微积分 朱来义 第二版答案Chapter 8-B 习题

微积分 朱来义 第二版答案Chapter 8-B 习题
微积分 朱来义 第二版答案Chapter 8-B 习题

B 组

1.求下列级数的和:

(1)21

1

arctan 1n n n ∞

=++∑; (2)

1

n ∞

=。

解: (1) 21

arctan

1

n u n n =++, 令arctan(1),arctan ,n n n n =+=αβ则

(1)tan tan tan tan(),(1)11tan tan n n

n n n n n

n n u n n +--=

==-+++?αβαβαβ

因此,,n n n u =-αβ从而

[]211

1

arctan arctan(1)arctan arctan(1)arctan1,1n

n

n k k S k k n k k ====+-=+-++∑∑

[]lim lim arctan(1)arctan1,2

4

4

n n n S n →∞

→∞

=+-=

-

=

π

π

π

21

1arctan

.14

n n n ∞

==++∑π

(2)

n

n

n k k S ===

=

11n

k ===-∑ 因此,

1

lim 1.n n n S ∞

→∞

===

2. 已知级数

1

1(1)

2n n n a ∞

-=-=∑,211

5n n a ∞

-==∑,证明级数1

n n a ∞

=∑也收敛, 并给出级数的和。

解:

1211

1

1

2(1)8.n n

n n n n n a

a a ∞

--====--=∑∑∑

3. 若数列{a n }满足lim ,n n a →∞

=∞证明:

(1) 级数

11()n n n a a ∞

+=-∑发散; (2) 级数1111n n n a a ∞

=+??

- ???∑收敛,且和为1

1.a 解: (1)1

111

(),n

n k k n k S a

a a a ++==

-=-∑显然()11lim lim ,n n n n S a a +→∞

→∞

=-=∞

因此级数

1

1

()n n n a

a ∞

+=-∑发散;

(2) 11111111

,n

n k k

k n S a a a a =++??=

-=- ?

??∑ 从而1

11111

lim lim .n n n n S a a a →∞

→∞+??=-=

??? 4. 已知正项级数

1n

n u

=∑收敛,证明级数

21

n

n u

=∑也收敛。

证明: 设1

,n n k

k S u ==

∑ 21

,n

n

k

k T u

==∑则

24212342122,n n n n n T u u u u u u u u u S -=+++<++++++=

由于数列{S 2n }是有上界的单调数列,即 S 2n

21

n

n u

=∑收敛.

5.设

11

,,0,n n n n n n

a b a b a b ++≤>证明: (1) 如果级数

1n

n b

=∑收敛,则级数

1n

n a

=∑收敛;

(2) 如果级数

1

n

n a

=∑发散,则级数

1

n

n b

=∑发散。

证明: 由于

11

,,0,n n n n n n

a b a b a b ++≤> 因此

111111

n n n n n n a a a a b b b b +-+-≤≤≤≤ ,即 11111111n n n n n n n n a a a

a b b b b b b -++++-≤≤≤≤ 由比较判别法可知: (1) 如果级数

1n

n b

=∑收敛,则级数

1n

n a

=∑收敛;

(2) 如果级数

1

n

n a

=∑发散,则级数

1

n

n b

=∑发散。

6. 设 ,1,2,,n n n a b c n ≤≤= 证明:如果级数

1

1

,n n

n n a c

∞∞

==∑∑收敛,则级数

1

n

n b

=∑收敛。

证明: 由于,1,2,,n n n a b c n ≤≤= 因此0,1,2,,n n n n b a c a n ≤-≤-=

又因为级数

1

1,n n

n n a c

∞∞

==∑∑收敛,从而

()1

n

n n c

a ∞

=-∑收敛,

从而级数

()1

n

n n b

a ∞

=-∑收敛。

利用

()1

1

n

n

n

n n n b a b

a ∞

===+-????∑∑可知级数1n n b ∞

=∑收敛。

8.已知级数11

(1)()n n

n x a n -∞

=--∑在x >0时发散,在x =0时收敛,试确定a 的取值范围.

解: 由级数11(1)()n n n x a n -∞

=--∑在x =0时收敛,即级数11

(1)()n n

n a n -∞

=--∑收敛,因此必有a < 0,

令y = x -a , 则1111

(1)()(1)n n n n

n n x a y n n --∞

∞==---=∑∑

, 且收敛半径R=1, 从而收敛区间为(a -1,a +1)

再由级数11

(1)()n n

n x a n -∞

=--∑在x >0时发散可知, a +1=0,即a = -1.

9. 已知级数

2

n

n u

=∑收敛,证明级数

n

n u n ∞

=∑绝对收敛。

证明: 221112n n u u n n ???

≤+ ???

, 又因为级数2

0n

n u ∞

=∑,201n n ∞

=∑收敛,从而级数0n n u

n

=∑绝对收敛。

10. 讨论下列级数的敛散性:

(1) 211

;(23)

q

n n n ∞

=++∑

(2) 1n ∞

=; (3) 1

;5n p n a n

n n ∞

=++∑ (4)

1

1

44

01(1)d .n n x x -∞

=??+????

∑?

解:(1) 设2211

,,(23)n n q q

u v n n n

=

=++则 22lim lim ,1,(23)q

n q

n n n

u n v n n →∞→∞==++ 当q>1/2时,级数211(23)q n n n ∞

=++∑收敛;当q ≤1/2时,级数211

(23)

q

n n n ∞

=++∑发散。

(2)

n u =

=,12

4n p v n

+=

,则

1

2

lim

2p n

n n n

u v +→∞==

当p>1/2

时,级数

1

p n n ∞

=收敛;当p ≤1/2

时,级数1

p

n n ∞

=发散。 (3) 1

1(1)55

lim lim lim (1)6(1)6n p p n n p p n n n n

u a n n n n n a a u n n n n a n ++→∞→∞→∞+++++=?==++++++ 因此,

①当|a |<1时级数15

n p n a n n n ∞

=++∑绝对收敛;

②当|a |>1时级数1

5n p n a n

n n ∞

=++∑发散;

③当a =1时级数15

n p n a n

n n ∞

=++∑变化为15p n n n n ∞

=++∑,

设11,,5n n p p n u v n n n -==++则1

lim lim 15p n p n n n

u n n v n n -→∞→∞?==++,

当p>2时,级数15p n n n n ∞

=++∑收敛;当p ≤2时,级数15

p n n

n n ∞

=++∑发散。

④当a =-1时级数15n p n a n n n ∞

=++∑变化为1

(1)5n p n n

n n ∞

=-++∑,

设则1

lim lim 15p n p n n n

u n n v n n -→∞→∞?==++,

当p>2时,级数1

(1)5n p n n

n n ∞

=-++∑绝对收敛;

当1

1

~,5n p p n u n n n

-=

++由莱布尼茨判别法可知 级数1(1)5n p n n n n ∞

=-++∑收敛,因此级数1(1)5n p n n

n n ∞

=-++∑条件收敛。

当p ≤1时,(1)lim lim 0,5n n p n n n u n n →∞→∞-=≠++级数1(1)5

n p n n

n n ∞

=-++∑发散。

(4)由于

1

115344

4

2

4

20

1(1)d 2

d 2,3n

n

x x x x n +≤=??

?

因此1

15

44

4302

1(1)d 32n n u x x n --??=+≤???????

由级数

5

4

31

2

132n n

-

=??

∑ 的收敛性可知级数

1

1

44

01(1)d n

n x x -∞

=??+????

∑?也是收敛的。 11. 求证当1a ≠时,级数21

(1)(1)(1)n

n

n a a a a ∞

=+++∑ 绝对收敛。 证明: 令2,(1)(1)(1)

n

n n

a u a a a =+++ 则 11lim

lim ,1n n n n n u a

r u a

++→∞

→∞==+ 当1a <时,r = a <1, 级数21(1)(1)(1)n

n

n a a a a ∞

=+++∑ 绝对收敛; 当1a >时,r = 0 <1, 级数21

(1)(1)(1)n

n

n a a a a ∞

=+++∑ 绝对收敛; 当1a =时,r = 1/2<1, 级数21(1)(1)(1)

n

n

n a a a a ∞

=+++∑ 绝对收敛; 综上所述,

当1a ≠-时,级数21

(1)(1)(1)n

n

n a a a a ∞

=+++∑ 绝对收敛。 12. 求下列级数的收敛域:

(1) 1

(1)1;211n

n n x n x ∞

=--?? ?-+??∑ (2)

11ln ;3n

n x ∞

=??

??

?∑ (3) 1

1

(1);4n

n

n x ∞

=-+∑ (4) 221

(1).(1)

n x x n n ∞

=++-∑ 解: (1)令1,1x y x -=+则11

(1)1(1),21121n

n n n

n n x y n x n ∞∞

==---??= ?-+-??∑∑ 121lim

lim 1,21

n n n n a n a n +→∞

→∞-==+ 当y=1, 级数1

(1)21n

n n ∞

=--∑条件收敛, 当y=-1, 级数1121n n ∞

=-∑发散。

因此,幂级数1(1)21

n n

n y n ∞

=--∑的收敛域为(]1,1.-

从而111,1x

x

--<

≤+即0.x ≥ 因此级数1

(1)1211n

n n x n x ∞

=--??

?-+??∑的收敛域为[)0,.+∞

(2). 令1ln ,3y x =则11

1ln ,3n

n n n x y ∞∞

==??

= ???∑∑

由于幂级数

1

n

n y ∞

=∑的收敛域为(-1,1), 从而3ln 3,x -<<即33e <

n

n x ∞

=?? ???∑的收敛域为()33

e ,e .-

(3) 由于111

1,1()4lim

lim

()

41,1n

n n n n n x u x x x u x x x ++→∞

→∞?<<+?==?+?≤?

, 因此,幂级数0(1)4n

n

n x

=-+∑的收敛域为(,1)(1,).-∞-+∞ (4) 令2

1,y x x =++则22211(1)(1)(1)

n

n n n x x y n n n n ∞

==++=--∑∑

由于1(1)

lim lim 1,(1)n n n n

a n n a n n +→∞→∞-==+因此幂级数21(1)n n y n n ∞

=-∑的收敛域为[-1,1]。

从而2

111,x x -≤++≤即10.x -≤≤

因此级数

221

(1)(1)

n n x x n n ∞

=++-∑的收敛域为[-1,0]. 13. 求210(1)42421n n n n x

n ∞

+=--+∑π

的收敛域,并求出级数0

(1)21n

n n ∞

=-+∑的和。 解: 由于21

1

(1)arctan ,[1,1],21n n n x x x n +∞

=-=∈-++∑

因此,212100(1)4(1)112(2)arctan 2,,2121

22n n n n n n n x x x x n n ∞

∞++==--??

==∈-??++??∑∑

从而有210(1)4112arctan 2,,.421

422n n n n x x x n ∞

+=-??

-=-∈-??+??∑π

π

0(1)arctan1.21

4n n n ∞

=-==+∑π 14.设2ln(1)

,0()0,

0x x f x x

x ?+≠?

=??=?, (1)将f (x )展开成x 的幂级数,给出收敛域;

(2)求f (45)(0) ;

(3) 利用f (x )的展开式计算1

1

(1)(1)n n n n -∞

=-+∑的和。

解: (1)当-1

1(1)ln(1),1n n n x x x n +∞

=-+=+∑

因此21

(1)(),[1,1]1n n n x f x x n +∞

=-=∈-+∑。

(2)由麦克劳林级数()0

(0)()!

n n

n f x f x n ∞

==

有 ()21

00

(0)(1),!1n n n n n n f x x n n +∞

==-=+∑

∑ 比较x 45

的系数,有

(45)22(0)(1)1

,45!22123

f -==+即(45)45!(0).23f =

(3) 11111

(1)(1)(1)(1)(1)1n n n

n n n f n n n n --∞

∞===---=+=+++∑∑∑

大学高等数学上考试题库(附答案)

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()() 2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

微积分试题及答案(5)

微积分试题及答案 一、填空题(每小题2分,共20分) 1. =∞→2 arctan lim x x x . 2. 设函数??? ??=<<-=0 , 10 )21()(1 x k x ,x x f x 在0=x 处连续,则=k 。 3. 若x x f 2e )(-=,则=')(ln x f 。 4. 设2sin x y =,则=)0() 7(y 。 5. 函数2 x y =在点0x 处的函数改变量与微分之差=-?y y d 。 6. 若)(x f 在[]b a ,上连续, 则=?x a x x f x d )(d d ; =? b x x x f x 2d )(d d . 7. 设函数)3)(2)(1()(---=x x x x f ,则方程0)(='x f 有 个实根。 8. 曲线x x y -=e 的拐点是 。 9. 曲线)1ln(+=x y 的铅垂渐近线是 。 10. 若 C x x x f x ++=? 2d )(,则=)(x f 。 二、单项选择(每小题2分,共10分) 1. 设x x f ln )(=,2)(+=x x g 则)]([x g f 的定义域是( ) (A )()+∞-,2 (B )[)+∞-,2 (C )()2,-∞- (D )(]2,-∞- 2. 当0→x 时,下列变量中与x 相比为高阶无穷小的是( ) (A )x sin (B )2 x x + (C )3x (D )x cos 1- 3. 函数)(x f 在],[b a 上连续是)(x f 在],[b a 上取得最大值和最小值的( ) (A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件 4. 设函数)(x f 在]0[a , 上二次可微,且0)()(>'-''x f x f x ,则x x f ) ('在区间)0(a ,内是( ) (A )不增的 (B )不减的 (C )单调增加的 (D )单调减少的 5. 若 C x x x f +=?2d )(,则=-?x x xf d )1(2 。 (A )C x +-2 2)1(2 (B )C x +--2 2)1(2

大学微积分复习题

0201《微积分(上)》2015年06月期末考试指导 一、考试说明 考试题型包括: 选择题(10道题,每题2分或者3分)。 填空题(5-10道题,每题2分或者3分)。 计算题(一般5-7道题,共40分或者50分)。 证明题(2道题,平均每题10分)。 考试时间:90分钟。 二、课程章节要点 第一章、函数、极限、连续、实数的连续性 (一)函数 1.考试内容 集合的定义,集合的性质以及运算,函数的定义,函数的表示法,分段函数,反函数,复合函数,隐函数,函数的性质(有界性、奇偶性、周期性、单调性),基本初等函数,初等函数。 2.考试要求 (1)理解集合的概念。掌握集合运算的规则。 (2)理解函数的概念。掌握函数的表示法,会求函数的定义域。 (3)了解函数的有界性、奇偶性、周期性、单调性。 (4)了解分段函数、反函数、复合函数、隐函数的概念。 (5)掌握基本初等函数的性质和图像,了解初等函数的概念。 (二)极限 1.考试内容 数列极限的定义与性质,函数极限的定义及性质,函数的左极限与右极限,无穷小与无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则(单调有界准则和夹逼准则),两个重要极限。 2.考试要求 (1)理解数列及函数极限的概念 (2)会求数列极限。会求函数的极限(含左极限、右极限)。了解函数在一点处极限存在的充分必要条件。 (3)了解极限的有关性质(惟一性,有界性)。掌握极限的四则运算法则。 (4)理解无穷小和无穷大的概念。掌握无穷小的性质、无穷小和无穷大的关系。了解高阶、同阶、等价无穷小的概念。 (5)掌握用两个重要极限求极限的方法。 (三)连续 1.考试内容 函数连续的概念,左连续与右连续,函数的间断点,连续函数的四则运算法则,复合函数的连续性,反函数的连续性,初等函数的连续性,闭区间上连续函数的性质(最大值、最小值定理,零点定理)。 2.考试要求 (1)理解函数连续性的概念(含左连续、右连续)。会求函数的间断点。

微积分试卷及答案

微积分试卷及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

2009 — 2010 学年第 2 学期 课程名称 微积分B 试卷类型 期末A 考试形式 闭卷 考试时间 100 分钟 命 题 人 2010 年 6 月10日 使用班级 教研室主任 年 月 日 教学院长 年 月 日 姓 名 班 级 学 号 一、填充题(共5小题,每题3分,共计15分) 1.2 ln()d x x x =? . 2.cos d d x x =? . 3. 31 2d x x --= ? . 4.函数2 2 x y z e +=的全微分d z = . 5.微分方程ln d ln d 0y x x x y y +=的通解为 . 二、选择题(共5小题,每题3分,共计15分) 1.设()1x f e x '=+,则()f x = ( ). (A) 1ln x C ++ (B) ln x x C + (C) 2 2x x C ++ (D) ln x x x C -+

2.设 2 d 11x k x +∞=+? ,则k = ( ). (A) 2π (B) 22π (C) 2 (D) 2 4π 3.设()z f ax by =+,其中f 可导,则( ). (A) z z a b x y ??=?? (B) z z x y ??= ?? (C) z z b a x y ??=?? (D) z z x y ??=- ?? 4.设点00(,)x y 使00(,)0x f x y '=且00(,)0 y f x y '=成立,则( ) (A) 00(,)x y 是(,)f x y 的极值点 (B) 00(,)x y 是(,)f x y 的最小值点 (C) 00(,)x y 是(,)f x y 的最大值点 (D) 00(,)x y 可能是(,)f x y 的极值点 5.下列各级数绝对收敛的是( ). (A) 211(1)n n n ∞ =-∑ (B) 1 (1)n n ∞ =-∑ (C) 1 3(1)2n n n n ∞ =-∑ (D) 11(1)n n n ∞=-∑ 三、计算(共2小题,每题5分,共计10分) 1.2d x x e x ? 2.4 ? 四、计算(共3小题,每题6分,共计18分)

清华大学微积分习题(有答案版)

第十二周习题课 一.关于积分的不等式 1. 离散变量的不等式 (1) Jensen 不等式:设 )(x f 为],[b a 上的下凸函数,则 1),,,2,1),1,0(],,[1 ==∈?∈?∑=n k k k k n k b a x λλΛ,有 2),(1 1≥≤??? ??∑∑==n x f x f k n k k k n k k λλ (2) 广义AG 不等式:记x x f ln )(=为),0(+∞上的上凸函数,由Jesen 不等式可得 1),,,2,1),1,0(,01 ==∈?>∑=n k k k k n k x λλΛ,有 ∑==≤∏n k k k k n k x x k 1 1 λλ 当),2,1(1 n k n k Λ==λ时,就是AG 不等式。 (3) Young 不等式:由(2)可得 设111,1,,0,=+>>q p q p y x ,q y p x y x q p +≤1 1 。 (4) Holder 不等式:设11 1, 1,),,,2,1(0,=+>=≥q p q p n k y x k k Λ,则有 q n k q k p n k p k n k k k y x y x 111 11?? ? ????? ??≤∑∑∑=== 在(3)中,令∑∑======n k q k n k p k p k p k y Y x X Y y y X x x 1 1,,,即可。 (5) Schwarz 不等式: 2 1122 1 121?? ? ????? ??≤∑∑∑===n k k n k k n k k k y x y x 。 (6) Minkowski 不等式:设1),,,2,1(0,>=≥p n k y x k k Λ,则有 ()p n k p k p n k p k p n k p k k y x y x 11111 1?? ? ??+??? ??≤??????+∑∑∑=== 证明: ()()() () () ∑∑∑∑=-=-=-=+++=+?+=+n k p k k k n k p k k k n k p k k k k n k p k k y x y y x x y x y x y x 1 1 1 1 1 1 1

大一上微积分试题(山东大学)

数学试题 热工二班 温馨提示:各位同学请认真答题,如果您看到有的题目有种 似曾相识的感觉,请不要激动也不要紧张,沉着冷静的面对,诚实作答,相信自己,你可以的。祝你成功! 一、填空题(共5小题,每题4分,共20分) 1、 求极限2 2lim (1)(1)......(1)n n x x x →∞ +++= (1x <) 2、 曲线y=(2x-1)e x 1 的斜渐近线方程是( ) 3、 计算I=dx e x e x x ? -+2 2 41sin π π =( ) 4、 设y=x e x 1si n 1t an ,则'y =( ) 5、 已知()()() 100 2 1000 ln 1212x y x t t t ??=++-+? ?? ? ?dt ,求( ) ()x y 1001 二、选择题(共5小题,每题4分,共20分) 6、设()0 ()ln 1sin 0,1,1lim x x f x x A a a a →? ?+ ? ? ?=>≠-求20 ()lim x f x x →=( ) A.ln a B.Aln a C2Aln a D.A 7、函数 1.01 ().12 x x x f x e e x -≤

( ) A.当()f x 是偶函数时,()F x 必是偶函数 B.当()f x 是奇函数时,()F x 必是偶函数 C.当()f x 是周期函数时,()F x 必是周期函数 D.当()f x 是单调增函数时,()F x 必是单调增函数 9、设函数()f x 连续,则下列函数中必为偶函数的是( ) A.2 0()x f t dt ? B.2 0()x f t dt ? C[]0 ()()x t f t f t - -?dt D.[]0 ()()x t f t f t + -?dt 10、设函数y=()f x 二阶导数,且 () f x 的一阶导数大于0, ()f x 二阶导数也大于0,x 为自变量x在0x 处得增量,y 与dy 分 别为()f x 在点0 x 处的增量与微分,若x >0,则( ) A.0<dy < y B.0<y <dy C.y <dy <0 D.dy < y <0 三、计算,证明题(共60分) 11、求下列极限和积分 (1)222 22 sin cos (1)ln(1tan ) lim x x x x x x e x →--+(5分) (2)3 5 sin sin x xdx π -? (5分) (3)lim (cos 1cos x x x →∞ +-)(5分) 12.设函数()f x 具有一阶连续导数,且 " (0)f (二阶)存在,(0) f

高等数学试题及答案

高等数学试题及答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

《 高等数学 》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A)、必要条件 B)、充分条件 C)、充要条件 D)、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、2arctan 1dx dx x x =+? D )、211 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=????? ?'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、C bx bx x +-sin cos B )、C bx bx x +-cos cos

最新大学微积分复习题

0201《微积分(上)》2015年06月期末考试指导 一、考试说明 考试题型包括: 选择题(10道题,每题2分或者3分)。 填空题(5-10道题,每题2分或者3分)。 计算题(一般5-7道题,共40分或者50分)。 证明题(2道题,平均每题10分)。 考试时间:90分钟。 二、课程章节要点 第一章、函数、极限、连续、实数的连续性 (一)函数 1.考试内容 集合的定义,集合的性质以及运算,函数的定义,函数的表示法,分段函数,反函数,复合函数,隐函数,函数的性质(有界性、奇偶性、周期性、单调性),基本初等函数,初等函数。 2.考试要求 (1)理解集合的概念。掌握集合运算的规则。 (2)理解函数的概念。掌握函数的表示法,会求函数的定义域。 (3)了解函数的有界性、奇偶性、周期性、单调性。 (4)了解分段函数、反函数、复合函数、隐函数的概念。 (5)掌握基本初等函数的性质和图像,了解初等函数的概念。 (二)极限 1.考试内容 数列极限的定义与性质,函数极限的定义及性质,函数的左极限与右极限,无穷小与无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则(单调有界准则和夹逼准则),两个重要极限。 2.考试要求 (1)理解数列及函数极限的概念 (2)会求数列极限。会求函数的极限(含左极限、右极限)。了解函数在一点处极限存在的充分必要条件。 (3)了解极限的有关性质(惟一性,有界性)。掌握极限的四则运算法则。 (4)理解无穷小和无穷大的概念。掌握无穷小的性质、无穷小和无穷大的关系。了解高阶、同阶、等价无穷小的概念。 (5)掌握用两个重要极限求极限的方法。 (三)连续 1.考试内容 函数连续的概念,左连续与右连续,函数的间断点,连续函数的四则运算法则,复合函数的连续性,反函数的连续性,初等函数的连续性,闭区间上连续函数的性质(最大值、最小值定理,零点定理)。 2.考试要求 (1)理解函数连续性的概念(含左连续、右连续)。会求函数的间断点。

微积分期末测试题及答案

微积分期末测试题及答 案 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-???? ③(0,+∞) ④(-∞,+∞) 4.设2 ()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) sin lim sin x x x x x →∞-=+. 31lim(1)x x x +→∞+=. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=? ,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求 dy dx . 5.设111 1,11n n n x x x x --==+ +,求lim n x x →∞.

微积分总复习题与答案

第五章 一元函数积分学 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写 出cos t a == 邻边斜边,于是21arcsin(/)22a x a C =+ 例3:求不定积分sin x xdx ? 分析:如果被积函数()sin f x x x =中没有x 或sinx ,那么这个积分很容易计算出来,所以可以考虑用分部积分求此不定积分,如果令u=x ,那么利用分部积分公式就可以消去x (因为' 1u =) 解令,sin u x dv xdx ==,则du dx =,cos v x =-. 于是sin (cos )(cos )cos sin x xdx udv uv vdu x x x dx x x x C ==-=---=-++???? 。熟悉分部积分公式以后,没有必要明确的引入符号,u v ,而可以像下面那样先凑微分,然后直接用分部积分公式计算: sin cos (cos cos )cos sin x xdx xd x x x xdx x x x C =-=--=-++???

大一微积分练习题及答案

《微积分(1)》练习题 一.单项选择题 1.设()0x f '存在,则下列等式成立的有( ) A . ()()()0000 lim x f x x f x x f x '=?-?-→? B .()()()0000lim x f x x f x x f x '-=?-?-→? C .()()()0000 2lim x f h x f h x f h '=-+→ D .()()()00002 1 2lim x f h x f h x f h '=-+→ 2.下列极限不存在的有( ) A .201 sin lim x x x → B .12lim 2+-+∞→x x x x C . x x e 1 lim → D .() x x x x +-∞ →63 2 21 3lim 3.设)(x f 的一个原函数是x e 2-,则=)(x f ( ) A .x e 22-- B .x e 2- C .x e 24- D . x xe 22-- 4.函数?? ? ??>+=<≤=1,11,110,2)(x x x x x x f 在[)+∞,0上的间断点1=x 为( )间断点。 A .跳跃间断点; B .无穷间断点; C .可去间断点; D .振荡间断点 5. 设函数()x f 在[]b a ,上有定义,在()b a ,内可导,则下列结论成立的有( ) A . 当()()0

微积分试卷及答案

2009 — 2010 学年第 2 学期课程名称微积分B 试卷类型期末A 考试形式闭卷考试时间 100 分钟 命题人 2010 年 6 月10日使用班级 教研室主任年月日教学院长年月日 姓名班级学号 一、填充题(共5小题,每题3分,共计15分) 1. . 2. . 3. . 4.函数的全微分 . 5.微分方程的通解为 . 二、选择题(共5小题,每题3分,共计15分) 1.设,则 ( ). (A) (B) (C) (D) 2.设,则 ( ). (A) (B) (C) (D) 3.设,其中可导,则(). (A) (B) (C) (D) 4.设点使且成立,则() (A) 是的极值点 (B) 是的最小值点 (C) 是的最大值点 (D)可能是的极值点 5.下列各级数绝对收敛的是(). (A) (B) (C) (D) 三、计算(共2小题,每题5分,共计10分)

1. 2. 四、计算(共3小题,每题6分,共计18分) 1.设,求 2.设函数,而,求. 3.设方程确定隐函数,求 五、计算二重积分其中是由三条直线所围成的闭区域. (本题10分) 六、(共2小题,每题8分,共计16分) 1.判别正项级数的收敛性. 2. 求幂级数收敛区间(不考虑端点的收敛性). 七、求抛物线与直线所围成的图形的面积(本题10分) 八、设,求.(本题6分) 徐州工程学院试卷 2009 — 2010 学年第 2 学期课程名称微积分B 试卷类型期末B 考试形式闭卷考试时间 100 分钟 命题人杨淑娥 2010 年 6 月10日使用班级 09财本、会本、信管等 教研室主任年月日教学院长年月日 姓名班级学号 一、填充题(共5小题,每题3分,共计15分) 1. . 2. . 3. . 4.函数的全微分 . 5.微分方程的通解为 . 二、选择题(共5小题,每题3分,共计15分) 1.设,则 ( ). (A) (B) (C) (D) 2.下列广义积分发散的是 ( ). (A) (B)

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

微积分期末测试题及答案

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0 ()(2) lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④ 1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②, 2 2π π? ? - ???? ③(0,+∞) ④(-∞,+∞) 4.设2 ()()lim 1() x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0 lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0 lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) 1.sin lim sin x x x x x →∞ -=+____________. 2.3 1lim (1) x x x +→∞ + =____________. 3.()f x = 那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.1 11lim ( )ln 1 x x x →- - 2.t t x e y te ?=?=?,求2 2d y d x 3.ln (y x =+,求dy 和 2 2 d y d x . 4.由方程0x y e x y +-=确定隐函数y = f (x ) ,求d y d x . 5.设111 1,11n n n x x x x --==+ +,求lim n x x →∞ .

近十份大学微积分下期末试题汇总(含答案)

浙江大学2007-2008学年春季学期 《微积分Ⅱ》课程期末考试试卷 一 、填空题(每小题5分,共25分,把答案填在题中横线上) 1.点M (1,-1, 2)到平面2210x y z -+-=的距离d = . 2.已知2a = ,3b = ,3a b ?= ,则a b += . 3.设(,)f u v 可微,(,)y x z f x y =,则dz = . 4.设()f x 在[0,1]上连续,且()f x >0, a 与b 为常数.()}{,01,01D x y x y = ≤≤≤≤,则 ()() ()() D af x bf y d f x f y σ++?? = . 5.设(,)f x y 为连续函数,交换二次积分次序 2220 (,)x x dx f x y dy -=? ? . 二 、选择题(每小题5分,共20分,在每小题给出的四个选项中只有一个是符合题 目要求的,把所选字母填入题后的括号内) 6.直线l 1: 155 121x y z --+==-与直线l 2:623 x y y z -=??+=?的夹角为 (A ) 2π . (B )3π . (C )4π . (D )6 π . [ ] 7.设(,)f x y 为连续函数,极坐标系中的二次积分 cos 2 0d (cos ,sin )d f r r r r π θθθθ? ? 可以写成直角坐标中的二次积分为 (A )100(,)dy f x y dx ?? (B )1 00(,)dy f x y dx ?? (C ) 10 (,)dx f x y dy ? ? (D )10 (,)dx f x y dy ?? [ ] 8.设1, 02 ()122, 12 x x f x x x ? ≤≤??=??-≤?? ()S x 为()f x 的以2为周期的余弦级数,则5()2S -= (A ) 12. (B )12-. (C )34. (D )3 4 -. [ ] <

微积分试卷及标准答案6套

微积分试题 (A 卷) 一. 填空题 (每空2分,共20分) 1. 已知,)(lim 1A x f x =+ →则对于0>?ε,总存在δ>0,使得当 时,恒有│?(x )─A│< ε。 2. 已知22 35 lim 2=-++∞→n bn an n ,则a = ,b = 。 3. 若当0x x →时,与 是等价无穷小量,则=-→β β α0 lim x x 。 4. 若f (x )在点x = a 处连续,则=→)(lim x f a x 。 5. )ln(arcsin )(x x f =的连续区间是 。 6. 设函数y =?(x )在x 0点可导,则=-+→h x f h x f h ) ()3(lim 000 ______________。 7. 曲线y = x 2 +2x -5上点M 处的切线斜率为6,则点M 的坐标为 。 8. ='? ))((dx x f x d 。 9. 设总收益函数和总成本函数分别为2 224Q Q R -=,52 +=Q C ,则当利润最大时产 量Q 是 。 二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的 邻域(a -,a +)内有无穷多个点,则( )。 (A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a (C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极

限一定不存在 2. 设1 1 )(-=x arctg x f 则1=x 为函数)(x f 的( )。 (A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点 (D) 连续点 3. =+ -∞ →1 3)11(lim x x x ( ) 。 (A) 1 (B) ∞ (C) 2e (D) 3e 4. 对需求函数5 p e Q -=,需求价格弹性5 p E d - =。当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。 (A) 3 (B) 5 (C) 6 (D) 10 5. 假设)(),(0)(lim , 0)(lim 0 x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存 在,又a 是常数,则下列结论正确的是( )。 (A) 若a x g x f x x =→) ()(lim 或,则a x g x f x x =''→)() (lim 0或 (B) 若a x g x f x x =''→)()(lim 或,则a x g x f x x =→)() (lim 0或 (C) 若) ()(lim x g x f x x ''→不存在,则)() (lim 0x g x f x x →不存在 (D) 以上都不对 6. 曲线2 2 3 )(a bx ax x x f +++=的拐点个数是( ) 。 (A) 0 (B)1 (C) 2 (D) 3 7. 曲线2 )2(1 4--= x x y ( )。

大一微积分练习题及答案

大一微积分练习题及答案

《微积分(1)》练习题 一. 单项选择题 1.设()0 x f '存在,则下列等式成立的有( ) A . ()() () 0000 lim x f x x f x x f x '=?-?-→? B .()() () 0000 lim x f x x f x x f x '-=?-?-→? C . ()() () 0000 2lim x f h x f h x f h '=-+→ D .()()() 0000 2 1 2lim x f h x f h x f h '=-+→ 2.下列极限不存在的有( ) A . 201 sin lim x x x → B .1 2lim 2+-+∞ →x x x x C . x x e 1 lim → D .()x x x x +-∞ →63 2 213lim 3.设)(x f 的一个原函数是x e 2-,则=)(x f ( ) A .x e 22-- B .x e 2- C .x e 24- D . x xe 22-- 4.函数 ?? ???>+=<≤=1,11 ,110,2)(x x x x x x f 在[)+∞,0上的间断点1=x 为 ( )间断点。 A .跳跃间断点; B .无穷间断点; C .可去间断点; D .振

荡间断点 5. 设函数()x f 在[]b a ,上有定义,在()b a ,内可导,则下列结论成立的有( ) A . 当()()0 二、填空题(每题2分) 1、 __________2、、 2(1))lim ()1 x n x f x f x nx →∞-=+设 (,则 的间断点为__________ 3、21lim 51x x bx a x →++=-已知常数 a 、b,,则此函数的最大值为__________

4、263y x k y x k =-==已知直线 是 的切线,则 __________ 5、ln 2111x y y x +-=求曲线 ,在点(, )的法线方程是__________ 三、判断题(每题2分) 1、2 2 1x y x = +函数是有界函数 ( ) 2、有界函数是收敛数列的充分不必要条件 ( ) 3、lim β βαα=∞若,就说是比低阶的无穷小( )4可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分)1、1sin x y x =求函数 的导数 2、 21 ()arctan ln(12 f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x x x x →-求 5、 计算、2 1 0lim(cos )x x x +→计算 五、应用题 1、设某企业在生产一种商品x 件时的总收益为2)100R x x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大 的情况下,总税额最大?(8分) 2、描绘函数21 y x x =+ 的图形(12分) 六、证明题(每题6分) 1、用极限的定义证明:设01lim (),lim ()x x f x A f A x +→+∞→==则 2、证明方程10,1x xe =在区间()内有且仅有一个实数 一、 选择题 1、C 2、C 3、A 4、B 5、D 6、B

大学高等数学上考试题库(附答案)

))))))))) 3?曲线y = xln x 的平行于直线x - y T = 0的切线方程为( (A) y =x -1 (B ) y =—(x 1) 4?设函数f x =|x|,则函数在点X=0处( ) 5 .点x = 0是函数y = x 4的( ) 1 6. 曲线y 的渐近线情况是( ). |x| (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. f — _2dx 的结果是( ). l x /X f 1 L f 1 L CL f 1 L (A ) f 一丄 C (B ) -f 一丄 C (C ) f 1 C ( D ) -f - C I X 丿 I x 丿 l x 丿 J x 丿 dx & 匚出的结果是( ). e e (A ) arctane x C (B ) arctane" C (C ) e x C ( D ) ln(e x e^) C 9.下列定积分为零的是( ). 《高数》试卷1 ?选择题(将答案代号填入括号内,每题 3分,共 (上) 30 分). 1 ?下列各组函数中,是相同的函数的是 (A) f x = In (C ) f x =x x 2 和 g(x) = 2ln X (B ) f ( x ) =| x|和 g (x )=P 和 g (x ) =(V X ) (D ) f (X )= |x| 和 X g (x )“ Jsin x +4 -2 x 式0 ? In (1+x ) 在X = 0处连续,则 a =( a x = 0 1 - (C ) 1 (D ) 2 ). ). (C ) y = Inx -1 x-1 (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点

相关文档
最新文档