液化石油气卧式储罐设计说明书DOC 77页.doc

液化石油气卧式储罐设计说明书DOC 77页.doc
液化石油气卧式储罐设计说明书DOC 77页.doc

专业设计课程任务书

80m 3液化石油气卧式储罐设计

摘要

液化石油气储罐是盛装液化石油气的常用设备,由于该气体具有易燃易爆的特点,因此在设计这种储罐时,要注意安全与防火,和在制造、安装等方面的特点。卧式储罐结构设计是以应力分析为主要途径,以材料力学为基础,对容器的各个主要受压部分进行设计。利用ANSYS软件对进行静力学应力、应变模拟分析,得出的应力作用下的较为精确详尽的储罐响应结果,直观的再现了储油罐在应力作用下的

受力情况和薄弱环节,从为储罐的设计提供了可靠的依据。在焊接过程中,采用多层多道焊,选择合理的焊接工艺措施,如控制焊接电流、电弧电压,选择材料、破口形式、焊丝焊剂、焊条等,不但能控制结构的焊接变形和应力,而且能保证焊缝的组织和性能,有效提高压力容器的品质。此外,除第一层打底焊外,每层都要捶击消除应力,每道焊缝都要清渣,防止夹渣,焊缝要圆滑过渡,防止应力集中。同时,在工程预算方面,从原材料花费、焊接相关花费、人工费几个方面进行统计估算。

关键词:卧式储罐,结构设计,模拟分析,焊接工艺,工程预算

80m3 LIQUEFIED OIL TANK STRUCTURE DESIGN

ABSTRACT

Liquefied petroleum gas storage tank is holding the commonly used equipment, liquefied petroleum gas (LPG) due to the characteristics of the gas is flammable and explosive, so in the design of the tank, pay attention to the safety and fire protection, and in the aspect of manufacture, installation, etc. Horizontal tank structure design is based on stress analysis as the main way, on the basis of mechanics of materials, to design the main compression portion of the container. Using ANSYS software to the stress, strain simulation statics analysis, it is concluded that the stress under the action of response result more accurate and detailed tank, intuitive reproduce the force of the oil tank under the effect of stress and the weak link, from the design provides a reliable basis for storage tank. In the welding process, the use of multi-layer welding, multichannel selecting rational welding process measures,Such as control welding current, arc voltage, material selection, crevasse form, flux welding wire, welding wire, etc., not only can control the welding deformation and stress of structure, and can guarantee organization and properties of the weld, effectively improve the quality of the pressure vessel. In addition, in addition to the first layer of backing welding, each layer to thump of eliminating stress and every way weld slag removal, preventing slag, weld to smooth the transition, prevent stress concentration. At the same time, in the aspect of engineering budget, from raw materials costs, welding related costs and labor statistical estimation.

KEY WORDS:Horizontal tank,Structure design,Simulation analysis, Welding process,Project budg

专业设计课程任务书 (1)

摘要 (2)

ABSTRACT (3)

第一章设计参数的选择 (6)

1.1液化石油气参数的确定 (6)

1.2设计温度 (6)

1.3设计压力 (6)

1.4 设计储量 (7)

1.5 主要元件材料的选择 (8)

1.5.1筒体材料的选择 (8)

1.5.2鞍座材料的选择 (8)

1.5.3地脚螺栓的材料选择 (8)

第二章容器的结构设计 (9)

2.1筒体和封头的设计 (9)

2.1.1 筒体设计 (9)

2.1.2封头设计 (9)

2.3筒体厚度计算 (10)

2.4封头厚度计算 (10)

第三章零部件的确定 (12)

3.1开孔和选取法兰分析 (12)

3.1.1人孔的设计 (12)

3.1.2 接管和法兰 (13)

3.1.3 垫片 (15)

3.1.4 螺栓(螺柱)的选择 (15)

3.1.5液位计的设计 (16)

3.2鞍座选型和结构设计 (17)

3.2.1鞍座选型 (17)

3.2.2 鞍座位置的确定 (18)

3.3开孔补强 (19)

3.3.1补强及补强方法判别 (19)

3.3.2开孔所需补强面积 (20)

3.3.3有效补强范围 (20)

3.3.4有效补强面积 (21)

第四章应力校核 (23)

4.1 圆筒轴向弯矩计算 (23)

4.1.1 圆筒中间截面上的轴向弯矩 (23)

4.1.2 支座截面处的弯矩 (24)

4.2 圆筒轴向应力计算并校核 (25)

4.2.1 圆筒中间截面上的轴向应力 (25)

4.2.2 由压力及轴向弯矩引起的轴向应力计算并校核 (25)

4.2.3 圆筒轴向应力校核 (26)

4.3 切向剪应力的计算及校核 (26)

4.4 鞍座应力计算并校核 (27)

4.5地震引起的地脚螺栓应力 (29)

4.5.1倾覆力矩计算 (29)

4.5.2由倾覆力矩引起的地脚螺栓拉应力 (30)

4.5.3由地震引起的地脚螺栓剪应力 (30)

第五章水压数值模拟 (31)

5.1设定分析作业名和标题 (31)

5.1.1 定义工作文件名 (31)

5.1.2 定义工作标题 (31)

5.1.3 更改工作文件储存路径 (31)

5.1.4 定义分析类型 (31)

5.2实体建模 (31)

5.2.1 生成椭圆封头截面 (31)

5.2.2 建立椭圆局部坐标系 (31)

5.2.3 生成成容圆柱部分截面 (31)

5.2.4生成1/4罐体 (32)

5.2.5 工作平面旋转 (32)

5.2.6 激活总体直角坐标系,映射几何体 (33)

5.3网格划分 (33)

5.3.1 定义单元类型 (33)

5.3.2 选择单元体 (33)

5.3.3 定义材料属性 (33)

5.3.4 切分容器罐模型 (34)

5.3.5 自定义网格 (34)

5.4添加位置约束 (35)

5.4.1 设计压力为1.77MPA的模拟过程 (35)

5.4.2 最高工作压力为1.6MPA的模拟过程 (36)

5.5求解 (37)

5.6后处理查看变形图 (37)

5.6.1 设计压力为1.77MPA的后处理模拟 (37)

5.6.2 最高工作压力为1.6MPA的后处理模拟 (41)

5.7结论 (45)

第六章焊接工艺参数的选择 (46)

6.1母材焊接性 (46)

6.2母材碳当量估测 (46)

第七章焊接方法的选择 (47)

7.1 焊接方法的选择 (47)

7.2焊接设备 (47)

7.2.1手弧焊机 (47)

7.2.2埋弧焊机 (48)

第八章焊接材料选择 (50)

8.1焊接材料选用原则 (50)

8.2焊条电弧焊焊接材料 (51)

8.3埋弧焊焊接材料选择 (51)

8.3.1焊丝的选择 (51)

8.3.2焊剂的选择 (52)

第九章焊接工艺参数的选择 (53)

9.1埋弧焊工艺参数的选择 (53)

9.1.1焊接电流 (53)

9.1.2电弧电压 (53)

9.1.3焊接速度 (53)

9.1.4焊丝直径与伸出长度 (53)

9.1.5其他 (53)

9.2焊条电弧焊焊接工艺参数选择 (54)

9.2.1确定焊条直径 (54)

9.2.2焊接电流的确定 (54)

9.2.3焊接电压的确定 (55)

9.2.4焊接速度V的确定 (55)

9.2.5层数的确定 (55)

9.2.6焊钳,焊接电缆的确定 (56)

第十章焊接顺序 (57)

10.1焊缝位置及说明 (57)

10.2焊接顺序 (58)

第十一章焊接工艺 (59)

11.1铁板弯曲成筒的焊接焊缝 (59)

11.1.1 工艺要求 (59)

11.1.2 工艺顺序 (59)

11.2筒体环向焊缝 (60)

11.2.1 工艺要求 (60)

11.2.2 工艺顺序 (60)

11.2.3焊接操作 (60)

11.3法兰与接管焊缝 (61)

11.4筒体与接管焊缝 (63)

第十二章焊材的消耗及造价 (65)

12.1原材料花费 (65)

12.2 焊接相关花费 (65)

12.3人工花费 (66)

12.4工程预算表 (66)

第十三章焊接工艺实施阶段 (68)

13.1 焊前准备 (68)

13.2成型 (68)

13.2.1 筒体成型(卷板) (68)

13.2.2 封头 (69)

13.3 焊后处理 (70)

13.3.1检验 (70)

13.3.2技术要求 (70)

13.3.3焊后热处理 (71)

13.3.4涂装 (71)

13.3.5返修 (71)

结论 (72)

参考文献 (73)

谢辞 (74)

第一章设计参数的选择

1.1液化石油气参数的确定

液化石油气的主要组成部分由于石油产地的不同,各地石油气组成成分也不同。取产自新疆克拉玛依油田的液化石油气,其具体成分如下:

表1.1 液化石油气组成成分

对于设计温度下各成分的饱和蒸气压力如表1.2:

1.2设计温度

根据本设计工艺要求,使用地点为天津市的室外,用途为液化石油气储配站工作温度为-19~50℃,介质为易燃易爆的气体。

从表中我们可以明显看出,温度从50℃降到-25℃时,各种成分的饱和蒸气压力下降的很厉害,可以推断,在低温状态下,由饱和蒸气压力引起的应力水平不会很高。

由上述条件选择危险温度为设计温度。为保证正常工作,对设计温度留一定的富裕量。所以,取最高设计温度t=50℃,最低设计温度t=﹣25℃。根据储罐所处环境,最高温度为危险温度,所以选t=50℃为设计温度。

1.3设计压力

该储罐用于液化石油气储配供气站,因此属于常温压力储存。工作压力为相应温度下的

饱和蒸气压。因此,不需要设保温层。

根据道尔顿分压定律,我们不难计算出各种温度下液化石油气中各种成分的饱和蒸气分压,如表1.3:

表1.3 各种成分在相应温度下的饱和蒸气分压

有上述分压可计算再设计温度t=50℃时,总的高和蒸汽压力

P=i n i i p y ∑8

1===0.01%×

0+2.25%×7+47.3%×1.744+23.48%×0.67+21.96%×0.5+3.79%×0.2+1.19%× 0.16+0.02%×0.0011=1.25901 MPa (1.1) 因为:P 异丁烷(0.2)

设计压力为1.77MPa ,最高工作压力为1.6MPa 。

1.4 设计储量

参考相关资料,石油液化气密度一般为500-600Kg/m 3,取石油液化气的密度为510Kg/m 3,盛装液化石油气体的压力容器设计储存量为:

表1.4 液化石油气主要成分在50℃的密度 Kg/m 3

参考化工原理:

Kg/m3510542

2196

.05202348.0446493.01

1

=++=

=∑

=n

i i

i

t

w ρρ (1.2) 故设计存储量为:

W=?Vρt =0.9×80×510=36720t (1.3)

1.5 主要元件材料的选择

1.5.1筒体材料的选择

选用筒体材料为Q345R 鞍座 地脚螺栓均选用Q345R 的材料

1.5.2鞍座材料的选择

该卧式容器采用双鞍座式支座,根据工作温度为-19~50℃,按国家标准JB/T4712.1-2007选择鞍座材料为Q345R ,使用温度为-20~250℃,许用应力为[σ]sa = 185MPa 。

1.5.3地脚螺栓的材料选择

根据密封所需压紧力大小计算螺栓载荷,选择合适的螺柱材料。计算螺栓直径与个数,按螺纹和螺栓标准确定螺栓尺寸。选择螺栓材料为Q345R 。

第二章 容器的结构设计

2.1筒体和封头的设计

对于承受内压,且设计压力P c =1.77MPa<4MPa 的压力容器,根据《化工工艺设计手册》常用设备系列,采用卧式椭圆形封头容器。

2.1.1 筒体设计

查GB150-1998为了有效的提高筒体的刚性,一般取L/D=3~6,为方便设计,此处取

L/D=4 (2.1)

804

2=L

D π

(2.2)

由(2.1)(2.2)连解得:D=3000mm

2.1.2封头设计

查标准JB/T4746-2002《钢制压力容器用封头》中表B.1 EHA 椭圆形封头内表面积、容积得:

表2.1EHA 椭圆形封头内表面积、容积

公称直径DN

/mm 总深度H /mm

内表面积A/2m

容积V 封/3m 3000

790

10.1329

3.8170

图2.1椭圆形封头

由2V 封 +2

D πL/4=V=80 (2.3) 得L=11000mm

则L/D=3.67>3 (2.4)

符合要求。

则v 计=v 筒+2×v 封= 2

D πL/4+2×v 封=87.63m 3 (2.5)

根据介质的易燃易爆、有毒、有一定的腐蚀性等特性,存放温度为-19~50℃,最高工作压力等条件。根据GB150-2011表4.1,选用筒体材料为低合金钢Q345R (钢材标准为GB713)选用Q345R 为筒体材料,适用于介质含有少量硫化物,具有一定腐蚀性,壁厚较大(≥8mm )的压力容器。

Q345R 钢板,根据GB150,初选厚度为6~20mm ,最低冲击试验温度为-20℃,热轧处理,[σ]=185Mpa;面焊接;钢板负偏差由《化工设备机械基础》表14.5查得: mm 8.0C 1=

腐蚀裕量由GB150.1-4-2010查得: 考虑容器运输和安装过程中的稳定性,壳体加工成形后不包括腐蚀裕量的最小厚度:

a ) 对碳素钢、低合金钢制容器,不小于3 mm ;

b ) 对高合金钢制容器,一般应不小于2 mm 。本筒体材料Q345R 为碳素钢 mm C 32=,

则壁厚附加量C=0.8+3=3.8mm 。 (2.6)

2.3筒体厚度计算

根据介质的易燃易爆、有毒、有一定的腐蚀性等特性,存放温度为-20~48℃,最高工作压力等条件。根据GB150-1998表4.1,选用筒体材料为低合金钢Q345R ,适用于介质含有少量硫化物,具有一定腐蚀性,壁厚较大(≥8mm )的压力容器。根据GB150,初选厚度为6~25mm ,最低冲击试验温度为-20℃,热轧处理。由GB150附录B 中的式(B.1)可知筒体的计算公式为:

[]mm P D P C

t

i C 11.1477.1118523000

77.12=-???=-=

φσδ (2.7) mm C d 11.17311.142=+=+=δδ (2.8)

对Q345R ,钢板负偏差8.01=C ,可取名义厚度mm n 20=δ

2.4封头厚度计算

根据GB150封头厚度计算公式(5.1)可知:

[]mm P D P C

t

i C 38.1477.15.0118523000

77.15.02=?-???=-=

φσδ (2.9)

mm C d 38.17338.142=+=+=δδ (2.10)

对Q345R ,钢板负偏差8.01=C ,为便于取材可取封头名义厚度mm n 20=δ

第三章 零部件的确定

3.1开孔和选取法兰分析

液化石油气储罐应设置排污口,出液口,进液口,人孔,液位计口,温度计口,压力表口,安全阀口,排空口等。

图3.1液化石油气储罐结构图

3.1.1人孔的设计

查《压力容器与化工设备实用手册》,因筒体长度11000mm>6000mm ,需开两个人孔,选回转盖带颈平焊法兰人孔。

由使用地为室外,确定人孔的公称直径DN=500mm ,以方便工作人员的进入检修。配套法兰与上面的法兰类型相同,根据HG/T 21518-2005回转盖带颈平焊法兰人孔,查表3.1,由P N =2.5MPa 选用凹凸面的密封形式MFM ,采用8.8级35CrMoA 等长双头螺柱连接。其明细尺寸见表3.1:

表3.1 人孔尺寸表 单位:mm

密封面型式 凹凸面MFM

D

730 1b

43 0d

30 公称压力PN /

MPa 2.5 1D 660 2b

48 螺柱数量 20 公称直径DN

500

1H

280 A 405 螺母数量 40 w d s ?

53012?

2H

123 B 200 螺柱尺寸 M33x2x 170 d 506 b

44

L

300

总质量

302

图3.2回转盖带颈平焊法兰人孔

3.1.2 接管和法兰

根据设计压力P N=1.77MPa,查HG/T 20592-97《钢制管法兰》,选用P N=2.5MPa板式平焊钢制管法兰(PL),由介质特性和使用工况,查密封面型式的选用。选择密封面型式为平面,压力等级为1.0~4.0MPa,接管法兰材料选用Q345R。根据各接管公称通径,查得各法兰的尺寸如下表3.2:

图3.3板式平焊钢制管法兰

3.1.3 垫片

查HG/T 20592-20635-2009《钢制管法兰、垫片、紧固件》,知板式平焊钢制法兰的尺寸,根据设计压力为P c=1.77MPa,采用金属包覆垫片,选择法兰的密封面均采用平面密封。金属材料为纯铝板L3,标准为GB/T 3880,最高工作温度200℃,最大硬度40HB。填充材料为非石棉纤维橡胶板,代号为NAS,最高工作温度为290℃。得对应垫片尺寸如表3.3:

图3.4平面型垫片

表3.3 垫片尺寸

符号管口名称公称直径

D N(mm)

内径

D1(mm)

外径

D2(mm)

厚度

δ(mm)

a 液位计口32 61.5 82 3

b 放气管80 109.5 142 3

c 安全阀80 109.5 142 3

d 排污口80 109.5 142 3

e 液相出口80 109.5 142 3

f 液相回流管80 109.5 142 3

g 液相进口80 109.5 142 3

h 气相管口80 109.5 142 3

i 压力表20 45.5 61 3

j 温度计20 45.5 61 3

3.1.4 螺栓(螺柱)的选择

根据密封所需压紧力大小计算螺栓载荷,选择合适的螺柱材料。计算螺栓直径与个数,按螺纹和螺栓标准确定螺栓尺寸。选择螺栓材料为Q345R。

查HG/T 20592-20635-200《钢制管法兰、垫片、紧固件》得螺柱的长度和平垫圈尺寸,如下表3.4:

表3.4螺栓尺寸

符号管口名称公称直径(mm) 螺纹螺柱长(mm)

a 液位计口32 M16 85

b 放气管80 M16 100

c 安全阀80 M16 100

d 排污口80 M16 100

e 液相出口80 M16 100

f 液相回流管80 M16 100

g 液相进口80 M16 100

h 气相管口80 M16 100

i 压力表口20 M12 80

j 温度计20 M12 80

图3.5双头螺柱

图3.6螺母

3.1.5液位计的设计

ρ,查《化根据容器的工作温度-19~50℃,设计压力Pc=1.77MPa,介质密度3

=

510m

/

kg

工容器及设备设计简明手册》,玻璃管液面计适用工作工作压力小于1.6MPa,并不满足工作的需求,所以选用价格稍高的磁性液面计,根据测量范围300~10000mm,工作压力:(高压

ρ,选择了L5770T 型)<4.0MPa,介质温度:(标准型)-20~150℃,介质密度3

450m

kg

/

顶装式的磁性液面计。

根据法兰标准和液面计的型号标准综合考虑,选用公称直径为φ32的液面计,其接管法兰也用公称直径为φ32的平面法兰,其尺寸与压力表连接法兰一致。

图3.7 磁性液面计

3.2鞍座选型和结构设计

3.2.1鞍座选型

该卧式容器采用双鞍座式支座,根据工作温度为-19~50℃按JB/T 4731-2005 表5.1选择鞍座材料为Q345R,许用应力为[σ]sa= 185MPa。

估算鞍座的负荷:计算储罐总重量m=m1+2m2+m3+m4 。

其中:m1 为筒体质量:对于Q345R普通碳素钢,取ρ=7.85×103kg/m3

∴m1=πDLδ×ρ=π×3×11×20×103×7.85×103=16268.34kg (3.1) m2为单个封头的质量:查标准JB/T 4746-2002 《钢制压力容器用封头》中标B.2 EHA 椭圆形封头质量,可知m2=πDLδ×ρ=1564.1kg (3.2) m3为充液质量:ρ液化石油气<ρ水

=ρ水×V=1000×V=1000×80=80000kg (3.3) 故m3

(max)

m4为附件质量:选取人孔后,查得人孔质量为331 kg,其他接管质量总和估为400 kg。

综上述:

总质量m=m1+2m2+m3+m4=16268.34+2×1564.1+80000+331×2+400=100458.54kg。(3.4) ∴每个鞍座承受的重量为G/2=mg / 2=(100458.54×9.8)/2=492.25kN。(3.5) 由此查JB 4712.1-2007 容器支座。选取轻型,焊制A,包角为120°,有垫板的鞍座.,筋板数为6。查JB 4712.1-2007表得鞍座尺寸如表3.6,示意图如下图3.7:

立式储罐课程设计说明书

立式贮罐设计 前言 玻璃钢罐分为立式、卧式机械缠绕玻璃钢储罐、运输罐、反应罐、各种化 工设备,玻璃钢卧式罐、立式贮罐、运输罐、容器及大型系列容器、根据所用(贮存或运输)介质选用环氧呋喃树脂、改性或聚酯树脂、酚醛树脂为粘结剂, 由高树脂含量的耐腐蚀内衬层、防渗层、纤维缠绕加强层及外表保护层组成。 玻璃钢具有耐压、耐腐蚀、抗老化、使用寿命长、重量轻、强度高、防渗、 隔热、绝缘、无毒和表面光滑等特点。机械缠绕玻璃钢容器可以通过改变树脂 系统或采用不同的增强材料来调整产品的物理化学性能以适应不同介质和工 作条件需要,通过结构层厚度、缠绕角和壁厚设计制不同压力,是纤维缠绕复 合材料的显著特点。 由于有以上的特点,玻璃钢贮罐可广泛应用于石油、化工、纺织、印染、 电力、运输、食品酿造、给排水、海水淡化、水利灌溉及国防工程等行业。储 存各种腐蚀性介质可以耐多种酸、碱、盐和有机溶剂,主要应用于石油、化工、 制药、印染、酿造、给排水、运输等行业,适应于盐酸、硫酸、硝酸、醋酸、 双氧水、污水、次氯酸钠等多种产品的贮存、运输,也可作地下油槽、保温储槽、运输槽车等[1]。 本设计为容积180,贮存质量分数为的硫酸,使用温度为90℃的立式贮罐,设计中分别从造型、性能、结构、工艺、零部件、防渗漏、安装、检验等八个方面做了说明、计算和设计,整体介绍了立式贮罐的设计流程、方法及主要事项,最终设计出了满足设计要求的立式贮罐。

1.造型设计 1.1设计要求 立式玻璃设计,容积为140,贮存质量分数为的醋酸,使用温度为常温,拱形顶盖设计。 1.2贮罐构造尺寸确定 贮罐容积V140,取公称直径为D3800, 则贮罐高度为(式1.1)初定贮罐结构尺寸为D H 1.3拱形顶盖尺寸设计 与锥形顶盖相比,其结构简单、刚性好、承载能力强,是立式贮罐广为使用的一种形式。为取得罐顶和罐壁等强度,罐顶的曲率半径与贮罐直径差值不超过20%。即 (式1.2)式中——拱顶球面曲率半径,; ——贮罐内径,,等于。 取罐顶高为h,r为转角曲率半径,r小则h小,一般取此时[1]。 所以 1.4贮罐罐底设计 罐体和罐底的拐角处理,对贮罐设计极为重要。尤其是立式贮罐底部附近的受力较为复杂,应引起足够的重视。一般在拐角处都应设计成一定的圆弧过渡区,圆弧半径不应小于38。如果罐壳和罐底分开制造,则应注意在罐壳和罐底的结合处内外进行有效的补强。拐角区域的最小厚度等于壳壁和底部的组合厚度。拐角区

80m3卧式液化石油气储罐毕业设计开题报告定稿

安徽工程大学 毕业设计开题报告 2013届 毕业设计题目80m3液化石油气储罐设计 院(系)机械与汽车工程学院 专业名称过程装备与控制工程 学生姓名王韶韶 学生学号3090107108 指导教师徐振法老师 安徽工程大学大学学生毕业设计(论文)开题报告表

课题名称80m3卧式液化石油气储罐设计课题类型设计 课题来源分配导师徐振法姓名王韶韶学号3090107108 专业过程装备与控 制工程 一、查阅国内外文献情况(刊物名称、文献题目主要内容) 1.国家质量技术监督局.GB150-1998《钢制压力容器》.中国标准出版社.1998 2.国家质量技术监督局.《压力容器安全技术监察规程》.中国劳动社会保障出版社.1999 3.国家经济贸易委员会. JBT4736-2002《补强圈》.2002 4.全国化工设备设计技术中心站.《化工设备图样技术要求》.2000.11 5.郑津洋、董其伍、桑芝富.《过程设备设计》.化学工业出版社.2001 6.黄振仁、魏新利.《过程装备成套技术设计指南》.化学工业出版社.2002 7.国家医药管理局上海医药设计院.《化工工艺设计手册》.化学工业出版社.1996 8.蔡纪宁.《化工设备机械基础课程设计指导书》.化学工业出版社.2003年 9.贺匡国.《化工容器及设备简明设计手册》.化学工业出版社.2002年8月 10.邵金玲. 液化气储罐设计探讨[J]. 石油化工设备,1999 11.万倩雯. 液化石油气储罐的设计[J]. 河南化工,2000 12.焦伟. 卧式储罐储液体积的计算[J]. 煤气与热力,2001 13.李圣明. 液化石油气储罐设计的几个问题[J].山西化工,2001 14.王利畏. 液化石油气储罐充液高度的计算[J]. 科技情报开发与经济,2006 15.GB150-89《钢制压力容器》 16.JB4731-2000《钢制卧式容器》 17.劳动部.压力容器安全技术监察规程[M].北京:劳动部锅炉压力容器安全杂志社,1990 18.郑津洋,董其伍,桑芝富主编.过程设备设计[M]. 北京:化学工业出版社,2005 19.Perry,R.H.,and Green,D. W Chemical Engi neers’Handbook. 6th ed McGraw-Hill,1984 二、与选题相关的调研报告 1、调研内容 液化石油气贮罐是盛装液化石油气的常用设备,由于该气体具有易燃易爆的特点,因此在设计这种储罐时,要注意与一般气体贮罐的不同点,尤其是安全与防火,还要注意在制造、安装等方面的特点。 (1)液化石油气贮罐的分类 目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, 焊接工作量大, 故安装费用较高。一般贮

10立方米液化石油气储罐设计_课程设计

10立方米液化石油气储罐设计 目录 目录 (1) 前言 (3) 课程设计任务书 (4) 第一章工艺设计 (6) 1.1液化石油气参数的确定 (6) 1.2设计温度 (6) 1.3设计压力 (6) 1.4设计储量 (7) 第二章机械设计 (8) 2.1筒体和封头的设计: (8) 2.1.1筒体设计 (8) 2.1.2封头设计 (8) 第三章结构设计 (10) 3.1液柱静压力 (10) 3.2圆筒厚度的设计 (10) 3.3椭圆封头厚度的设计 (11) 3.4开孔和选取法兰分析 (11) 3.5安全阀设计 (13) 3.6液面计设计 (16) 3.7接管,法兰,垫片和螺栓的选择 (17) 3.7.1接管和法兰 (17) 3.7.2垫片的选择 (18) 3.7.3螺栓(螺柱)的选择 (19) 3.8人孔的设计 (20) 3.8.1人孔的选取 (20) 3.8.2人孔补强圈设计 (21) 3.9鞍座选型和结构设计 (24) 3.9.1鞍座选型 (24) 3.9.2鞍座位置的确定 (25) 3.10焊接接头的设计 (26) 3.10.1筒体和封头的焊接 (26) 3.10.2接管与筒体的焊接 (26)

第四章强度校核 (28) 结束语 (43) 参考文献 (44)

前言 液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安全与防火, 还要注意在制造、安装等方面的特点。目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, 焊接工作量大, 故安装费用较高。一般贮存总量大于500m 3或单罐容积大于200m 3时选用球形贮罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, 所以在总贮量小于500m 3, 单罐容积小于100m 3时选用卧式贮罐比较经济。圆筒形贮罐按安装方式可分为卧式和立式两种。在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐, 只有某些特殊情况下(站内地方受限制等) 才选用立式。本文主要讨论卧式圆筒形液化石油气贮罐的设计。液化石油气呈液态时的特点。(1) 容积膨胀系数比汽油、煤油以及水等都大, 约为水的16倍, 因此, 往槽车、贮罐以及钢瓶充灌时要严格控制灌装量, 以确保安全;(2) 容重约为水的一半。因为液化石油气是由多种碳氢化合物组成的, 所以液化石油气的液态比重即为各组成成份的平均比重, 如在常温20℃时, 液态丙烷的比重为0. 50, 液态丁烷的比重为0. 56 0. 58, 因此, 液化石油气的液态比重大体可认为在0. 51左右, 即为水的一半。卧式液化石油气贮罐设计的特点。卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称容规) 的监督。液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。贮罐主要有筒体、封头、人孔、支座以及各种接管组成。贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、压力表、温度计、液面计等

石油液化气储罐的设计

石油液化气储罐的设计 摘要 卧式储罐设计是以应力分析为主要途径,以材料力学为基础,对容器的各个主要受压部分进行设计。其设计的目的主要是确定合理、经济的结构形式,并满足制造、检验、装配、运输和维修等方面要求,设计中主要从强度和刚度两方面进行设计,保证强度不失效,即材料不发生强度破坏;刚度满足要求,即材料的形变量控制在一定范围内,保证容器不因过渡变形而发生泄露失效,最终达到安全可靠的工作性能的要求。 关键词:卧式储罐、应力、刚度、强度、设计

目录 第1章 前言 (1) 第2章 卧式储罐一般结构 (2) 第3章 选材要求 (4) 3.1 材料各种机械性能参数 (4) 3.1.1 R的含义 (4) 3.1.2 Q235系列的含义 (4) 3.2 机械性能指标及符号 (5) 3.2.1 强度 (5) 3.2.2 塑性 (6) 3.2.3 冲击韧性 (7) 3.2.4 硬度 (7) 3.2.5 冷弯 (8) 3.2.6 断裂韧性 (8) 3.3 压力容器常见的失效形式 (8) 3.3.1 强度失效 (8) 3.3.2 刚度失效 (8) 3.3.3 稳定性失效 (9) 3.3.4 腐蚀失效 (9) 3.4 主要部件的选材 (10) 3.4.1 筒体、封头 (10) 3.4.2 接管 (10) 3.4.3 法兰 (10)

第4章 焊接 (12) 4.1 焊接结构的特点和常用的焊接方法 (12) 4.2 焊缝类型及施焊方法 (12) 4.3 对接焊缝构造 (13) 4.3.1 对接焊缝施工要求 (13) 4.3.2 对接焊缝的构造处理 (13) 4.3.3 对接焊缝的强度 (13) 4.4 对接焊缝连接的计算 (14) 4.5 焊条的选用 (14) 第5章 液压试验 (15) 5.1 试验目的和作用 (15) 5.2 试验要求 (15) 5.3 试验方法步骤 (16) 第6章 卧式储罐校核 (17) 6.1 剪力弯矩载荷计算 (17) 6.2 内力分析 (19) 6.2.1 弯矩计算 (19) 6.2.2 剪力计算 (20) 6.2.3 圆筒应力计算和强度校核 (21) 参考文献 (26) 致谢 (27) 附录 (28)

液化石油气储罐设计

油气储运课程设计说明书 1、设计题目:卧式液化石油气储罐设计 2、设计条件: (1)操作温度:15℃ (2)设计温度:20℃ (3)操作压力:0.72MPa (4)设计压力:0.79MPa (5)介质:液化石油气 (6)公称直径:3200mm (7)公称容积:100m3 (8)圆筒长度:11300mm (9)L2=9800mm (10)A=750mm (11)设备及附件材料自选 3、设计任务: 设计参数的确定;结构分析;材料选择;强度计算及校核;焊接结构设计;标准零部件的选型;制造工艺及制造过程中的检验;设计体会;参考书目等。 4、设计要求: 由于设计参数是每个人各不相同,所以,基本上能够保证学生独立完成任务能力的锻炼,并可在碰到确实需要讨论的个别难题时仍然可以相互讨论,从而培养学生合作解决问题的能力。课程设计是在课程学习阶段结束后,学生们独立进行的工程设计工作,是总结性的、重要的教学实践环节,其目的是培养学生综合运用所学知识,理论联系实践,分析解决工程实践问题的能力。本设计学生必须完成一张A1装配图、一张A3鞍式支座图、一张A3零件图和编制技术性设计说明书一份。

摘要: 通过本次设计,锻炼了查找文献的能力,提高了计算机水平,并且对卧式储罐等大型储罐有了进一步的了解,加深了对本专业课程的认识,在设计的同时,也锻炼了学习的逻辑思维能力和实际动手能力,为今后的工作奠定了良好的基础。从液化石油气的特点,探讨有关卧式圆筒形液化石油气储罐的设计主要对其设计参数、材料选择、结构设计、安全附件及制造与检验等几个方面进行分析和计算。 关键字: 液化石油气卧式储罐设计强度

储罐课程设计

目录 摘要 ............................................................................................................................... I ABSTRACT ................................................................................................................. I I 第一章绪论 (1) 1.1液化石油气储罐的用途与分类 (1) 1.2液化石油气特点 (1) 1.3液化石油气储罐的设计特点 (2) 第二章工艺计算 (3) 2.1设计题目 (3) 2.2设计数据 (3) 2.3设计压力、温度 (3) 2.4主要元件材料的选择 (4) 第三章结构设计与材料选择 (5) 3.1筒体与封头的壁厚计算 (5) 3.2筒体和封头的结构设计 (6) 3.3鞍座选型和结构设计 (7) 3.4接管,法兰,垫片和螺栓的选择 (10) 3.5人孔的选择 (15) 3.6安全阀的设计 (15) 第四章设计强度的校核 (19) 4.1水压试验应力校核 (19) 4.2筒体轴向弯矩计算 (20) 4.3筒体轴向应力计算及校核 (20) 4.4筒体和封头中的切向剪应力计算与校核 (21) 4.5封头中附加拉伸应力 (22) 4.6筒体的周向应力计算与校核 (22) 4.7鞍座应力计算与校核 (23) 第五章开孔补强设计 (26) 5.1补强设计方法判别 (26) 5.2有效补强范围 (26) 5.3有效补强面积 (27) 5.4.补强面积 (28)

立方液化石油气储罐设计方案

25立方液化石油气储罐 一.设计背景 该储罐由菏泽锅炉厂有限公司设计,是用来盛装生产用的液化石油气的容器。设计压力为,温度在-19~52摄氏度范围内,设备空重约为5900Kg,体积为25立方米,属于中压容器。石油液化气为易燃易爆介质,且有毒,因此选材基本采用Q345R。此液化石油气卧式储罐是典型的重要焊接结构,焊接接头是其最重要的连接结构,焊接接头的性能会直接影响储存液化石油气的质量和安全。 二.总的技术特性: 三.储气罐基本构成 储气罐是一个承受内压的钢制焊接压力容器。在规定的使用温度和对应的工作压力下,应保证安全可靠,罐体的基本结构部件应包括人孔、封头、筒体、法兰、支座。

图1储气罐的结构简图 筒体 本产品的简体是用钢板卷焊成筒节后组焊而成,这时的简体有纵环焊缝。 封头 按几何形状不同,有椭圆形封头,球形封头,蝶形封头,锥形封头和平盖等各种形式。封头和简体组合在一起构成一台容器壳体的主要部分,也是最主要的受压元件之一。此储气罐选择的是椭圆形封头。 从制造方法分,封头有整体成形和分片成形后组焊成一体的两种。当封头直径较大,超出生产能力时,多采用分片成形方法制造,分片成形控制难度大,易出现不合格产品。对整体成形的封头尺寸、形状,虽然易控制但一般需要有大型冲压模具的压力机或大型旋压设备,工艺设备庞大,制造成本高。 从封头成形方式讲,有冷压成形、热压成形和旋压成形。对于壁厚较薄的封头,一般采用冷压成形。 采用调质钢板制造的封头或封头瓣片,为不破坏钢板调质状态的力学性能,节省模具制造费用,往往采用多点冷压成形法制造。 当封头厚度较大时,均采用热压成形法,即将封头坯料加热至900℃~1000℃。钢板在高温下冲压产生塑性变形而成形,此时对于有些材料(如正火态钢板),由于改变了原始状态的力学性能,为恢复和改善其力学性能,封头冲压成形后还要做正火、正火+回火或淬火+回火等相应的热处理。对于直径大且厚度薄的封头,采用旋压成形法制造是最经济最合理的选择。

氢气储罐设计说明书

目录 前言 (3) 1 方案确定 (4) 1.1选择容器类型式 (4) 1.1.1 压力容器分类 (4) 1.1.2、封头形式的确定 (5) 1.2 材料的确定 (6) 2 设计计算 (8) 2.1 确定设计参数 (8) 2.1.1 工作压力、设计压力、计算压力 (8) 2.1.2 设计温度 (9) 2.1.3 厚度计算 (9) 2.1.4设计温度下的需用应力 (10) 2.1.5 焊接接头系数 (10) 2.2 容器相关量的确定 (11) 2.2.1 计算过程 (11) 2.2.2 筒体尺寸确定 (12) 2.3 容器强度校核 (13) 2.4 确定各工艺接管的公称通径及位置 (14) 3 结构设计 (17) 3.1 人孔选择 (17) 3.2人孔补强 (17) 3.3 支座的选择及校核 (20) 3.3.1支座的设计要求 (20) 3.3.2支座的选择及校核 (20) 4 总结与体会 (24)

5 谢辞 (25) 6 参考文献 (26)

前言 随着我国石油化工业的迅速发展,国家对清洁环保型能源越发的重视。化工业接触的都是危险品,因此对这些危险品的控制相当重要。以氢气为例,它就是易燃物质,储存的时候也要确保安全。因此对于氢气储罐有一定的设计要求。 氢气密度低,比容大,只有高压储运才能有效。氢气性质稳定,不容易跟其他物质发生化学反应,所以氢气的腐蚀性较小。但氢气在点燃加热等情况下易发生爆炸燃烧等现象,所以在储运的时候要格外小心对环境条件的控制。 本设计完成了6m3立式氢气储罐的设计,并对氢气储罐在设计、制造安装、使用、维护与定期检验提出了相应的安全技术要求。设计的氢气公称直径为1400mm,壁厚为6mm,对筒体与封头做了水压试验强度校核;对人孔的补强做了计算,计算补强圈的厚度为6mm ;选择了支座类型为A2型耳式支座。 本次设计各项参数均按照相关标准决定,主要有GB150-98《钢制压力容器》,《压力容器安全技术监察规程》,JB/T 4736-2002《补强圈》,HG 20592~20614-97《钢制管法兰、垫片、紧固件》,JB/T 4725-1992《耳式支座》,HG 21520-1995《垂直吊盖带颈平焊法兰人孔》等。 本次设计流程为:首先进行结构设计,确定为立式筒体储罐;然后进行材料选择,为Q345R;再进行设计计算、强度校核与及零部件选型;最后进行开孔补强计算、安全阀的选型与校核。 1 方案确定

乙烯低温贮罐制作及安装工程监理细则

B13新浦化学工业(泰兴)有限公司VCM项目工程 监理实施细则 (低温乙烯贮罐) 内容提要: 专业工程特点 监理工作流程 监理工作控制目标及控制要点 监理工作方法及措施 项目监理机构(章): 专业监理工程师: 总监理工程师: 日期: 江苏省建设厅监制

一、工程概况: 1、工程名称:新浦化工氯乙烯项目乙烯低温贮罐制作及安装工程; 2、建设单位:新浦化学(泰兴)有限公司; 3、设计单位:上海工程化学设计院有限公司 4、施工单位:上海石化安装检修工程公司 5、监理单位:上海申峰工程建设监理有限公司 6、工程概况: 本工程为新浦化学(泰兴)有限公司乙烯低温贮罐,该 贮罐为双层钢结构立式贮罐,主要技术参数如下: 6.1 外罐(直径×高度)?35000×27600 外罐主体材料16MnR 内罐(直径×高度) ?33000×26400 内罐主体材料X12Ni5 6.2 物料名称:乙烯比重:568kg/m3。 6.3 贮罐工作温度:外罐-20~500C; 内罐-104~500C 该双层钢结构贮罐罐底板设计为搭接焊,罐壁板为对接焊,顶板为搭接焊。 贮罐制作安装工作特点是工作量大,室外作业,施工条件差,影响因素多,随机因素多,投入人力物力多等不利于焊接施工的特点。

二、目标分解 1、质量目标 2、HSE管理目标 三、设计要求适用规范及质量标准 1、低温乙烯贮罐设计施工图及技术文件 2、《现场设备、管道焊接工程施工及验收规范》GBJ50236-98

3、《工业安装工程质量检验评定统一标准》GB50252-98 4、《电器无损检测》JB4730-94 5、《钢制化工室焊接规范》JB4709-2000 6、《钢制焊接常压电器》JB/T4735-97 7、《立式圆筒形低温储罐施工技术规程》SH/T4735—2002 8、《石油化工设备和管道涂料防腐技术规范》SH3022-1999 9、《涂装前钢材表面锈蚀等级和防腐等级》GB8923-88 10、《管道与钢结构的现场涂漆规定》SP-74-V11-MS-0002 11、《钢板验收规范》GB/T3274-1988 12、《大型焊接、低压贮罐的设计和建造》API620标准 13、经审批的监理规划、施工组织设计 14、设计交底、图纸会审及设计变更单

液氯卧式储罐设计

目录 第1章绪论 (1) 第2章工艺设计 (3) 2.1 储罐存储量 (3) 2.2 储罐设备的选型 (3) 第3章结构设计 (5) 3.1 筒体及封头设计 (5) 3.1.1材料的选择 (5) 3.1.2 筒体壁厚设计 (5) 3.1.3 封头壁厚设计 (6) 3.2 接管的选取 (6) 3.3 法兰的选取 (7) 3.4 垫片的选取 (8) 3.5 螺栓的选取 (8) 3.6 人孔的选取 (9) 3.6.1 人孔的结构设计 (9) 3.6.2 核算开孔补强 (10) 3.7 安全阀、液位计和压力表的选取 (12) 3.8 容器支座的设计 (14) 3.8.1 支座的选择 (14) 3.8.2 鞍座位置的确定 (15) 3.9 总体布局 (16) 第4章强度计算 (17) 4.1 弯矩和剪力的计算 (17) 4.2 圆筒轴向应力计算及校核 (19) 4.2.1 圆筒轴向应力计算 (19) 4.2.2 圆筒轴向应力校核 (19) 4.3 圆筒和封头切应力计算及校核 (19) 4.4 鞍座截面处圆筒的周向应力计算及校核 (20) 第5章焊接结构设计 (22) 5.1 焊接接头设计 (22) 5.2 焊条的选择 (24) 设计心得 (24) 参考文献 (25)

第1章绪论 在固定位置使用、以介质储存为目的的容器称为储罐,如加氢站用高压氢气储罐、液化石油气储罐、战略石油储罐、天然气接收站用液化天然气储罐等; 储罐有多种分类方法,按几何形状分为卧式圆柱形储罐、立式平底筒形储罐、球形储罐;按温度划分为低温储罐(或称为低温储槽)、常温储罐(<90℃) 和高温储罐(90~250℃ );按材料可划分为非金属储罐、金属储罐和复合材料储罐;按所处的位置又可分为地面储罐、地下储罐、半地下储罐和海上储罐等。单罐容积大于1000m3 的可称为大型储罐。金属制焊接式储罐是应用最多的一种储存设备,目前国际上最大的金属储罐的容量已达到2×105m3。 储罐通常是由板、壳组合而成的焊接结构。圆柱形筒体、球形封头、椭圆形封头、碟形封头、球冠形封头、锥形封头和膨胀节所对应的壳分别是圆柱壳、球壳、椭球壳、球冠+环壳、球冠、锥壳和环形板+环壳,而平盖(或平封头)、环形板、法兰、管板等受压元件分别对应于圆平板、环形板(外半径与内半径之差大10倍的板厚)、环(外半径与内半径之差小于10倍的板厚)以及弹性基础圆平板。上述7种壳和板可以组合成各种储罐结构形式,再加上密封元件、支座、安全附件等就构成了一台完整的储罐。图1.1为一台卧式储罐的总体结构图,下面结合该图对储罐的基本组成作简单介绍。 图1.1储罐总体结构 (1) 筒体 筒体的作用是提供工艺所需的承压空间,是储罐最主要的受压元件之一,其内直径和容积往往需由工艺计算确定。圆柱形筒体(即圆筒) 和球形筒体是工程中最常用的筒体结构。圆筒按其结构可分为单层式和组合式两大类。

储罐设计

《化工容器设计》课程设计说明书 题目: 学号: 专业: 姓名: I 目录 1 设计 (1) 1.1工艺参数的设定 (1) 1.1.1设计压力 (1) 1.1.2筒体的选材及结构 (1) 1.1.3封头的结构及选材 (2) 1.2 设计计算 (2) 1.2.1 筒体壁厚计算 (2) 1.2.2 封头壁厚计算 (3)

1.3压力实验 (4) 1.3.1水压试验 (4) 1.3.2水压试验的应力校核: (4) 1.4附件选择 (4) 1.4.1 人孔选择及人孔补强 (4) 2.4.3 进出料接管的选择 (6) 1.4.4 液面计的设计 (8) 1.4.5 安全阀的选择 (8) 1.4.6 排污管的选择 (8) 1.4.7 鞍座的选择 (8) 1.4.8鞍座选取标准 (9) 1.4.9鞍座强度校核 (10) 1.4.10容器部分的焊接 (11) 1.5 筒体和封头的校核计算 (11) 1.5.1 筒体轴向应力校核 (11) 1.5.2 筒体和封头切向应力校核 (13) 2 液氨储罐的泄漏及处理方法............................................................. 错误!未定义书签。 2.1 液氨泄漏的危害 .............................................................................. 错误!未定义书签。 2.2 泄漏的危害 ...................................................................................... 错误!未定义书签。 2.2 .1 生产运行过程中危险性分析······································错误!未定义书签。 2.2.2 设备、设施危险性分析 ············································错误!未定义书签。 2.3液氨储罐泄漏事故的应急处置措施 .............................................. 错误!未定义书签。

液化石油气卧式储罐的规则设计

液化石油气卧式储罐的规则设计 【摘要】结合《固定式压力容器安全技术监察规程》和《压力容器》的实施,围绕20m3液化石油气卧式储罐的设计,来探讨在液化石油气卧式储罐的规则设计中参数的确定、材料的选择、结构的设计以及制造技术要求。 【关键词】液化石油气卧式储罐设计 盛装液化石油气的卧式储罐是具有爆炸危险的特种承压设备,为了它的安全运行,必须从设计、制造、使用和维护等各个环节都要严格要求。下面结合20m3液化石油气卧式储罐的设计,来探讨在液化石油气卧式储罐的规则设计中参数的确定、材料的选择、结构的设计以及制造技术要求等。 2 确定设计压力 对于常温储存液化石油气的储罐,根据TSG R0004-2009《固定式压力容器安全技术监察规程》第3.9.3条款的规定[1],常温储存液化石油气压力容器规定温度下的工作压力,按照不低于50℃时的混合液化石油气组分的实际饱和蒸汽压来确定。应当在图样上注明限定的组分或者对应的压力。本例中液化石油气的主要组分是丙烷,丙烷50℃时的饱和蒸气压为1.6MPa,依据此工作压力确定了这台20m3液化石油气卧式储罐的设计压力是1.77 MPa。 3 确定储罐的装量系数 液化石油气在平衡状态时的饱和蒸汽压随温度的升高而增大,其液体的膨胀性较强,因此储存液化石油气的储罐内必须留有一定的气相空间,以防止由于温度升高而导致储罐内的压力剧增。储罐的储存量直接影响到储罐的工作压力,关系到储罐的设计和使用安全。TSG R0004-2009《固定式压力容器安全技术监察规程》第3.13条[1]规定储存液化气体的压力容器应当规定设计储存量,装量系数不得大于0.95。本例中储罐的装量系数确定为0.9。 4 确定腐蚀裕量 由所选定受压元件的材质、工作介质对受压元件的腐蚀率、容器使用环境和用户期待的使用寿命来确定,实际上应先选定受压元件的材质,再确定腐蚀裕量。工作介质对受压元件的腐蚀率主要按实测数据和经验来确定,受使用环境影响很大,变数很多,目前无现成的数据。一般介质无腐蚀的容器,其腐蚀裕量取1~2mm即可满足使用寿命的要求。本例为石油化工设备,介质为轻微腐蚀,取腐蚀裕量为2mm。5 确定焊接接头系数 焊接接头系数,应根据受压元件的焊接接头型式及无损检测的长度比例确定。双面焊焊接接头和相当于双面焊的全焊透对接接头:100%无损检测φ=1.00;局部无损检测φ=0.85.单面焊对接接头(沿焊缝根部全长有紧贴基本金属的垫

液化石油气储罐设计

第一章 工艺设计 参数的确定 液化石油气的主要组成部分由于石油产地的不同,各地石油气组成成分也不同。取其大致比例如下: 表一 组成成分 异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 各成分百分比 0.01 2.25 49.3 23.48 21.96 3.79 1.19 0.02 对于设计温度下各成分的饱和蒸气压力如下: 表二,各温度下各组分的饱和蒸气压力 温度,℃ 饱和蒸汽压力,MPa 异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 -25 0 1.3 0.2 0.06 0.04 0.025 0.007 0 -20 0 1.38 0.27 0.075 0.048 0.03 0.009 0 0 0 2.355 0.466 0.153 0.102 0.034 0.024 0 20 0 3.721 0.833 0.294 0.205 0.076 0.058 0 50 7 1.744 0.67 0.5 0.2 0.16 0.0011 1、设计温度 根据本设计工艺要求,使用地点为太原市的室外,用途为液化石油气储配站工作温度为-20—48℃,介质为易燃易爆的气体。 从表中我们可以明显看出,温度从50℃降到-25℃时,各种成分的饱和蒸气压力下降的很厉害,可以推断,在低温状态下,由饱和蒸气压力引起的应力水平不会很高。 由上述条件选择危险温度为设计温度。为保证正常工作,对设计温度留一定的富裕量。所以,取最高设计温度t=50℃,最低设计温度t=﹣25℃。根据储罐所处环境,最高温度为危险温度,所以选t=50℃为设计温度。 1、设计压力 该储罐用于液化石油气储配供气站,因此属于常温压力储存。工作压力为相应温度下的饱和蒸气压。因此,不需要设保温层。 根据道尔顿分压定律,我们不难计算出各种温度下液化石油气中各种成分的饱和蒸气分压,如表三: 表三,各种成分在相应温度下的饱和蒸气分压 温度, ℃ 饱和蒸气分压, MPa 异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戍烷 正戍烷 乙烯 -25 0 0.029 0.0946 0.014 0.0088 0.00095 0.000083 0 -20 0 0.031 0.127 0.0176 0.0105 0.00114 0.000109 0 0 0 0.053 0.2204 0.0359 0.0224 0.00129 0.000256 0 20 0 0.084 0.394 0.069 0.045 0.00288 0.00063 0 50 0 0.158 0.0825 0.1573 0.1098 0.00758 0.0019 0 有上述分压可计算再设计温度t=50℃时,总的高和蒸汽压力 P= i n i i p y ∑8 1 ===0.01%×0+2.25%×7+47.3%×1.744+23.48%×0.67+21.96%×0.5+3.79%×

液化石油气储罐防火间距

表4.4.1 液化石油气储罐或罐区与建筑物、储罐、堆场、铁路、道路的防火间距(m) 注:1 容积大于1 000m3的液化石油气单罐或总储量大于5000m3的罐区,与明火或散发火花地点的防火间距不应小于120.0m,与民用建筑的防火间距不应小于100.0m,与其他建筑的防火间距应按本表的规定增加25%; 2 防火间距应按本表总容积或单罐容积较大者确定; 3 直埋地下液化石油气储罐的防火间距可按本表减少50%,但单罐容积不应大于50m3,总容积不应大于400m3; 4 与本表以外的其他建、构筑物的防火间距,可按现行国家标准《城镇燃气设计规范》GB50028的有关规定执行。 4.4.2液化石油气气化站、混气站、瓶组站,其储罐与工业建筑、重要公共建筑和其他民用建筑、道路等之间的防火间距,可按现行国家标准《城镇燃气设计规范》GB50028的有关规定执行。 总容积不大于10m3的工业企业内的液化石油气气化站、混气站的储罐,当设置在专用的独立建筑物内时,其外墙与相邻厂房及其附属设备之间的防火间距,可按甲类厂房有关防火间距的规定执行。当设置在露天时,与建筑物、储罐、堆场的防火间距应按本规范第4.4.1条的规定执行。 4.4.3液化石油气储罐之间的防火间距,不应小于相邻较大罐的直径。 数个储罐的总容积大于3000m3时,应分组布置。组内储罐宜采用单排布置。组与组之间相邻储罐的防火间距,不应小于20.0m。 4.4.4液化石油气储罐与所属泵房的距离不应小于1 5.0m。当泵房面向储罐一侧的外墙采用无门窗洞口的防火墙时,其防火间距可减少至 6.0m。液化石油气泵露天设置时,泵与储罐之间的距离不限,但不宜布置在防火堤内。 4.4.5液化石油气瓶装供应站的瓶库,其四周宜设置不燃烧体的实体围墙,但面向出入口一侧可设置不燃烧体非实体围墙。液化石油气瓶装供应站的瓶库与站外建、构筑物之间的防火间距,不应小于表4.4.5的规定。当总容积大于30m3时,其防火间距应符合本规范第4.4.1条的规定。 表4.4.5 瓶库与站外建、构筑物之间的防火间距(m) 注:总存瓶容积应按实瓶个数与单瓶几何容积的乘积计算。

化工设计贮罐设计说明书

目录 前言 (2) 第1章设计参数的选择 1.1 设计要求与数据 1.1.1设计要求 (2) 1.1.2 设计数据 (2) 1.1.3 贮罐容积 (2) 1.2 设计温度 (3) 1.3 设计压力 (3) 1.4 主体设备和零部件材料选择 (3) 第2章设备的结构 2.1 罐体壁厚设计 (3) 2.2 封头壁厚设计 (4) 2.3 鞍座 (4) 2.4 人孔 (5) 2.5 人孔补强确定 (6) 2.6 法兰的选用 (6) 2.7 接口管 (6) 2.8 主体设备尺寸和零部件尺寸 (7) 2.9 设备总装配图 (7)

前言 卧式贮罐比立式贮罐易运输、设计合理、工艺先进、自动控制,符合GMP 标准要求,古采用卧式贮罐。 第1章设计参数的选择 1.1 设计要求与数据 1.1.1设计要求 (1)主体设备和零部件材料选择; (2)主体设备尺寸和零部件尺寸计算及选择规格; (3)设备壁厚以及封头壁厚的计算和强度校核; (4)各种接管以及零部件的设计选型; (5)设备支座的的设计选型; (6)法兰的设计选型; (7)设备开孔及开孔补强计算; (8)设计图纸要求1号图纸一张,包括设备总装配图,至少画三个重要构件的局部图;技术特性表,接管表和总图材料明细表。要求比例适当,字体规范,图纸整洁。 1.1.2 设计数据 表1-1 设计数据 序号项目数值单位备注 1 设备名称乙烯贮罐 2 公称直径2200 ㎜ 3 贮罐长度4000 ㎜ 4 最大工作压力 2. 5 MPa 5 贮存介质乙烯 6 工作地点宜宾 7 其他要求100%无损检测 1.1.3 贮罐容积 贮罐的容积=封头的容积+筒体的容积 由钢制筒体的容积、面积及质量表,可查得公称直径为2200㎜的筒体,1米高的容积为3.8013m,可得筒体的容积为:3.801×4=15.2043m;由JB/T4337

2立方空气储罐设计

目录 任务书 (2) 第一章空气储罐产品概要 (3) 第二章空气储罐材料的选择 (4) 第三章空气储罐的结构设计 (4) 3.1圆筒厚度的设计 (5) 3.2封头厚度的计算 (5) 3.3接管的设计 (5) 3.4支座的设计 (6) 3.4.1支座选型 (6) 3.4.2鞍座定位 (6) 第四章强度计算 (6) 5.1水压试验应力校核 (6) 5.2工作应力计算及校核 (7) 5.2.1圆筒轴向应力计算及校核 (7) 5.2.3周向应力计算及校核 (8) 第五章空气储罐的制造工艺 (10) 5.1空气储罐的制造工艺流程 (10) 5.2空气储罐的焊接工艺 (11) 5.2.1接管焊接 (11) 5.2.2纵缝和环缝焊接 (12)

5.3空气储罐的焊接检验 (13) 5.3.1无损检测 (14) 5.3.2耐压试验 (14) 第六章课程设计心得体会 (15) 参考文献 (16) 任务书 2m3空气储罐的焊接工艺设计 设计参数 序号名称指标 1 设计压力P c(MPa) 1.0 2 设计温度(℃)100 3 最高工作压力(MPa)0.95 4 最高工作温度(℃)95 5 工作介质压缩空气 6 主要受压元件的材料Q235-B 7 焊接接头系数Φ0.9 8 腐蚀裕度C2(mm) 1.2 9 厚度负偏差(C1)0.8 9 全容积() 2.0 10 容器类别第一类 设计要求 (1)更具给定的条件来选定容积的几何尺寸,即确定筒体的内径、长度、封

头类型等,然后确定有关的参数,如容器材料、需用应力、壁厚附加量、焊缝系数等。 (2)设计筒体和封头壁厚;进行强度计算;焊接接头设计;附件设计等。 (3)撰写设计说明书:能以“工程语言和格式”阐明自己的设计观点、设计方案的优劣以及设计数据的合理性;按照设计步骤、进程,科学地编排设计说明书的格式与内容叙述简明。 第一章空气储罐概要 空气储罐的特点 空气储罐主要是指用于储存或盛装气体、液体、液化气体等介质的设备,在化工、石油、能源、轻工、环保、制药及食品等行业得到广泛应用,如氢气储罐、液化石油气储罐、石油储罐、液氨储罐等。储罐内的压力直接受温度影响,且介质往往易燃、易爆或有毒。储罐的结构形式主要有卧式储罐、立式储罐和球形储罐。 压力容器的外壳由筒体、封头、密封装置、开孔接管、支座及安全附件六大部件组成。常、低压化工设备通用零部件大都有标准,设计时可直接选用。本设计书

液化石油气储罐设计毕业论文

四川理工学院毕业设计(论文)500m3液化石油气储罐设计 学生: 学号:0901******* 专业:过程装备与控制工程 班级:2009.2 指导教师:林海波 四川理工学院机械工程学院 二O一三年六月 四川理工学院

毕业设计任务书 设计题目:500m3液化石油气储罐设计 学院:机械工程专业:过程装备与控制工程班级:2009级2班学号:0901******* 学生:指导教师:林海波接受任务时间2013年3月1日 系主任(签名)院长(签名) 1.毕业设计(论文)的主要内容及基本要求 设计题目:500m3液化石油气储罐设计 介质:液化石油气容积:500m3 放置地点:四川自贡,进行选型论证和结构设计。 完成:0#总装配图一张,零部件图0#图总量1张,设计说明书一份。 2.指定查阅的主要参考文献及说明 NB/T 47001-2009 .钢制液化石油气卧式储罐型式与基本参数 GB150—2011.钢制压力容器 卧式储罐焊接工程技术 我是储罐和大型储罐 3.进度安排 设计(论文)各阶段名称起止日期 1 资料收集,阅读文献,完成开题报告3月 1 日至3月24日 2 完成所有结构设计和设计计算工作3月25日至4月21日 3 完成所有图纸的绘制、完成设计说明书的撰写4月22日至5月22日 4 完成图纸和说明书的修改、答辩的准备和毕业 答辩5月23日至6月7日 5 毕业设计修改与设计资料整理6月 8 日至6月14日

摘要 用于储存或盛装气体、液体、液化气体等介质的储罐,在化工、石油、能源、轻工、环保、制药及食品等行业得到广泛应用。本设计运用常规设计的方法,对卧式液化石油气储罐的筒体、封头进行厚度设计计算,对水压试验进行校核,并对所开人孔进行补强设计。按照相关标准选择密封装置、人孔、支座、接口管以及部分安全附件。根据设计时的需要附上一些储罐零件图与储罐装配简图。完成了一个相对比较完整的卧式液化石油气储罐的设计。 关键字:储罐;压力容器;设计;计算

10立方米液氨压力容器储罐设计说明书

目录 第一章工艺设计 任务书*************************************** 储量***************************************** 备的选型及轮廓尺寸*************************** 第二章机械设计 结构设计 2.1.1 筒体及封头设计 材料的选择********************************** 筒体壁厚的设计计算 封头壁厚的设计计算 2.1.2 接管及接管法兰设计 接管尺寸选择********************************* 管口表及连接标准***************************** 接管法兰的选择***************************** 紧固件的选择******************************* 2.1.3 人孔的结构设计 密封面的选择****************************** 人孔的设计******************************** 2.1.4 核算开孔补强**************************** 2.1.5 支座的设计

支座的选择********************************** 支座的位置********************************** 2.1.6液面计及安全阀选择 2.1.7总体布局 2.1.8焊接接头设计 强度校核 小结

课程设计任务书 1.设计目的: 设计目的 1)使用国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。 2)掌握查阅和综合分析文献资料的能力,进行设计方法和设计方案的可行性研究和论证。 3)掌握电算设计计算,要求设计思路清晰,计算数据准确、可靠,且正确掌握计算机操作和专业软件的使用。 4)掌握工程图纸的计算机绘图。 2.设计内容 1)设备工艺、结构设计; 2)设备强度计算与校核; 3)技术条件编制; 4)绘制设备总装配图; 5)编制设计说明书。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 1)设计说明书:主要内容包括:封面、设计任务书、目录、设计方案的分析和拟定、各部分结构尺寸的设计计算和确定、设计总结、参考文献等; 2)总装配图设计图纸应遵循国家机械制图标准和化工设备图样技术要求有关规定,图面布置要合理,结构表达要清楚、正确,图面要整洁,文字书写采用仿宋体、内容要详尽,图纸采用计算机 绪论 1、任务说明

液化石油气储罐设计说明书

1003m液化石油气储罐设计 绪论 m或随着我国化学工业的蓬勃发展,各地建立了大量的液化气储配站。对于储存量小于5003 m时.一般选用卧式圆筒形储罐。液化气储罐是储存易燃易爆介质.直接关系到单罐容积小于1503 人民生命财产安全的重要设备。因此属于设计、制造要求高、检验要求严的三类压力容器。本次设m液化石油气储罐设计即为此种情况。 计的为1003 液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计 这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其要注意安全, 还要注意在制造、安装等方面的 特点。 目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。球形贮 罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, m或单罐容积大于2003m时选用球形贮 焊接工作量大, 故安装费用较高。一般贮存总量大于5003 罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, m, 单罐容积小于1003m时选用卧式贮罐比较经济。圆筒形贮罐按安装方 所以在总贮量小于5003 式可分为卧式和立式两种。在一般中、小型液化石油气站大多选用卧式圆筒形贮罐, 只有某些特殊 情况下(站地方受限制等) 才选用立式。本文主要讨论卧式圆筒形液化石油气贮罐的设计。 卧式液化石油气贮罐设计的特点。卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150 《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称 容规) 的监督。液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。贮罐主要有筒体、封 头、人孔、支座以及各种接管组成。贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、 压力表、温度计、液面计等。

相关文档
最新文档