大学物理热学习题附答案11

大学物理热学习题附答案11
大学物理热学习题附答案11

一、选择题

1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B)

m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v 2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值

(A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 0 [ ]

3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:

(A) ε和w 都相等 (B) ε相等,而w 不相等 (C) w 相等,而ε不相等

(D) ε和w 都不相等

4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:

(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 3

5.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?

(A) 66.7% (B) 50% (C) 25% (D) 0

6.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:

(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同

(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同

7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们

(A) 温度相同、压强相同 (B) 温度、压强都不相同

(C) 温度相同,但氦气的压强大于氮气的压强

(D) 温度相同,但氦气的压强小于氮气的压强

8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。这些说法中正确的是

(A) (1)、(2)、(4);(B) (1)、(2)、(3);(C) (2)、(3)、(4);(D) (1)、(3) 、(4); [ ]

9.4039:设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通

过具有相同温度的氧气和氢气的速率之比22

H O /v v 为 (A) 1 (B) 1/2 (C) 1/3 (D) 1/4 10.4041:设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则:

(A) 图中a表示氧气分子的速率分布曲线;

()2O p v /()2H p v =4

(B) 图中a表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4 (C) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4 (D) 图中b表示氧气分子的速率分布曲线;()2O p v /()2

H p v = 4 [ ]

11.4084:图(a)、(b)、(c)各表示联接在一起的两个循环过程,其中(c)图是两个半径

相等的圆构成的两个循环过程,图(a)和(b)则为半径不等的两个圆。那么:

(A) 图(a)总净功为负。图(b)总净功为正。图(c)总净功为零

(B) 图(a)总净功为负。图(b)总净功为负。图(c)总净功为正

(C) 图(a)总净功为负。图(b)总净功为负。图(c)总净功为零

(D) 图(a)总净功为正。图(b)总净功为正。图(c)总净功为负

12.4133:关于可逆过程和不可逆过程的判断:

(1) 可逆热力学过程一定是准静态过程;(2) 准静态过程一定是可逆过程;(3) 不可逆过程就是不能向相反方向进行的过程;(4) 凡有摩擦的过程,一定是不可逆过程。以上四种判断,其中正确的是

(A) (1)、(2)、(3) (B) (1)、(2)、(4) (C) (2)、(4) (D) (1)、(4) 13.4098:质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍。那么气体温度的改变(绝对值)在

(A) 绝热过程中最大,等压过程中最小 (B) 绝热过程中最大,等温过程中最小

(C) 等压过程中最大,绝热过程中最小 (D) 等压过程中最大,等温过程中最小 14.4089:有两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递热量是:

(A) 6 J (B) 5 J (C) 3 J (D) 2 J [ ] 15.4094:1mol 的单原子分子理想气体从状态A 变为状态B ,如果不知是什么气体,变化过程也不知道,但A 、B 两态的压强、体积和温度都知道,则可求出: (A) 气体所作的功 (B) 气体内能的变化 (C) 气体传给外界的热量 (D) 气体的质量 [ ]

16.4100:一定量的理想气体经历acb 过程时吸

热500 J 。则经历acbda 过程时,吸热为 (A) –1200 J (B) –700 J (C) –400 J (D) 700 J [ ]

4041p

V 图(a)

p V

图(b)

p V

图(c)

4084图 5 4

17.4095:一定量的某种理想气体起始温度为T ,

体积为V ,该气体在下面循环过程中经过三个平衡

过程:(1) 绝热膨胀到体积为2V ,(2)等体变化使温

度恢复为T ,(3) 等温压缩到原来体积V ,则此整个循环过程中

(A) 气体向外界放热 (B) 气体对外界作正功

(C) 气体内能增加 (D) 气体内能减少 [ ] 18.4116:一定量理想气体经历的循环过程用V -T 曲线表示如图。在此循环过程中,气体从外界吸热的过程是

(A) A →B (B) B →C (C) C →A (D) B →C 和B →C [ ]

19.4121:两个卡诺热机的循环曲线如图所示,一个工作在温度为T 1 与T 3的两个热源之

间,另一个工作在温度为T 2 与T 3的两个热源之间,已知这两个循环曲线所包围的面积相等。由此可知:

(A) 两个热机的效率一定相等

(B) 两个热机从高温热源所吸收的热量一定相等

(C) 两个热机向低温热源所放出的热量一定相等

(D) 两个热机吸收的热量与放出的热量(绝对值)的差值一定相等

20.4122:如果卡诺热机的循环曲线所包围的面积从图中的abcda 增大为da c b a '',那么循环abcda 与da c b a ''所作的净功和热机效率变化情况是: (A) 净功增大,效率提高 (B) 净功增大,效率降低 (C) 净功和效率都不变 (D) 净功增大,效率不变 [ ] 21.4123:在温度分别为 327℃和27℃的高温热源和低 温热源之间工作的热机,理论上的最大效率为 (A) 25% (B) 50% (C) 75% (D) 91.74% [ ] 22.4124:设高温热源的热力学温度是低温热源的热力学

温度的n 倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取热量的

(A) n 倍 (B) n -1倍 (C) n 1倍 (D) n n 1

+倍 23.4125:有人设计一台卡诺热机(可逆的)。每循环一次可从 400 K 的高温热源吸热1800 J ,向 300 K 的低温热源放热 800 J 。同时对外作功1000 J ,这样的设计是

(A) 可以的,符合热力学第一定律

(B) 可以的,符合热力学第二定律

(C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量

4121图

T V 4116图

p

4122图

(D) 不行的,这个热机的效率超过理论值 24.4126:如图表示的两个卡诺循环,第一个沿ABCDA 进行,第二个沿A D C AB ''进行,这两个循环的效率1η和2η 的关系及这两个循环所作的净功W 1和W 2的关系是 (A) 21ηη=,21W W =(B) 21ηη>,21W W = (C) 21ηη=,21W W >(D) 21ηη=,21W W < 25.4135:根据热力学第二定律可知: (A) 功可以全部转换为热,但热不能全部转换为功

(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体

(C) 不可逆过程就是不能向相反方向进行的过程

(D) 一切自发过程都是不可逆的 26.4136:根据热力学第二定律判断下列哪种说法是正确的

(A) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体

(B) 功可以全部变为热,但热不能全部变为功

(C) 气体能够自由膨胀,但不能自动收缩

(D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有

规则运动的能量

27.4142:一绝热容器被隔板分成两半,一半是真空,另一半是理想气体。若把隔板抽出,气体将进行自由膨胀,达到平衡后

(A) 温度不变,熵增加 (B) 温度升高,熵增加

(C) 温度降低,熵增加 (D) 温度不变,熵不变 28.4143:“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功。”对此说法,有如下几种评论,哪种是正确的?

(A) 不违反热力学第一定律,但违反热力学第二定律

(B) 不违反热力学第二定律,但违反热力学第一定律

(C) 不违反热力学第一定律,也不违反热力学第二定律

(D) 违反热力学第一定律,也违反热力学第二定律 29.4101:某理想气体状态变化时,内能随体积的变化关系如图中AB 直线所示。A →B 表示的过程是 (A) 等压过程 (B) 等体过程 (C) 等温过程 (D) 绝热过程 [ ]

30.4056:若理想气体的体积为V ,压强为p ,温度为T ,一 个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该 理想气体的分子数为: (A) pV / m (B) pV / (kT )

(C) pV / (RT ) (D) pV / (mT )

31.4407:气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z 和平均自由程λ的变化情况是: (A) Z 和λ都增大一倍 (B) Z 和λ都减为原来的一半 (C) Z 增大一倍而λ

减为原来的一半 (D) Z 减为原来的一半而λ增大一倍 32.4465:在一封闭容器中盛有1 mol 氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于:

V 4126图 V 4101图

(A) 压强p (B) 体积V (C) 温度T (D) 平均碰撞频率Z 33.4955:容积恒定的容器内盛有一定量某种理想气体,其分子热运动的平均自由程为0λ,平均碰撞频率为0Z ,若气体的热力学温度降低为原来的1/4倍,则此时分子平均自由程λ和平均碰撞频率Z 分别为: (A) λ=0λ,Z =0Z (B) λ=0λ,Z =21

0Z (C) λ=20λ,Z =20Z (D) λ=20λ,Z =21

0Z

二、填空题

1.4008:若某种理想气体分子的方均根速率()4502/12=v m / s ,气体压强为p =7×104 Pa ,

则该气体的密度为ρ=__1.04____________。

2.4253:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。根据理想气体分子模型和统计假设,分子速度在x 方向的分量的下列平均值x v =___0____,2x v =___KT/m___。

3.4017:1 mol 氧气(视为刚性双原子分子的理想气体)贮于一氧气瓶中,温度为27℃,这瓶氧气的内能为__62300______J ;分子的平均平动动能为__ 6.21×2110-______J;分子的平均总动能为____ 1.035×2110-

_____J。

(摩尔气体常量 R = 8.31 J ·mol -1·K -1 玻尔兹曼常量 k = 1.38×10-23J·K -1)

4.4018:有一瓶质量为M 的氢气(视作刚性双原子分子的理想气体),温度为T ,则氢分子的平均平动动能为______,氢分子的平均动能为_______,该瓶氢气的内能为____________。

5.4025:一气体分子的质量可以根据该气体的定体比热来计算。氩气的定体比热11K kg kJ 314.0--??=v C ,则氩原子的质量m =__________。

6.4068:储有某种刚性双原子分子理想气体的容器以速度v =100 m/s 运动,假设该容器突然停止,气体的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升 6.74K,由此可知容器中气体的摩尔质量M mol =______。

7.4069:容积为10 L(升)的盒子以速率v =200 m / s 匀速运动,容器中充有质量为50 g ,温度为18℃的氢气,设盒子突然停止,气体的全部定向运动的动能都变为气体分子热运动的动能,容器与外界没有热量交换,则达到热平衡后;氢气的温度将增加___K ;氢气的压强将增加___Pa 。

8.4075:已知一容器内的理想气体在温度为273 K 、压强为 1.0×10-2 atm 时,其密度为1.24×10-2 kg/m 3,则该气体的摩尔质量M mol =_____;容器单位体积内分子的总平动动能=______。

9.4273:一定量H 2气(视为刚性分子的理想气体),若温度每升高1 K ,其内能增加41.6J ,则该H 2气的质量为________________。(普适气体常量R =8.31 J ·mol 1-·K 1-)

10.4655:有两瓶气体,一瓶是氦气,另一瓶是氢气(均视为刚性分子理想气体),若它们的压强、体积、温度均相同,则氢气的内能是氦气的________倍。

11.4656:用绝热材料制成的一个容器,体积为2V 0,被绝热板隔成A 、B 两部分,A 内储有1 mol 单原子分子理想气体,B 内储有2 mol 刚性双原子分子理想气体,A 、B 两部分压强相等均为p 0,两部分体积均为V 0,则:

(1) 两种气体各自的内能分别为E

A

=________;E B=________;

(2) 抽去绝热板,两种气体混合后处于平衡时的温度为T=______。

12.4016:三个容器内分别贮有1 mol氦(He)、 1 mol氢(H2)和1 mol氨(NH3)(均视为刚性分子的理想气体)。若它们的温度都升高1 K,则三种气体的内能的增加值分别为:氦:△E=______________;氢:△E=_______________;氨:△E=_______________。

13.0192:处于重力场中的某种气体,在高度z处单位体积内的分子数即分子数密度为n。若f (v)是分子的速率分布函数,则坐标介于x~x+d x、y~y+d y、z~z+d z区间内,速率介于v ~ v + d v区间内的分子数d N=______________。

14.4029:已知大气中分子数密度n随高度h的变化规律:

?

?

?

?

?

-

=

RT

gh

M

n

n mol

exp

,式中n0为h=0处的分子数密度。若大气中空气的摩尔质量为M mol,温度为T,且处处相同,并设重力场是均匀的,则空气分子数密度减少到地面的一半时的高度为________。(符号exp(a),即e a )

15.4282:现有两条气体分子速率分布曲线(1)和(2),如图所示。若两条曲线分别表示同一种气体处于不同的温度下的速率分布,则曲线_____表示气体的温度较高。若两条曲线分别表示同一温度下的氢气和氧气的速率分布,则曲线_____表示的是氧气的速率分布。

16.4459:已知f(v)为麦克斯韦速率分布函数,N为总分子数,则:(1) 速率v > 100 m·s-1的分子数占总分子数的百分比的表达式为____;(2) 速率v > 100 m·s-1的分子数的表达式为___。

17.4040:图示的曲线分别表示了氢气和氦气在同一温度下的分子速率的分布情况。由图可知,氦气分子的最概然速率为___________,氢气分子的最概然速率为

18.4042:某气体在温度为T=273 K时,压强为atm

10

0.12-

?

=

p,密度2

10

24

.1-

?

=

ρkg/m3,则该气体分子的方均根速率为_______。(1 atm = 1.013×105 Pa)

19.4092:某理想气体等温压缩到给定体积时外界对气体作功|W1|,又经绝热膨胀返回原来体积时气体对外作功|W2|,则整个过程中气体

(1) 从外界吸收的热量Q = ____________;(2) 内能增加了E?= ______________。

20.4108:如图所示,一定量的理想气体经历a→b→c过程,在此过程中气体从外界吸收热量Q,系统内能变化?E,Q______,E

?______。

v

(m/s)

f(v)

1000

4040图

4282图

p

V

p

p

4683图

21.4316:右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中:

(1) 温度降低的是__________过程;(2) 气体放热的是__________过程。

22.4584:一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程。其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多。 23.4683:已知一定量的理想气体经历p -T 图上所示的循环过程,图中各过程的吸热、放热情况为: (1) 过程1-2中,气体__________; (2) 过程2-3中,气体__________; (3) 过程3-1中,气体__________。 24.4109

。 若此种气体为单原子分子气体,则该过程中需吸热_________ J ;若为双 原子分子气体,则需吸热__________J 。 25.4319:有1mol 刚性双原子分子理想气体,在等压膨胀过程中

对外作功W ,则其温度变化=?T ___;从外界吸取的热量Q p =_____。

26.4472:一定量理想气体,从A 状态 (2p 1,V 1)经历如图所示的直线过程变到B 状态(2p 1,V 2),则AB 过程中系统作功W =______;内能改变E ?=________。

27.4689:压强、体积和温度都相同的氢气和氦气(均视为刚性分子的理想气体),它们的质量之比为m 1∶m 2=_____,它们的内能之比为E 1∶E 2=_____,如果它们分别在等压过程中吸收了相同的热量,则它们对外作功之比为W 1∶W 2=______。(各量下角标1表示氢气,2表示氦气)

28.5345:3 mol 的理想气体开始时处在压强p 1 =6 atm 、温度T 1 =500 K 的平衡态。经过一个等温过程,压强变为p 2 =3 atm 。该气体在此等温过程中吸收的热量为Q =____________J 。

29.4127:一卡诺热机(可逆的),低温热源的温度为27℃,热机效率为40%,其高温热源温度为___K 。今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加___K 。

30.4128:可逆卡诺热机可以逆向运转。逆向循环时, 从低温热源吸热,向高温热源放热,而且吸的热量和放出的热量等于它正循环时向低温热源放出的热量和从高温热源吸的热量.设高温热源的温度为K 4501=T ,低温热源的温度为K 3002=T ,卡诺热机逆向循环时从低温热源吸热J 4002=Q ,则该卡诺热机逆向循环一次外界必须作功W =_________。

31.4698:一个作可逆卡诺循环的热机,其效率为η,它逆向运转时便成为一台致冷机,该致冷机的致冷系数

212T T T w -=,则η与w 的关系为__________。

32.4701:如图所示,绝热过程AB 、CD ,等温过程DEA ,和任意过程BEC ,组成一循环过程。若图中ECD 所包围的面积为70J ,EAB 所包围的面积为30J ,DEA 过程中系统放热100J ,则:

(1) 整个循环过程(ABCDEA )系统对外作功为_________。

(2) BEC 过程中系统从外界吸热为___________。

33.4336:由绝热材料包围的容器被隔板隔为两半,左边是理想气体,右边真空。如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度__________(升高、降低或不变),气体的熵__________(增加、减小或不变)。

1 p

2p 4472图

34.4596:在一个孤立系统内,一切实际过程都向着______________的方向进行。这

就是热力学第二定律的统计意义。从宏观上说,一切与热现象有关的实际的过程都是___________。

35.4154:1 mol 理想气体(设=γC p /C V 为已知)的循环过程如T -V 图所示,其中CA 为绝热过程,A 点状态参量(T 1,V 1)和B 点的状态参量(T 2,V 2)为已知。试求C 点的状态参量:

V c =_________________,T c =_________________,p c =_________________

36.4006:在容积为10-2 m 3 的容器中,装有质量100 g 的气体,若气体分子的方均根速率为200 m ? s 1-,则气体的压强为________________。

37.4956:一定量的某种理想气体,先经过等体过程使其热力学温度升高为原来的2倍;再经过等压过程使其体积膨胀为原来的2倍,则分子的平均自由程变为原来的________倍.

三、计算题

1.4302:储有1 mol 氧气,容积为1 m 3的容器以v =10 m ·s -1 的速度运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能,问气体的温度及压强各升高了多少?(氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol 1-·K 1- )

2.4070:容积为20.0 L(升)的瓶子以速率v =200 m ·s 1-匀速运动,瓶子中充有质量为100g 的氦气。设瓶子突然停止,且气体的全部定向运动动能都变为气体分子热运动的动能,瓶子与外界没有热量交换,求热平衡后氦气的温度、压强、内能及氦气分子的平均动能各增加多少?(摩尔气体常量R =8.31 J ·mol -1·K 1-,玻尔兹曼常量k =1.38×10-23 J ·K 1-)

3.4077:有 2×10-3 m 3刚性双原子分子理想气体,其内能为6.75×102 J 。(1) 试求气体的压强;(2) 设分子总数为 5.4×1022个,求分子的平均平动动能及气体的温度。

4.4301:一超声波源发射超声波的功率为10 W 。假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少?

(氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol 1-·K 1- )

5.4111:0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃。若在升温过程中,

(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功。(普适气体常量R =8.31 11K mol J --?)

6.4324:3 mol 温度为T 0 =273 K 的理想气体,先经等温过程体积膨胀到原来的5倍,然后等体加热,使其末态的压强刚好等于初始压强,整个过程传给气体的热量为Q = 8×104 J 。试画出此过程的p -V 图,并求这种气体的比热容比γ值。(普适气体常量R =8.31J·mol -1·K -1) 7.4587:一定量的理想气体,由状态a 经b 到达c 。(如图,abc 为一直线)求此过程中 (1) 气体对外作的功; (2) 气体内能的增量;

4145图 V

4701图

p (atm)

(3) 气体吸收的热量。(1 atm =1.013×105 Pa)

8.5347:一气缸内盛有1 mol 温度为27 ℃,压强为1 atm 的氮

气(视作刚性双原子分子的理想气体)。先使它等压膨胀到原来体积的两

倍,再等体升压使其压强变为2 atm ,最后使它等温膨胀到压强为1atm 。

求:氮气在全部过程中对外作的功,吸的热及其内能的变化。(普适气体

常量R =8.31 J·mol -1·K -1) 9.0203:1 mol 单原子分子的理想气体,经历如图所示的可逆循环, 联结ac 两点的曲线Ⅲ的方程为2020/V V p p =, a 点的温度为T 0

(1) 试以T 0,普适气体常量R 表示Ⅰ、Ⅱ、Ⅲ过程中气体吸收的热量;(2) 求此循环的效率。 10.4097:1 mol 理想气体在T 1 = 400 K 的高温热源与T 2 = 300 K 的低温热源间作卡诺循环(可逆的),在400 K 的等温线上起始体积为

V 1 = 0.001 m 3,终止体积为V 2 = 0.005 m 3,试求此气体在每一循环中

(1) 从高温热源吸收的热量Q 1;(2) 气体所作的净功W ; (3) 气体传给低温热源的热量Q 2

11.4104:一定量的某种理想气体进行如图所示的循环过程。已知气体在状态A 的温度为T A =300 K ,求:

(1) 气体在状态B 、C 的温度;

(2) 各过程中气体对外所作的功;

(3)

(各过程吸热的代数和)。 12.4114:一定量的某单原子分子理想气体装在封闭的汽缸里。此汽缸有可活动的活塞(活塞与气缸壁之间无摩擦且无漏气)。已知气体的初压强p 1=1atm ,体积V 1=1L ,现将该气体在等压下加热直到体积为原来的两倍,然后在等体积下加热直到压强为原来的2倍,最后作绝热膨胀,直到温度下降到初温为止,(1) 在p -V 图上将整个过程表示出来;

(2) 试求在整个过程中气体内能的改变;(3) 试求在整个过程中气体所吸收的热量;(4) 试求在整个过程中气体所作的功。

13.4155:

有1 mol 刚性多原子分子的理想气体,原来的压强为1.0 atm ,温度为27℃,若经过一绝热过程,使其压强增加到16 atm 。试求:(1) 气体内能的增量;(2) 在该过程中气体所作的功;(3) 终态时,气体的分子数密度。

14.4110:如图所示,abcda 为1 mol 单原子分子理想气体的循环过程,求:(1) 气体循环一次,在吸热过程中从外界共吸收的热量;(2) 气体循环一次对外做 的净功;(3) 证明在abcd 四态, 气体的温度有T a T

c =T b T

d 。 15.4130:比热容比γ=1.40的理想气体进行如图所示 的循环。已知状态A 的温度为300 K 。求: (1) 状态B 、C 的温度; p 9p V 0 0203图 V (m 3) 100 200 300 4104图 10-3 m 3) 4110图

(2) 每一过程中气体所吸收的净热量。

16.4258:已知某理想气体分子的方均根速率为1s m 400-?。

当其压强为1 atm 时,求气体的密度。

一、选择题

1.4251:D ;2.4252:D ;3.4014:C ;4.4022:C ;5.4023:C ;6.4058:C ;

7.4013:C ;8.4012:B ;9.4039:D ;10.4041:B ;11.4084:C ;12.4133:D ;

13.4098:D ;14.4089:C ;15.4094:B ;16.4100:B ;17.4095:A ;18.4116:A ;

19.4121:D ;20.4122:D ;21 .4123:B ;22.4124:C ;23.4125:D ;24.4126:D ;

25.4135:D ;26.4136:C ;27.4142:A ;28.4143:C ;29.4101:A ;30.4056:B ;

31.4407:C ;32.4465:B ;33.4955:B ;

二、填空题

1.4008: 3m kg 04.1-?

2.4253: 0 ; kT /m

3.4017: 6.23×10 3 ; 6.21×2110-; 1.035×2110-

4.4018: 23kT ; 25kT ; 25

MRT /M mol

5.4025: 6.59×2610-kg

6.4068: 28×310-kg/mol

7.4069: 1.93; 4.01×104

8.4075: 28×310-kg/mol ; 1.5×103J

9.4273: 4.0×310-kg

10.4655: 5/3

11.4656: 0023V p ; 0025V p ; R V p 13800

12.4016: 12.5J ; 20.8J ; 24.9J

13.0192: nf (v )d x d y d z d v

14.4029: (ln2)RT /(M mol g )

15.4282: (2) ; (1)

16.4459: ?∞100d )(v v f ; ?∞

100d )(v

v Nf

17.4040: 1000m/s ; 10002?m/s

18.4042: 495m/s

19.4092: ||1W - ; ||2W -

20.4108: >0 ; >0

21.4316: AM ; AM 、BM

22.4584: 等压 ; 等压; 等压

23.4683: 吸热 ; 放热; 放热

24.4109: 500 ; 700

25.4319: W /R ; W 27 26.4472: 1123V p ; 0

27.4689: 1:2 ; 5:3; 5:7

28.5345: 31064.8?

29.4127: 500; 100

30.4128: 200J

31.4698: 11+=w η(或11-=ηw ) 32.4701: 40J ; 140J

33.4336: 不变 ; 增加

34.4596: 状态几率增大 ; 不可逆的

35.4154: V 2; 1121)/(T V V -γ ; 12121)/)(/(-γV V V RT

36.4006: 1.33×105 Pa

37.4956: 2

三、计算题

1.4302:解:0.8×221v M =(M / M mol )T R ?25,∴ T =0.8 M mol v 2 / (5R )=0.062 K-----3

又: ?p =R ?T / V (一摩尔氧气)

∴?p =0.51 Pa--------------------------------------------------------------------------2分

2.4070:解:定向运动动能221v Nm ,气体内能增量T ik N ?21,i =3。按能量守恒应有:

221v Nm =T ik N ?21, ∴ A N T iR m /2?=v ----------------------2分

(1) ()()===?iR M iR m N T A //2mol 2v v 6.42 K-------------------2分

(2) ()V T R M M p //mol ?=?=6.67×10-4 Pa-------------------------2分

(3) ()T iR M M U ?=?21/mol =2.00×103 J------------------------------2分

(4) J 1033.12122-?=?=?T ik ε-------------------------------------------2分

3.4077:解:(1) 设分子数为N ,据: U = N (i / 2)kT 及 p = (N / V )kT 得: p = 2U / (iV ) = 1.35×105 Pa-----------------------------------------------4分

(2) 由: kT N kT U w 2523=

得: ()21105.75/3-?==N U w J--------------------------------3分

又:

kT N U 25=

得: T = 2 U / (5Nk )=362k ------------------------------------------3分

4.4301:解:A = Pt = T iR v ?21---------------------------2分

∴?T = 2Pt /(v iR )=4.81 K----------------------------3分

5.4111:解:氦气为单原子分子理想气体,3=i

(1) 等体过程,V =常量,W =0,据Q =U ?+W 可知:

)(12T T C M M U Q V mol -=?==623 J ----------------------------3分

(2) 定压过程,p = 常量,

)(12T T C M M Q p mol -==1.04×103 J ;U ?与(1) 相同

417=?-=U Q W J------------------------------------------------4分

(3) Q =0; U ?与(1) 相同; J 623-=?-=U W (负号表示外界作功)----------3分

6.4324:解:初态参量p 0、V 0、T 0。末态参量p 0、5V 0、T 。由 p 0V 0 /T 0 = p 0(5V 0) /T 得: T = 5T 0 ----------------------1分 p -V 图如图所示-------------------2分 等温过程:ΔU=0 Q T =W T =( M /M mol )RT ln(V 2 /V 1) =3RT 0ln5 =1.09×104 J--------------2分

等体过程: W V = 0

Q V =ΔU V = ( M /M mol )C V ΔT =( M /M mol )C V (4T 0) =3.28×103C V ---------2分 由: Q = Q T +Q V

得: C V =(Q -Q T )/(3.28×103)=21.0 J·mol -1·K -1

40.1=+==V V V p

C R C C C γ------------------------------3分 7.4587:解:(1) 气体对外作的功等于线段c a 下所围的面积

W =(1/2)×(1+3)×1.013×105×2×103- J =405.2 J-------------3分

(2) 由图看出 P a V a =P c V c ∴T a =T c --------------------------------2分

内能增量 0=?U ----------------------------------------------------------------2分

(3) 由热力学第一定律得:J 2.405=+?=W U Q ------------------3分

8.5347:解:该氮气系统经历的全部过程如图

设初态的压强为p 0、体积为V 0、温度为T 0,而终态压强为p 0、体积为V 、温度为T 。在全部过程中氮气对外所作的功 W = W (等压)+ W (等温) W (等压) = p 0(2 V 0-V 0)=RT 0-------------------------1分 W (等温) =4 p 0 V 0ln (2 p 0 / p 0) = 4 p 0 V 0ln 2 = 4RT 0ln2----------2分 ∴ W =RT 0 +4RT 0ln 2=RT 0 (1+ 4ln 2 )=9.41×103 J-----------------2分 氮气内能改变: )4(25)(000T T R T T C U V -=-=?

=15RT 0 /2=1.87×104 --------------------------3分

氮气在全部过程中吸收的热量: Q =△U +W =2.81×104 J---------2分

9.0203:解:设a 状态的状态参量为p 0, V 0, T 0,则p b =9p 0, V b =V 0, T b =(p b /p a )T a =9T 0 ---1分

O p p 0

V 0 5V 0 V T 0 5T 0 p (atm)

V V

2V 0 V 0 1 2

∵ 2020V V p p c c =; ∴0003V V p p V c ==-----------------------1分

∵ p c V c =RT c ; ∴T c = 27T 0 -------------------------------------1分 (1) 过程Ⅰ

)9(23)(00T T R T T C Q a b V V -=

-=012RT =----------------1分 过程Ⅱ Q p = C p (T c -T b ) = 45 RT 0 ----------------------------------------1分

过程Ⅲ ?+-=a c V V c a V V V V p T T C Q 2020/d )()()(3)27(2333200

00c a V V V p T T R -+-= 020*******.473)27(39RT V V V p RT -=-+-=----------------3分

(2) %3.1645127.471||1000=+-=+-=RT RT RT Q Q Q p V η--------------------------2分

10.4097:解:(1) 312111035.5)/ln(?==V V RT Q J -----------------------3分

(2) 25.0112=-=T T η;311034.1?==Q W ηJ-----------------------4分

(3) 3121001.4?=-=W Q Q J ----------------------------------------------3分

11.4104:解:由图,p A =300 Pa ,p B = p C =100 Pa ;V A =V C =1 m 3,V B =3 m 3。

(1) C →A 为等体过程,据方程p A /T A = p C /T C 得:T C = T A p C / p A =100 K-----------2分

B →

C 为等压过程,据方程V B /T B =V C /T C 得:T B =T C V B /V C =300 K------------------2分

(2) 各过程中气体所作的功分别为:A →B :

))((211C B B A V V p p W -+==400 J B →C :W 2 = p B (V C -V B ) =-200 J

C →A : W 3 =0 -------------------------------------3分

(3) 整个循环过程中气体所作总功为:W = W 1 +W 2 +W 3 =200 J

因为循环过程气体内能增量为ΔU =0,因此该循环中气体总吸热:Q =W +ΔU =200 J----3分

12.4114:解:(1) p -V 图如右图--------------------------------------2分

(2) T 4=T 1U ?=0----------2分 (3) )()(2312T T C M M T T C M M Q V mol p mol -+-= )]2(2[23)2(25111111p p V V V p -+-= 11211V p ==5.6×102 J-----------------4分 (4) W =Q =5.6×102 J--------------------------2分 13.4155:解:(1) ∵ 刚性多原子分子 i = 6,3/42=+=i i γ------------------1分

∴600)/(1

1212==-γγp p T T K----------------------2分

3

121048.7)(21)/(?=-=?T T iR M M U mol J----------------------------2分

(2) ∵绝热 W =-ΔU =-7.48×103 J (外界对气体作功)------------2分

T 3

T T 2 T 1

1 2 1 2 (L) p (atm)

O

(3) ∵p 2 = n kT 2

∴n = p 2 /(kT 2 )=1.96×1026 个/m 3 --------------------------------------------3分 14.4110:解:(1) 过程ab 与bc 为吸热过程,吸热总和为:

Q 1=C V (T b -T a )+C p (T c -T b )

)(25)(23b b c c a a b b V p V p V p V p -+-==800J---------------4分

(2) 循环过程对外所作总功为图中矩形面积:W = p b (V c -V b )-p d (V d -V a ) =100J----------2分

(3) T a =p a V a /R ,T c = p c V c /R ; T b = p b V b /R ,T d = p d V d /R

T a T c = (p a V a p c V c )/R 2=(12×104)/R 2

T b T d = (p b V b p d V d )/R 2=(12×104)/R 2

∴ T a T c =T b T d ---------------------------------------------------------------------------4分 15.4130:解:由图得: p A =400 Pa , p B =p C =100 Pa , V A =V B =2 m 3,V C =6 m 3

(1) C →A 为等体过程,据方程p A /T A = p C /T C ,得:T C = T A p C / p A =75 K ---------------1分

B →

C 为等压过程,据方程 V B /T B =V C T C ,得:T B = T C V B / V C =225 K-----------------1分

(2) 根据理想气体状态方程求出气体的物质的量(即摩尔数),为:mol 321.0==A A A mol RT V p M m 由4.1=γ知该气体为双原子分子气体,R C V 25=,R C P 27=

B →

C 等压过程吸热:1400)(272-=-=B C T T R Q νJ--------------------2分

C →A 等体过程吸热:1500)(253=-=C A T T R Q νJ-----------------------2分

循环过程ΔU =0,整个循环过程净吸热:

600))((21=--==C B C A V V p p W Q J

∴ A →B 过程净吸热:Q 1=Q -Q 2-Q 3=500J----------------------------------------4分

16.4258:解: 2

23131v v ρ==nm p

∴90.1/32==v p ρkg/m 3 ------------------------------------------------------5分

大学物理测试题及答案3

波动光学测试题 一.选择题 1. 如图3.1所示,折射率为n2 、厚度为e的透明介质薄膜的上方和下方的透明介质的折射率分别为n1和n3,已知n1 <n2 >n3,若用波长为(的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①②示意)的光程差是 (A) 2n2e. (B) 2n2e-(/(2 n2 ). (C) 2n2e-(. (D) 2n2e-(/2. 2. 如图 3.2所示,s1、s2是两个相干光源,它们到P点的距离分别为r1和r2,路径s1P垂直穿过一块厚度为t1,折射率为n1的介质板,路径s2P垂直穿过厚度为t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (r2 + n2 t2)-(r1 + n1 t1). (B) [r2 + ( n2-1) t2]-[r1 + (n1-1)t1]. (C) (r2 -n2 t2)-(r1 -n1 t1). (D) n2 t2-n1 t1. 3. 如图3.3所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e,并且n1<n2>n3,(1 为入射光在折射率为n1 的媒质中的波长,则两束反射光在相遇点的位相差为 (A) 2 ( n2 e / (n1 (1 ). (B) 4 ( n1 e / (n2 (1 ) +(. (C) 4 ( n2 e / (n1 (1 ) +(. (D) 4( n2 e / (n1 (1 ). 4. 在如图3.4所示的单缝夫琅和费衍射实验装置中,s为单缝,L为透镜,C为放在L的焦面处的屏幕,当把单缝s沿垂直于透镜光轴的方向稍微向上平移时,屏幕上的衍射图样 (A) 向上平移.(B) 向下平移.(C) 不动.(D) 条纹间距变大. 5. 在光栅光谱中,假如所有偶数级次的主极大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为 (A) a = b. (B) a = 2b. (C) a = 3b. (D) b = 2a. 二.填空题 1. 光的干涉和衍射现象反映了光的性质, 光的偏振现象说明光波是波. 2. 牛顿环装置中透镜与平板玻璃之间充以某种液体时,观察到第10级暗环的直径由1.42cm 变成1.27cm,由此得该液体的折射率n = . 3. 用白光(4000?~7600?)垂直照射每毫米200条刻痕的光栅,光栅后放一焦距为200cm的凸透镜,则第一级光谱的宽度为. 三.计算题 1. 波长为500nm的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上,在观察反射光的干涉现象中,距劈尖棱边l = 1.56cm的A处是从棱边算起的第四条暗条纹中心. (1) 求此空气劈尖的劈尖角( . (2) 改用600 nm的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A处是明条纹,还是暗条纹? 2. 设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察波长为(=589 nm的钠黄光的光谱线. (1) 当光线垂直入射到光栅上时,能看到的光谱线的最高级数km 是多少? (2) 当光线以30(的入射角(入射线与光栅平面法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级数km 是多少? 3.在杨氏实验中,两缝相距0.2mm,屏与缝相距1m,第3明条纹距中央明条纹7.5mm,求光波波长?

大学物理_热学试题

大学物理热学试卷 一、选择题: 1、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为 ()()() 2 /122 /122 /12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶ C p 为: (A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. [ ] 2、温度为T 时,在方均根速率s /m 50) (2 12±v 的速率区间内,氢、氨两种气体分子数占总分 子数的百分率相比较:则有(附:麦克斯韦速率分布定律: v v v ?????? ? ? ?-?? ? ??π=?22 2 /32exp 24kT m kT m N N , 符号exp(a ),即e a .) (A) ()()22N H //N N N N ?>? (B) ()()22N H //N N N N ?=? (C) ()()22N H //N N N N ??温度较高时()()22N H //N N N N ?

大学物理章热力学基础试题.doc

第 9 章热力学基础 一、选择题 1.对于准静态过程和可逆过程 , 有以下说法.其中正确的是 [ ] (A)准静态过程一定是可逆过程 (B)可逆过程一定是准静态过程 (C)二者都是理想化的过程 (D)二者实质上是热力学中的同一个概念 2.对于物体的热力学过程 , 下列说法中正确的是 [ ] (A)内能的改变只决定于初、末两个状态,与所经历的过程无关 (B)摩尔热容量的大小与所经历的过程无关 (C)在物体内 , 若单位体积内所含热量越多 , 则其温度越高 (D)以上说法都不对 3.有关热量 , 下列说法中正确的是 [ ] (A)热是一种物质 (B)热能是物质系统的状态参量 (C)热量是表征物质系统固有属性的物理量 (D)热传递是改变物质系统内能的一种形式 4.关于功的下列各说法中 , 错误的是 [ ] (A)功是能量变化的一种量度 (B)功是描写系统与外界相互作用的物理量 (C)气体从一个状态到另一个状态 , 经历的过程不同 , 则对外作的功也不一样 (D)系统具有的能量等于系统对外作的功

5. 理想气体状态方程在不同的过程中有不同的微分表达式, 式p d V M R d T 表 示 [ ] (A)等温过程(B)等压过程 (C) 等体过程(D)绝热过程 6.理想气体状态方程在不同的过程中可以有不同的微分表达式 , 式V d p M R d T 表示 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程 7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式V d p pdV 0表 示 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程 8.理想气体状态方程在不同的过程中可以有不同的微分表达式 , 则式 M V d p p dV R d T 表示 [ ] (A)等温过程(B)等压过程 (C)等体过程(D)任意过程 9.热力学第一定律表明 : [ ] (A)系统对外作的功不可能大于系统从外界吸收的热量 (B)系统内能的增量等于系统从外界吸收的热量 (C)不可能存在这样的循环过程,在此过程中,外界对系统所作的功

大学物理热学练习题

大学物理热学练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热学(一)理想气体、压强公式 一、 选择题 1、若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该理想气体的分子数为: (A) pV / m . (B) pV / (kT ). (C) pV / (RT ). (D) pV / (mT ). [ ] 2、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32= v . (B) m kT x 3312=v . (C) m kT x /32=v (D) m kT x /2=v [ ] 3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v . (D) =x v 0 . [ ] 4、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为 ()()() 2 /122 /122 /12::C B A v v v =1∶2∶4,则其压强之比 A p ∶ B p ∶ C p 为: (A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. [ ]

二、填空题 1、质量一定的某种理想气体, (1) 对等压过程来说,气体的 密度随温度的增加而_________,并绘出曲 线. (2) 对等温过程来说,气体的密度随压强的增加而______________,并绘 出曲线. 2、在推导理想气体压强公式中,体现统计意义的两条假设是 (1) _________________________________; (2) _________________________________. 3、A 、B 、C 三个容器中皆装有理想气体,它们的分子数密度之比为n A ∶n B ∶n C =4∶2∶1,而分子的平均平动动能之比为A w ∶B w ∶ C w =1∶2∶ 4,则它们的压强之比A p ∶B p ∶C p =__________. 三、 计算题 O T T ρ

大学物理力学试题

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 (A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向. [ ] 2、一质点沿x 轴作直线运动,其v -t 曲 线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. [ ] 3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分 别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. [ ] 4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=, 则一秒钟后质点的速度 (A) 等于零. (B) 等于-2 m/s . (C) 等于2 m/s . (D) 不能确定. [ ] 5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中 a 、 b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动. [ ] 6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ?? ? ??+??? ??t y t x [ ] 7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中, 其平均速度大小与平均速率大小分别为 -12 O a p

大学物理章热力学基础试题(卷)

第9章热力学基础 一、选择题 1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是 [ ] (A) 准静态过程一定是可逆过程 (B) 可逆过程一定是准静态过程 (C) 二者都是理想化的过程 (D) 二者实质上是热力学中的同一个概念 2. 对于物体的热力学过程, 下列说法中正确的是 [ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关 (C) 在物体内, 若单位体积内所含热量越多, 则其温度越高 (D) 以上说法都不对 3. 有关热量, 下列说法中正确的是 [ ] (A) 热是一种物质 (B) 热能是物质系统的状态参量 (C) 热量是表征物质系统固有属性的物理量 (D) 热传递是改变物质系统内能的一种形式 4. 关于功的下列各说法中, 错误的是 [ ] (A) 功是能量变化的一种量度 (B) 功是描写系统与外界相互作用的物理量 (C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样 (D) 系统具有的能量等于系统对外作的功 5. 理想气体状态方程在不同的过程中有不同的微分表达式, 示 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程 6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程

7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式0d d =+V p p V 表示 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 绝热过程 8. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 则式 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 任意过程 9. 热力学第一定律表明: [ ] (A) 系统对外作的功不可能大于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量 (C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功 不等于系统传给外界的热量 (D) 热机的效率不可能等于1 10. 对于微小变化的过程, 热力学第一定律为d Q = d E +d A .在以下过程中, 这三者同时为正的过程是 [ ] (A) 等温膨胀 (B) 等容膨胀 (C) 等压膨胀 (D) 绝热膨胀 11. 对理想气体的等压压缩过程,下列表述正确的是 [ ] (A) d A >0, d E >0, d Q >0 (B) d A <0, d E <0, d Q <0 (C) d A <0, d E >0, d Q <0 (D) d A = 0, d E = 0, d Q = 0 12. [ ] (A) 理想气体 (B) 等压过程 (C) 准静态过程 (D) 任何过程 13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2 ,(V p . 一次是等温压缩到2V , 外界作功A ;另一次为绝热压缩到2 V , 外界作功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较 14. 1mol 理想气体从初态(T 1、p 1、V 1 )等温压缩到体积V 2, 外界对气体所作的功为

(完整版)大学物理热学习题附答案

一、选择题 1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32= v (B) m kT x 3312 =v (C) m kT x /32 =v (D) m kT x /2=v 2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8= x v (B) m kT π831= x v (C) m kT π38=x v (D) =x v 0 3.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等 4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为: (A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 3 5.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)? (A) 66.7% (B) 50% (C) 25% (D) 0 6.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系: (A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同 (C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同 7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同 (B) 温度、压强都不相同 (C) 温度相同,但氦气的压强大于氮气的压强 (D) 温度相同,但氦气的压强小于氮气的压强 8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。这些说法中正确的是 (A) (1)(2)(4);(B) (1)(2)(3);(C) (2)(3)(4);(D) (1)(3) (4); 9.设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温度的氧气和氢气的速率之比2 2 H O /v v 为 (A) 1 (B) 1/2 (C) 1/3 (D) 1/4 10.设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令 ()2 O p v 和 ()2 H p v 分别

大学物理题库-热力学

热力学选择题 1、在气缸中装有一定质量的理想气体,下面说法正确的是:( ) (A ) 传给它热量,其内能一定改变。 (B ) 对它做功,其内能一定改变。 (C ) 它与外界交换热量又交换功,其内能一定改变。 (D ) 以上说法都不对。 (3分) 答案:D 2、理想气体在下述过程中吸收热量的是( ) (A )等容降压过程 (B )等压压缩过程 (C )绝热膨胀过程 (D )等温膨胀过程 (3分) 答案:D 3、理想气体卡诺循环过程的两条绝热线下的面积大小分别为1S 和2S ,二者的关系是( ) (A )21S S > (B )21S S < (C )S 1 =S 2 (D )不能确定 (3分) 答案:C 4、有两个可逆的卡诺循环,ABCDA 和11111A B C D A ,二者循环线包围的面积相等,如图所示。设循环ABCDA 的热效率为η,每次循环从高温热源吸收热量Q ,循环11111A B C D A 的热效率为 η,每次循环从高温热源吸收热量1Q ,则( ) (A )11,Q Q <<ηη (B )11,Q Q ><ηη (C )11,Q Q <>ηη (D )11,Q Q >>ηη (3分) 答案:B 5、一定量的理想气体,分别经历如图所示的abc 过程(图中虚线ac 为等温线)和 def 过程(图中虚线 df 为绝热线)。试判断这两种过程是吸热还是放热( ) (A )abc 过程吸热,def 过程放热。(C )abc 过程和 def 过程都吸热。 P P V

(B )abc 过程放热 def 过程吸热 (D )abc 过程和 def 过程都放热。 V V (3分) 答案:A 6、对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外做得功三者均为负值?( ) (A )等容降压过程。 (B) 等温膨胀过程。 (C) 绝热膨胀过程。 (D) 等压压缩过程。 (3分) 答案:D 7、关于可逆过程,下列说法正确的是( ) (A ) 可逆过程就是可以反向进行的过程。 (B ) 凡是可以反向进行的过程均为可逆过程。 (C ) 可逆过程一定是准静态过程。 (D ) 准静态过程一定是可逆过程。 (3分) 答案:C 8、下面正确的表述是( ) (A) 功可以全部转化为热,但热不能全部转化为功。 (B )热量能从高温物体传到低温物体,但不能从低温物体传到高温物体。 (C )开尔文表述指出热功转换的可逆性。 (D )克劳修斯表述指出了热传导的不可逆性。 (3分) 答案:D 9、一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J ,则对外作功( ) (A) 2 000J (B) 1 000J (C) 4 000J (D) 500J (3分) 答案:B 10、“理想气体和单一热源接触作等温臌胀时,吸收的热量全部用来对外作功。”对此说法,有如下几种评论,哪种是正确的( ) (A )不违反热力学第一定律,但违反热力学第二定律 (B )不违反热力学第二定律,但违反热力学第一定律 (C )不违反热力学第一定律,也不违反热力学第二定律 (D )违反热力学第二定律,也违反热力学第二定律 (3分)

大学物理学试卷3及答案汇编

—填空题(共32分) 1.(本题3分)(0282) 如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向 成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度 a max=____________. 2.(本题3分)(0404) 地球的质量为m,太阳的质量为M地心与日心的距离为R,引力常量为G, 则地球绕太阳作圆周运动的轨道角动量为L=___________. 3。(本题3分)(4273) 一定量H2气(视为刚性分子的理想气体),若温度每升高1K,其内能增加41.6 J,则该H2气的质量为___________(普适气体常量R=8.31J·mol-1·k-1) 4.(本题3分)(0238) 处于平衡态A的一定量的理想气体,若经准静态等体过程变到平衡态B,将 从外界吸收热量416 J,若经准静态等压过程变到与平衡态B有相同温度的平衡 态C,将从外界吸收热量582J,所以,从平衡态A变到平衡态C的准静态等压 过程中气体对外界所作的功为______________________. 5.(本题4分)(4109) 一定量的某种理想气体在等压过程中对外作功为200J.若此种气体为单 原子分子气体,则该过程中需吸热__________J;若为双原子分子气体,则 需吸热_____________J. 6.(本题3分)(0260) 热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与 热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了__________________ ________的过程是不可逆的,而克劳修斯表述指出了__________________________ 的过程是不可逆的. 7.(本题3分)(1237) 两个电容器1和2,串联以后接上电动势恒定的电源充电.在电源保持联接 的情况下,若把电介质充入电容器2中,则电容器1上的电势差________________;电容器1极板上的电荷_______________________(填增大、减小、不变) 8.(本题3分)(2521) 一线圈中通过的电流I随时间t变化 的曲线如图所示.试定性画出自感电动 势?L随时间变化的曲线.(以I的正向作 为?的正向)

大学物理力学题库及答案

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为 x = 3t-5t 3 + 6 (SI),则该质点作 2、一质点沿x 轴作直线运动,其v t 曲 线如图所示,如t=0时,质点位于坐标原点, 则t=4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) 2 m . (E) 5 m. [ b ] pc 的上端点,一质点从p 开始分 到达各弦的下端所用的时间相比 6、一运动质点在某瞬时位于矢径 r x, y 的端点处,其速度大小为 7、 质点沿半径为R 的圆周作匀速率运动,每 T 秒转一圈.在2T 时间间隔中, 其平均速度大小与平均速率大小分别为 (A) 2 R/T , 2 R/T . (B) 0,2 R/T (C) 0,0. (D) 2 R/T , 0. [ b ] 8 以下五种运动形式中,a 保持不变的运动是 4、 一质点作直线运动,某时刻的瞬时速度 v 2 m/s ,瞬时加速度a 2m/s , 则一秒钟后质点的速度 (B)等于 2 m/s . (D)不能确定. [ d ] (A)等于零. (C)等于 2 m/s . 5 、 一质点在平面上运动, 已知质点位置矢量的表示式为 r at i bt 2j (其中 a 、 b 为常量),则该质点作 (A)匀速直线运动. (B)变速直线运动. (C)抛物线运动. (D) 一般曲线运 动. [ b ] [d ] (A) 匀加速直线运动,加速度沿 x 轴正方向. (B) 匀加速直线运动,加速度沿 x 轴负方向. (C) 变加速直线运动,加速度沿 x 轴正方向. (D) 变加速直线运动,加速度沿 x 轴负方向. 3、图中p 是一圆的竖直直径 别沿不同的弦无摩擦下滑时, 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. (A) d r dt (C) d r dt (B) (D) d r dt dx 2 .dt 2 d y dt [d ] a

(完整版)大学物理热学习题附答案

、选择题 1.一定量的理想气体贮于某一容器中,温度为 T ,气体分子的质量为 m 。根据理想气体的分子模型和统 计假设,分子速度在 x 方向的分量平方的平均值 2.一定量的理想气体贮于某一容器中,温度为 T ,气体分子的质量为 m 。根据理想气体分子模型和统计 假设,分子速度在 x 方向的分量的平均值 都相等 (B) 相等, w 不相等 (C) w 相等, 不相等 4.在 标准状态下,若氧气 (视为刚性双原子分子的理想气体 比 E 1 / E 2 为: (A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 3 5.水蒸气分解成同温度的氢气和氧气,内能增加了百分之 几 (A) 66.7% (B) 50% (C) 25% (D) 0 6.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数 n , 单位体积内的气体分子的总平动动能 (E K /V),单位体积内的气体质量 ,分别有如下关系: (A) n 不同, (E K /V)不同, 不同 (B) n 不同,(E K /V)不同, 相同 (C) n 相同, (E K /V)相同, 不同 (D) n 相同, (E K /V)相同, 相同 7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同 (B) 温度、压强都不相同 (C) 温度相同,但氦气的压强大于氮气的压强 (D) 温度相同,但氦气的压强小于氮气的压强 8.关于温度的意义,有下列几种说法: (1) 气体的温度是分子平均平动动能的量度; (2) 气体的温度是 大量气体分子热运动的集体表现,具有统计意义; (3) 温度的高低反映物质内部分子运动剧烈程度的不 同; (4) 从微观上看,气体的温度表示每个气体分子的冷热程度。这些说法中正确的是 (A) (1)(2)(4) ; (B) (1)(2)(3) ; (C) (2)(3)(4);(D) (1)(3) (4); 9.设声波通过理想气体的速率正比于气体分 子的热运动平均速率,则声波通过具有相同温度的氧气和 氢气的速率之比 vO 2 /v H 2 为 (A) 1 (B) 1/2 (C) 1/3 (D) 1/4 10.设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令 v p O 2 和 vp H 2 分别 (A) v x 3k m T 2 1 3kT v x 2 (B) 3 m (C) v x 3kT/m 2 (D) v x kT /m 1 8kT 8kT 8kT 1 8kT v x v x (A) m (B) 3 m (C) 3 m 3.温度、压强相同的氦气和氧气,它们分子的平均动v x (D) v x 0 和平均平动动能 w 有如下关系: (A) 和 w (D) 和w 都不相等 )和氦气的体积比 V 1 / V 2=1 / 2 ,则其内能之 (不计振动自由度和化学能 )?

大学物理热学试题题库及答案

大学物理热学试题题库及答案 一、选择题:(每题3分) 1、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态.A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为 (A) 3 p1.(B) 4 p1. (C) 5 p1.(D) 6 p1.[] 2、若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为: (A) pV / m.(B) pV / (kT). (C) pV / (RT).(D) pV / (mT).[] 3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1 kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量为: (A) (1/16) kg.(B) 0.8 kg. (C) 1.6 kg.(D) 3.2 kg.[] 4、在标准状态下,任何理想气体在1 m3中含有的分子数都等于 (A) 6.02×1023.(B)6.02×1021. (C) 2.69×1025(D)2.69×1023. (玻尔兹曼常量k=1.38×10-23 J·K-1 ) [] 5、一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度 (A) 将升高.(B) 将降低. (C) 不变.(D)升高还是降低,不能确定.[] 6、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p1和p2,则两者的大小关系是: (A) p1> p2.(B) p1< p2. (C) p1=p2.(D)不确定的.[] 7、已知氢气与氧气的温度相同,请判断下列说法哪个正确? (A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强. (B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度. (C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大. (D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大.[] 8、已知氢气与氧气的温度相同,请判断下列说法哪个正确? (A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强. (B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.

大学物理电磁学题库及答案

一、选择题:(每题3分) 1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2 r 2B . (B) r 2B . (C) 0. (D) 无法确定的量. [ B ] 2、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . (B) 2 r 2B . (C) - r 2B sin . (D) - r 2B cos . [ D ] 3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ C ] 4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 (A) 方向垂直环形分路所在平面且指向纸内. (B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零. [ E ] 5、通有电流I 的无限长直导线有如图三种形状, 则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ D ] 6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方 形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01 B ,02 B . (B) 01 B ,l I B 0222 . (C) l I B 0122 ,02 B . a

大学物理医学物理学加答案完整版

第一章刚体转动1名词解释: a刚体在任何情况下大小、形状都保持不变的物体. b力矩给定点到力作用线任意点的向径和力本身的矢积,也指力对物体产生转动效应的量度,即力对一轴线或对一点的矩。 c转动惯量反映刚体的转动惯性大小 d进动自转物体之自转轴又绕着另一轴旋转的现象,又可称作旋进 2填空: (1) 刚体转动的运动学参数是角速度、角位移、角加速度。 (2) 刚体转动的力学参数是转动惯量、力矩。 (3) 陀螺在绕本身对称轴旋转的同时,其对称轴还将绕力矩回转,这种回转现象称为进动。 3. 问答: (1) 有一个鸡蛋不知是熟还是生,请你判断一下,并说明为什么? 熟鸡蛋内部凝结成固态,可近似为刚体,使它旋转起来后对质心轴的转动惯量可以认为是不变的常量,鸡蛋内各部分相对转轴有相同的角速度,因桌面对质心轴的摩擦力矩很小,所以熟鸡蛋转动起来后,其角速度的减小非常缓慢,可以稳定地旋转相当长的时间。 生鸡蛋内部可近似为非均匀分布的流体,使它旋转时,内部各部分状态变化的难易程度不相同,会因为摩擦而使鸡蛋晃荡,转动轴不稳定,转动惯量也不稳定,使它转动的动能因内摩擦等因素的耗散而不能保持,使转动很快停下来。 (2) 地球自转的角速度方向指向什么方向?作图说明。 (3) 中国古代用指南针导航,现代用陀螺仪导航,请说明陀螺仪导航的原理。 当转子高速旋转之后,对它不再作用外力矩,由于角动量守恒,其转轴方向将保持恒定不变,即把支架作任何转动,也不影响转子转轴的方向。 (4) 一个转动的飞轮,如果不提供能量,最终将停下来,试用转动定律解释该现象。 由转动定律可知M=Jdw/dt转动着的轮子一般总会受到阻力矩的作用,若不加外力矩,克服阻力矩做功,轮子最终会停下来(受阻力矩作用W越来越小)

2019整理大学物理课后习题答案(上下册全)武汉大学出版社 第7章 热力学基础习题解答.doc

第7章 热力学基础 7-1在下列准静态过程中,系统放热且内能减少的过程是[ D ] A .等温膨胀. B .绝热压缩. C .等容升温. D .等压压缩. 7-2 如题7-2图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A →B 等压过程; A →C 等温过程; A →D 绝热过程 . 其中吸热最多的过程是[ A ] A .A →B 等压过程 B .A →C 等温过程. C .A → D 绝热过程. 题7-2图 D .A →B 和A → C 两过程吸热一样多. 7-3 一定量某理想气体所经历的循环过程是:从初态(V 0 ,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度T 0, 最后经等温过程使其体积回复为V 0 , 则气体在此循环过程中[ B ] A .对外作的净功为正值. B .对外作的净功为负值. C .内能增加了. D .从外界净吸收的热量为正值. 7-4 根据热力学第二定律,判断下列说法正确的是 [ D ] A .功可以全部转化为热量,但热量不能全部转化为功. B .热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体. C .不可逆过程就是不能向相反方向进行的过程. D .一切自发过程都是不可逆的. 7-5 关于可逆过程和不可逆过程有以下几种说法,正确的是[ A ] A .可逆过程一定是准静态过程. B .准静态过程一定是可逆过程. C .无摩擦过程一定是可逆过程. D .不可逆过程就是不能向相反方向进行的过程. 7-6 理想气体卡诺循环过程的两条绝热线下的面积大小(题7-6图中阴影部分)分别为S 1和S 2 , 则二者的大小关系是[ B ] A .S 1 > S 2 . B .S 1 = S 2 . C .S 1 < S 2 . D .无法确定. 题7-6图 V

大学物理热学练习题

热学(一)理想气体、压强公式 一、选择题 1、若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该理想气体的分子数为: (A) pV / m . (B) pV / (kT ). (C) pV / (RT ). (D) pV / (mT ). [ ] 2、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32= v . (B) m kT x 3312=v . (C) m kT x /32=v (D) m kT x /2=v [ ] 3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v . (D) =x v 0 . [ ] 4、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()() 2/12 2/122/12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为: (A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. [ ] 二、填空题

1、质量一定的某种理想气体, (1) 对等压过程来说,气体的密度随温度的增加而_________, 并绘出曲线. (2) 对等温过程来说,气体的密度 随压强的增加而 ______________,并绘出曲线. 2、在推导理想气体压强公式中,体现统计意义的两条假设是 (1) _________________________________; (2) _________________________________. 3、A 、B 、C 三个容器中皆装有理想气体,它们的分子数密度之比为n A ∶n B ∶n C =4∶2∶1, 而分子的平均平动动能之比为 A w ∶ B w ∶C w =1∶2∶4,则它们的压强之比 A p ∶ B p ∶ C p =__________. 三、计算题 两个相同的容器装有氢气,以一细玻璃管相连通,管中用一滴水银作活塞,如图所示.当左边容器的温度为 0℃、而右边容器的温度为20℃时,水银滴刚好在管的中央.试问,当左边容器温度由 0℃增到 5℃、而右边容器温度由20℃增到30℃时,水银滴是否会移动如何移动 答案 一、选择题 O T T ρ

大学物理考试试题与解答

西华大学课程考核半期试题卷 试卷编号 ( 2011__ 至 2012____ 学年 第__1__学期 ) 课程名称: 大学物理A(2) 考试时间: 80 分钟 课程代码: 7200019 试卷总分: 100 分 考试形式: 闭卷 学生自带普通计算器: 题号 一 二 三 四 五 六 七 八 九 十 十一 十二 总分 得分 评卷 教师 一.(10分)一电子绕一带均匀电荷的长直导线以2×104 m ·s -1 的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31 kg ,电子电量e =1.60×10-19 C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强 r E 0π2ελ= 电子受力大小 r e eE F e 0π2ελ = = ∴ r v m r e 2 0π2=ελ 得 132 0105.12π2-?== e mv ελ1m C -? 二.(20分)如图所示,有一带电量为Q=8.85×10-4C, 半径为R=1.00m 的均匀带电细圆环水平放置。在 圆环中心轴线的上方离圆心R 处,有一质量为m=0.50kg 、带电量为q=3.14×10-7C 的小球。当小球从静止下落到圆心位置时,它的速率为多少m/s ?[重力加速度g=10m/s 2,ε0=8.85×10-12C 2/(N.m 2)] 序号: 年级专业: 教学班号: 学号: 姓名: 装 订 线

图11 解:设圆环处为重力势能零点,无穷远处为电势能零点。 初始状态系统的重力势能为mgR ,电势能为 R qQ 240πε 末状态系统的动能为22 1 mv ,电势能为R qQ 04πε 整个系统能量守恒,故 R qQ mv R qQ mgR 02042124πεπε+= + 解得: 4.13/v m s = = = 三.(20分)一根很长的同轴电缆,由一导体圆柱(半径为a )和一同轴的导体圆管(内、外半径分别为b ,c )构成,如图所示.使用时,电流I 从一导体流去,从另一导体流回.设电流都是均匀地分布在导体的横截面上,求:(1)导体圆柱内(r <a ),(2)两导体之间(a <r <b ),(3)导体圆筒内(b <r <c )以及(4)电缆外(r >c )各点处磁感应强度的大小. 解: ? ∑μ=?L I l B 0d (1)a r < 2202R Ir r B μπ= 2 02R Ir B πμ= (2) b r a << I r B 02μπ= r I B πμ20=

大学物理单元习题及答案(热学部分)

单元习题 热学模块 一、 判断题: 1、 只有处于平衡状态的系统才可用状态参数来表述。( √ ) 2、 温度是标志分子热运动激烈程度的物理量,所以某个分子运动 越快,说明该分子温度越高。( × ) 3、 某理想气体系统内分子的自由度为i ,当该系统处于平衡态时, 每个分子的能量都等于kT i 2 。( × ) 4、 单原子分子的自由度为3,刚性双原子分子的自由度为5,刚 性多原子分子的自由度为6。( √ ) 5、 理想气体物态方程nkT p =中,n 代表物质的量。( × ) 6、 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子 的平均平动动能也相同,则它们的温度、压强都相同。( √ ) 7、 两种理想气体温度相等,则分子的平均平动动能不一定相等。 ( × ) 8、 对给定理想气体,其内能只是温度的函数。( √ ) 9、 热力学第一定律是能量转换和守恒定律,所以凡是满足热力学 第一定律的热力学过程都能够实现。( × ) 10、 可逆过程一定是准静态过程,反之亦然。( × ) 11、 热力循环过程中只要给出高温热源的温度和低温热源的温度,都可以用公式1 2 1T T - =η来计算热机效率。( × )

12、 循环输出净功越大,则热效率越高。( × ) 13、 可逆循环的热效率都相等。( × ) 14、 不可逆循环的热效率一定小于可逆循环的热效率。( × ) 15、 从增加内能的角度来说,作功和热传递是等效的,在本质上无差别。( × ) 16、 不可逆过程是不能回到初态的热力过程。( × ) 17、 热机的循环效率不可能大于1。( √ ) 18、 气体膨胀一定对外做功。( × ) 二、 计算题 1、 一容器内储有氧气,其压强为atm p 0.1=,温度为27℃。 求:(1)分子数密度; (2)氧分子质量; (3)氧气密度; (4)分子的平均平动动能; (5)分子间的平均距离。 解:(1)kT p n nkT p ==; (2)A mol N M m = (3)nm V Nm V M ===ρ (4)kT 2 3= ε (5)n N V d 1 3 ==

相关文档
最新文档