬件采用更高速的DSP 芯片, 能实时地完成巨大的计算量, 以TI 公司推出的TMS320C6X 芯片为例, 片内有两个高速乘法器、6 个加法器, 能以200MHZ 频率完成8 段32 位指令操作, 每秒可以完成16 亿次操作, 并且利用成熟的微电子工艺批量生产,使单个芯片成本得以降低。并推出了C2X 、C3X 、C5X 、C6X不同应用范围的系列, 新一代的DSP 芯片在移动通信、数字电视和消费电子领域得到广泛应用, 数字化的产品性能价 格比得到很大提高, 占有巨大的市场。 1.3、数字信号处理的特点

北航2系大三上期期末考试复习资料

1202大班期末考试复习资料(大三上学期) 目录 更多考题和答案尽在资源站

北京航空航天大学 2010 ~2011学年第 1 学期 数字信号处理 期末考试试卷 ( 2011 年 1 月 21 日) 学号:________________ 姓名:_________________ 成绩:_______________ 一、基本计算题(60分,每小题10分) 1.给定两个序列: 11,05[]0,n n x n +≤≤?=? ?其他 21,04 []0,n x n ≤≤?=?? 其他 1)求两者的线性卷积12[][]x n x n *; 2)求两者的循环卷积1[]x n ⑧2[]x n 。 2.试确定0()cos()[]x n n u n ω=的z 变换。 3.试求12 12 12(),:123z z H z ROC z z z ----++= >-+的反变换。 4.假设1 ()(3)(2) a H s s s =++为模拟滤波器的系统函数,试分别用冲击响应不变法和双线 性Z 变换法将其转换为离散滤波器()H z ,请给出离散滤波器的系统函数,并给出典范 型实现结构。 5.对离散时间序列[]x n 进行1024点DFT 计算,得到[]X k ,请问: 1)在[]X k 中,10k =,800k =对应的频率?ω= 2)请问完成1024点DFT 所需的复数乘法的次数? 3)若采用1024点FFT 运算,请问其蝶形个数?

6.下图为两个系统框图: x [n y [n ] -1/8 x [n ] y [n ] 1)求两系统的差分方程; 2)说明上述两流程图对应系统之间的关系。 二、(15分)一利用离散时间滤波器过滤连续时间信号的系统,其输入信号的频谱()e X j Ω 及离散时间滤波器的频率响应()j H e ω如下图所示。 3210π-? 3 210π? Ω j ω 2 π - 2 π ω e x t e x t

数字信号处理总结与-习题(答案

对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。4、)()(5241 n R x n R x ==,只有 当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞ =-∞ <∞ ∑ 6、用来计算N =16点DFT ,直接计算需要(N 2 )16*16=256_次复乘法,采用基2FFT 算法, 需要__(N/2 )×log 2N =8×4=32 次复乘法。7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并 联型的运算速度最高。9、数字信号处理的三种基本运算是:延时、乘法、加法 10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是__N 1+N 2-1_。11、N=2M 点基2FFT ,共有 M 列蝶形, 每列有N/2 个蝶形。12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对 13、数字信号处理的三种基本运算是: 延时、乘法、加法 14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。18、单位脉冲响应分别为 和 的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h 1(n)*h 2(n), =H 1(e j ω )× H 2(e j ω )。19、稳定系统的系统函数H(z)的收敛域包括 单位圆 。20、对于M 点的有限长序列x(n),频域采样不失真的条件是 频域采样点数N 要大于时域采样点数M 。 1、下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( y(n)=x(n 2 ) ) A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法能用于设计FIR 高通滤波4、因果FIR 滤波器的系统函数H(z)的全部极点都在(z = 0 )处。6、已知某序列z 变换的收敛域为|z|<1,则该序列为(左边序列)。7、序列)1() (---=n u a n x n ,则)(Z X 的收敛域为(a Z <。8、在对连续信号均匀 采样时,要从离散采样值不失真恢复原信号,则采样周期T s 与信号最高截止频率f h 应满足关系(T s <1/(2f h ) ) 9、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 (16=N )。10、线性相位FIR 滤波器有几种类型( 4) 。11、在IIR 数字滤波器的设计中,用哪种方法只适 合于片断常数特性滤波器的设计。(双线性变换法)12、下列对IIR 滤波器特点的论述中错误的是( C )。 A .系统的单位冲激响应h(n)是无限长的B.结构必是递归型的C.肯定是稳定的D.系统函数H(z)在有限z 平面(0<|z|<∞)上有极点 13、有限长序列h(n)(0≤n ≤N-1)关于τ= 2 1 -N 偶对称的条件是(h(n)=h(N-n-1))。14、下列关于窗函数设计法的说法中错误的是( D )。A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法不能用于设计FIR 高通滤波器 15、对于傅立叶级数而言,其信号的特点是(时域连续非周期,频域连续非周期)。

FPGA在高速数字信号处理中的使用

由于成本、系统功耗和面市时间等原因,许多通讯、视频和图像系统已无法简单地用现有DSP处理器来实现,现场可编程门阵列(FPGA)尤其适合于乘法和累加(MAC)等重复性的DSP任务。本文从FPGA与专用DSP器件的运算速度和器件资源的比较入手,介绍FPGA 在复数乘法、数字滤波器设计和FFT等数字信号处理中应用的优越性,值得(中国)从事信号处理的工程师关注。 Chris Dick Xilinx公司 由于在性能、成本、灵活性和功耗等方面的优势,基于FPGA的信号处理器已广泛应用于各种信号处理领域。近50%的FPGA产品已进入各种通信和网络设备中,例如无线基站、交换机、路由器和调制解调器等。FPGA提供了极强的灵活性,可让设计者开发出满足多种标准的产品。例如,万能移动电话能够自动识别GSM、CDMA、TDMA或AMPS等不同的信号标准,并可自动重配置以适应所识别的协议。FPGA所固有的灵活性和性能也可让设计者紧跟新标准的变化,并能提供可行的方法来满足不断变化的标准要求。 复数乘法 复数运算可用于多种数字信号处理系统。例如,在通讯系统中复数乘积项常用来将信道转化为基带。在线缆调制解调器和一些无线系统中,接收器采用一种时域自适应量化器来解决信号间由于通讯信道不够理想而引入的干扰问题。量化器采用一种复数运算单元对复数进行处理。用来说明数字信号处理器优越性能的指标之一就是其处理复数运算的能力,尤其是复数乘法。 一个类似DSP-24(工作频率为100MHz)的器件在100ns内可产生24×24位复数乘积(2个操作数的实部和虚部均为24位精度)。复数乘积的一种计算方法需要4次实数乘法、1次加法和1次减法。一个满精度的24×24实数管线乘法器需占用348个逻辑片。将4个实数乘法器产生的结果组合起来所需的2个48位加法/减法器各需要24个逻辑片(logic slice)。这些器件将工作在超过100MHz的时钟频率。复数乘法器采用一条完全并行的数据通道,由4×348+2×24=1440个逻辑片构成,这相当于Virtex XCV1000 FPGA所提供逻辑资源的12%。计算一个复数乘积所需的时间为10ns,比DSP结构的基准测试快一个数量级。为了获得更高的性能,几个完全并行的复数乘法器可在单个芯片上实现。采用5个复数乘法器,假设时钟频率为100MHz,则计算平均速率为每2ns一个复数乘积。这一设计将占用一个XCV1000器件约59%的资源。 这里应该强调的一个问题是I/O,有这样一条高速数据通道固然不错,但为了充分利用它,所有的乘法器都须始终保持100%的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数。 除了具有可实现算法功能的高可配置逻辑结构外,FPGA还提供了巨大的I/O带宽,包括片上和片外数据传输带宽,以及算术单元和存储器等片上部件之间的数据传输带宽。例如,XCV1000具有512个用户I/O引脚。这些I/O引脚本身是可配置的,并可支持多种信号标准。实现复数乘法器的另一种方法是构造一个单元,该单元采用单设定或并行的24x24实数乘法器。这种情况下,每一个复数乘法需要4个时钟标识,但是FPGA的逻辑资源占用率却降到了最低。同样,采用100MHz系统时钟,每隔40ns可获得一个新的满精度复数乘积,这仍是DSP结构基准测试数据的2.5倍。这一设定方法需要大约450个逻辑片,占一个XCV1000器件所有资源的3.7%(或XCV300的15%)。 构造一条能够精确匹配所需算法和性能要求的数据通道的能力是FPGA技术独特的特性之一。而且请注意,由于FPGA采用SRAM配置存储器,只需简单下载一个新的配置位流,同样的FPGA硬件就可适用于多种应用。FPGA就像是具有极短周转时间的微型硅片加工厂。

数字信号处理(北航)实验二报告

数字信号处理实验二 信号的分析与处理综合实验 38152111 张艾一、实验目的 综合运用数字信号处理的理论知识进行信号的采样,重构,频谱分析和滤波器的设计,通过理论推导得出相应结论,再利用Matlab作为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。 二、基本要求 1.掌握数字信号处理的基本概念、基本理论和基本方法; 2.学会MATLAB的使用,掌握MATLAB的程序设计方法; 3.掌握用MATLAB设计简单实验验证采样定理的方法; 4.掌握在Windows环境下语音信号采集的方法; 5.学会用MATLAB对信号进行频谱分析; 6.掌握MATLAB设计FIR和IIR数字滤波器的方法; 三、实验内容 1.利用简单正弦信号设计实验验证采样定理: (1)Matlab产生离散信号的方法,作图的方法,以及基本运算操作 (2)对连续正弦信号以不同的采样频率作采样 (3)对采样前后信号进行傅立叶变换,并画频谱图 (4)分析采样前后频谱的有变化,验证采样定理。

掌握画频谱图的方法,深刻理解采样频率,信号频率,采样点数,频率分辨率等概念2.真实语音信号的采样重构:录制一段自己的语音信号,并对录制的信号进行采样;画出采样前后语音信号的时域波形和频谱图;对降采样后的信号进行插值重构,滤波,恢复原信号。 (1)语音信号的采集 (2)降采样的实现(改变了信号的采样率) (3)以不同采样率采样后,语音信号的频谱分析 (4)采样前后声音的变化 (5)对降采样后的信号进行插值重构,滤波,恢复原信号 3.带噪声语音信号的频谱分析 (1)设计一频率已知的噪声信号,与实验2中原始语音信号相加,构造带噪声信号(2)画出原始语音信号和加噪声后信号,以及它们的频谱图 (3)利用频谱图分析噪声信号和原语音信号的不同特性 4.对带噪声语音信号滤波去噪:给定滤波器性能指标,采样窗函数法或双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采样的语音信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化; 回放语音信号; (1)分析带噪声信号频谱,找出噪声所在的频率段 (2)利用matlab中已有的滤波器滤波 (3)根据语音信号特点,自己设计滤波器滤波 (4)比较各种滤波器性能(至少四种),选择一种合适的滤波器将噪声信号滤除 (5)回放语音信号,比较滤波前后声音的变化

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念 0.1信号、系统与信号处理 1?信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号能量信号/功率信号 连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类: 2?系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3. 信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理, 而且也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 精选

PrF ADC DSP DAC PoF (1)前置滤波器 将输入信号X a(t )中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次X a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术 ----- D igitalSignalProcessing 另一层是狭义的理解,为数字信号处理器----- DigitalSignalProcesso。 0.5课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号 频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessin)信号对象主要是随机信 号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1 ?按自变量与函数值的取值形式是否连续信号可以分成哪四种类型?

基于TMS320C6455的高速数字信号处理系统设计

基于TMS320C6455的高速数字信号处理系统设计 摘要:针对高速实时数字信号处理系统设计要求,本文提出并设计了基于dsp+fpga结构的高速数字信号处理系统,采用ti公司目前单片处理能力最强的定点dsp芯片tms320c6455为系统主处理器,fpga作为协处理器。详细论述了dsp外围接口电路的应用和设计,系统设计电路简洁、实现方便,可靠性强。 关键词:tms320c6455 fpga 数字信号处理系统设计 design of high-speed digital signal processing system based on tms320c6455 cao jingzhi,he fei,li qiang,ren hui,qin wei (department of tool development,china petroleum logging co.,ltd shaan xi xi’an 710077) abstract:according to the design needs of high-speed real-time digital signal processing system.the paper puts forward a design of high-speed digital signal processing system based on dsp+fpga structure,adopting ti company fixed-point dsp chip tms320c6455,the currently strongest capacity monolithic processor,for system main processor,and fpga as coprocessor.this paper describs the application and design of dsp periphery circuit interface in detail.the system design has simple circuit and realize convenient, reliability.

北航考博辅导班:2019北京航空航天大学检测技术与自动化装置考博难度解析及经验分享

北航考博辅导班:2019北京航空航天大学检测技术与自动化装置考 博难度解析及经验分享 根据教育部学位与研究生教育发展中心最新公布的第四轮学科评估结果可知,全国开设检测技术与自动化装置专业的大学参与了2017-2018检测技术与自动化装置专业大学排名,其中排名第一的是天津大学,排名第二的是西安交通大学,排名第三的是北京航空航天大学。 作为北京航空航天大学实施国家“211工程”和“985工程”的重点学科,北京航空航天大学的检测技术与自动化装置一级学科在历次全国学科评估中均名列第三。 下面是启道考博辅导班整理的关于北京航空航天大学检测技术与自动化装置考博相关内容。 一、专业介绍 检测技术与自动化装置,是将自动化、电子、计算机、控制工程、信息处理、机械等多种学科、多种技术融合为一体并综合运用的复合技术,广泛应用于交通、电力、冶金、化工、建材等各领域自动化装备及生产自动化过程。检测技术与自动化装置的研究与应用,不仅具有重要的理论意义,符合当前及今后相当长时期内我国科技发展的战略,而且紧密结合国民经济的实际情况,对促进企业技术进步、传统工业技术改造和铁路技术装备的现代化有着重要的意义。 北京航空航天大学自动化科学与电气工程学院博士招生专业 专业代码及名称:081102检测技术与自动化装置 考试科目详细内容,请咨询招生学院。 二、综合考核 综合考核由笔试和面试两个环节组成。综合考核低于 180 分不予录取。 笔试(100 分)全院统一试卷,主要考察考生的英语与矩阵论。 面试(200 分)主要考核评价申请者的思政、视野、创新能力、实际应用知识的能力及培养潜力。面试内容和形式为: (1)思想政治素质和品德考核。不合格者不予录取。 (2)申请者报考专业所属学科基础知识和专业知识水平(100 分)。 (3)综合考察考生英语水平、科研经历、科研道德、创新意识、逻辑思维能力以及语言表达等能力 100 分)。

数字信号处理学习心得体会

数字信号处理学习心得 体会

数字信号处理学习心得 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基 2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响

应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要我们具备比较好的模电和数电的

数字信号处理实验及参考程序

数字信号处理实验实验一离散时间信号与系统及MA TLAB实现 1.单位冲激信号: n = -5:5; x = (n==0); subplot(122); stem(n, x); 2.单位阶跃信号: x=zeros(1,11); n0=0; n1=-5; n2=5; n = n1:n2; x(:,n+6) = ((n-n0)>=0); stem(n,x); 3.正弦序列: n = 0:1/3200:1/100; x=3*sin(200*pi*n+1.2); stem(n,x); 4.指数序列 n = 0:1/2:10; x1= 3*(0.7.^n); x2=3*exp((0.7+j*314)*n); subplot(221); stem(n,x1); subplot(222); stem(n,x2); 5.信号延迟 n=0:20; Y1=sin(100*n); Y2=sin(100*(n-3)); subplot(221); stem(n,Y1); subplot(222); stem(n,Y2);

6.信号相加 X1=[2 0.5 0.9 1 0 0 0 0]; X2=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7]; X=X1+X2; stem(X); 7.信号翻转 X1=[2 0.5 0.9 1]; n=1:4; X2=X1(5-n); subplot(221); stem(n,X1); subplot(222); stem(n,X2); 8.用MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。a=[-2 0 1 -1 3]; b=[1 2 0 -1]; c=conv(a,b); M=length(c)-1; n=0:1:M; stem(n,c); xlabel('n'); ylabel('幅度'); 9.用MA TLAB计算差分方程 当输入序列为时的输出结果。 N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)]; k=0:1:N-1; y=filter(a,b,x); stem(k,y) xlabel('n'); ylabel('幅度') 10.冲激响应impz N=64; a=[0.8 -0.44 0.36 0.22];

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

数字信号处理学习心得

数字信号处理学习心得 XXX ( XXX学院XXX班) 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂

基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层

高速实时数字信号处理系统技术探析

高速实时数字信号处理系统技术探析  (毛二可院士 龙腾副教授)    高速实时数字信号处理(DSP)技术取得了飞速的发展,目前单片DSP芯片的速度已经可以达到每秒16亿次定点运算(1600MIPs到4800MIPs);最近TI宣布1GHz DSP已经准备投产。其高速度、可编程、小型化的特点将使信息处理技术进入一个新纪元。一个完整的高速实时数字信号处理系统包括多种功能模块,如DSP、ADC、DAC等等。本文的内容主要是分析高速实时数字信号处理系统的产生、特点、构成、以及系统设计中的一些问题,并对其中的主要功能模块分别进行了分析。  一、高速实时数字信号处理概述  1.信号处理的概念  信号处理的本质是信息的变换和提取,是将信息从各种噪声、干扰的环境中提取出来,并变换为一种便于为人或机器所使用的形式。从某种意义上说,信号处理类似于"沙里淘金"的过程:它并不能增加信息量(即不能增加金子的含量),但是可以把信息(即金子)从各种噪声、干扰的环境中(即散落在沙子中)提取出来,变换成可以利用的形式(如金条等等)。如果不进行这样的变换,信息虽然存在,但却是无法利用的;这正如散落在沙中的金子无法直接利用一样。  2.高速实时数字信号处理的产生  早期的信号处理主要是采用模拟的处理方法,包括运算放大电路、声表面波器件(SAW)以及电荷耦合器件(CCD)等等。例如运算放大电路通过不同的电阻组配可以实现算术运算,通过电阻、电容的组配可以实现滤波处理等等。模拟处理最大的问题是不灵活、不稳定。其不灵活体现在参数修改困难,需要采用多种阻值、容值的电阻、电容,并通过电子开关选通才能修改处理参数。其不稳定主要体现为对周围环境变化的敏感性,例如温度、电路噪声等都会造成处理结果的改变。  解决以上问题最好的方法就是采用数字信号处理技术。数字信号处理可以通过软件修改处理参数,因此具有很大的灵活性。由于数字电路采用了二值逻辑,因此只要环境温度、电路噪声的变化不造成电路逻辑的翻转,数字电路的工作都可以不受影响地完成,具有很好的稳定性。因此,数字信号处理已经成为信号处理技术的主流。  数字信号处理的主要缺点是处理量随处理精度、信息量的增加而成倍增长,解决这一问题的方法是研究高速运行的数字信号处理系统;这就是本文所探讨的主题:高速实时数字信号处理的理论与技术。 3.高速实时数字信号处理特点   高速实时数字信号处理的特点:  首先是高速度,其处理速度可以达到数百兆量级。

数字信号处理课程总结(全)

数字信号处理课程总结 以下图为线索连接本门课程的内容: ) (t x a ) (t y a ) (n x 一、 时域分析 1. 信号 ? 信号:模拟信号、离散信号、数字信号(各种信号的表示及关系) ? 序列运算:加、减、乘、除、反褶、卷积 ? 序列的周期性:抓定义 ? 典型序列:)(n δ(可表征任何序列)、)(n u 、)(n R N 、 n a 、jwn e 、)cos(θ+wn ∑∞ -∞ =-= m m n m x n x )()()(δ 特殊序列:)(n h 2. 系统 ? 系统的表示符号)(n h ? 系统的分类:)]([)(n x T n y = 线性:)]([)]([)]()([2121n x bT n x aT n bx n ax T +=+ 移不变:若)]([)(n x T n y =,则)]([)(m n x T m n y -=- 因果:)(n y 与什么时刻的输入有关 稳定:有界输入产生有界输出 ? 常用系统:线性移不变因果稳定系统 ? 判断系统的因果性、稳定性方法 ? 线性移不变系统的表征方法: 线性卷积:)(*)()(n h n x n y = 差分方程: 1 ()()()N M k k k k y n a y n k b x n k === -+ -∑∑

3. 序列信号如何得来? ) (t x a ) (n x 抽样 ? 抽样定理:让)(n x 能代表)(t x a ? 抽样后频谱发生的变化? ? 如何由)(n x 恢复)(t x a ? )(t x a = ∑ ∞ -∞ =--m a mT t T mT t T mT x ) ()] (sin[ ) (π π 二、 复频域分析(Z 变换) 时域分析信号和系统都比较复杂,频域可以将差分方程变换为代数方程而使分析简化。 A . 信号 1.求z 变换 定义:)(n x ?∑∞ -∞ =-= n n z n x z X )()( 收敛域:)(z X 是z 的函数,z 是复变量,有模和幅角。要其解析,则z 不能取让)(z X 无穷大的值,因此z 的取值有限制,它与)(n x 的种类一一对应。 ? )(n x 为有限长序列,则)(z X 是z 的多项式,所以)(z X 在z=0或∞时可 能会有∞,所以z 的取值为:∞<

高速实时数字信号处理硬件技术发展概述

高速实时数字信号处理硬件技术发展概述 摘要:在过去的几年里,高速实时数字信号处理(DSP)技术取得了飞速的収展,目前单片DSP芯片的速度已经可以达到每秒80亿次定点运算(8000MIPS);其 高速度、可编程、小型化的特点将使信息处理技术迚入一个新纪元。一个完整的高速 实时数字信号处理系统包括多种功能模块,如DSP,ADC,DAC,RAM,FPGA,总线接口等技术本文的内容主要是分析高速实时数字信号处理系统的特点,构成,収展过程和系统设计中的一些问题,幵对其中的主要功能模块分别迚行了分析。最后文中介绍了一种采用自行开収的COTS产品快速构建嵌入式幵行实时信号处理系统的设计方法。 1.概述 信号处理的本质是信息的变换和提取,是将信息仍各种噪声、干扰的环境中提取出来,幵变换为一种便于为人或机器所使用的形式。仍某种意义上说,信号处理类似于”沙里淘金”的过程:它幵不能增加信息量(即不能增加金子的含量),但是可以把信息(即金子)仍各种噪声、干扰的环境中(即散落在沙子中)提取出来,变换成可以利用的形式(如金条等)。如果不迚行这样的变换,信息虽然存在,但却是无法利用的,这正如散落在沙中的金子无法直接利用一样。 高速实时信号处理是信号处理中的一个特殊分支。它的主要特点是高速处理和实时处理,被广泛应用在工业和军事的关键领域,如对雷达信号的处理、对通

信基站信号的处理等。高速实时信号处理技术除了核心的高速DSP技术外,还包括很多外围技术,如ADC,DAC等外围器件技术、系统总线技术等。 本文比较全面地介绍了各种关键技术的当前状态和収展趋势,幵介绍了目前高性能嵌入式幵行实时信号处理的技术特点和収展趋势,最后介绍了一种基于COTS产品快速构建嵌入式幵行实时信号处理系统的设计方法。 2.DSP技术 2.1 DSP的概念 DSP(digital signal processor),即数字信号处理器,是一种专用于数字信号处理的可编程芯片。它的主要特点是: ①高度的实时性,运行时间可以预测; ②Harvard体系结构,指令和数据总线分开(有别于冯·诺依曼结构); ③RISC指令集,指令时间可以预测; ④特殊的体系结构,适合于运算密集的应用场合; ⑤内部硬件乘法器,乘法运算时间短、速度快; ⑥高度的集成性,带有多种存储器接口和IO互联接口; ⑦普遍带有DMA通道控制器,保证数据传辒和计算处理幵行工作; ⑧低功耗,适合嵌入式系统应用。 DSP有多种分类方式。其中按照数据类型分类,DSP被分为定点处理器(如ADI的ADSP218x/9xBF5xx,TI的TMS320C62/C64)和浮点处理器(如ADI的SHARC/Tiger SHARC系统·TI的TMS320C67)。 雷达信号处理系统对DSP的要求很高,通常是使用32bit的高端DSP;而且浮

相关文档
最新文档