柔性石墨复合接地材料及其接地特性_肖微

柔性石墨复合接地材料及其接地特性_肖微
柔性石墨复合接地材料及其接地特性_肖微

接地材料的选型

接地材料的选型 接地材料是接地的工作主体,材料的选择很重要。下面对常用的接地材料的属性做个简单的介绍。 广泛使用的接地工程材料有各种金属材料(最常用的如扁钢)、接地体、降阻剂和离子接地系统等。金属材料如扁钢,也常用铜材替代,主要用于接地环的建设,这是大多接地工程都选用的;接地体有金属接地体(角钢、铜棒和铜板)这类接地体寿命较短,接地电阻上升快,地网改造频繁(有的地区每年都需要改造),维护费用比较高,但是从传统金属接地极(体)中派生出类特殊结构的接地体(带电解质材料),使用效果比较好,一般称为离子或中空)接地系统;另外就是非金属接地体,使用比较方便,几乎没有寿命的约束,各方面比较认可。 在以下的讨论中以降阻剂、非金属接地块和离子接地系统为代表进行探讨。 降阻剂分为化学将阻剂和物理降阻剂,化学降阻剂自从发现有污染水源事故和腐蚀地网的缺陷以后基本上没有使用了,现在广泛接受的是物理降阻剂(也称为长效型降阻剂)。物理降阻剂是接地工程广泛接受的材料,属于材料学中的不定性复合材料,可以根据使用环境形成不同形状的包裹体,所以使用范围广,可以和接地环或接地体同时运用,包裹在接地环和接地体周围,达到降低接触电阻的作用。并且,降阻剂有可扩散成分,可以改善周边土壤的导电属性。现在的较先进降阻剂都有一定的防腐能力,可以加长地网的使用寿命,其防腐原理一般来说有几种:牺牲阳极保护(电化学防护),致密覆盖金属隔绝空气,加入改善界面腐蚀电位的外加剂成分等方法。物理降阻剂有超过二十年的工程运用历史,经过不断的实践和改进,现在无论是性能还是使用施工工艺都已经是相当成熟的产品了。 非金属接地体有是在通讯、广电等部门广泛使用的工程材料。基本成分是导电能力优越的非金属材料材料复合加工成型的,加工方法有浇注成型和机械压模成型的,一般来说浇注成型的产品结构松散、强度低、导电性能差,而且质量不稳定,一些小型厂家少量生产使用这样的办法;机械压模法,是使用设备在几到十几吨的压力下成型的,不仅尺寸精度较高、外观较好,更重要的是材料结构致密、电学性能好、抗大电流冲击能力强,质量也相当稳定,但是生产成本较高,批量生产多采用。选型时,尽量采用后者,特别是接地体有抗大电流或大冲击电流的要求(如电力工作地、防雷接地)时,不宜采用浇注成型的非金属接地体。非金属接地体的特点是稳定性优越,其气候、季节、寿命都是现有接地材料中最好的,是不受腐蚀的接地体,所以,不需要地网维护,也不需要定期改造,但是,非金属接地体施工需要的地网面积比传统接地面积小很多,但是在不同地质条件下也需要的保证足够接地面积才可以达到良好的效果。 离子(中空)接地系统是传统的金属接地改进而来,从工作原理到材料选用都脱胎换骨的变化,形成各种形状的结构。这些接地系统的共同点是结构部分采用防腐性更好的金属,内填充电解物质及其载体组分的内填料,外包裹导点性能良好的不定性导电复合材料,一般称为外填料。接地系统的金属材料已经出现的有不锈钢、铜包钢和纯铜材的。不锈钢的防腐较钢材好,但是在埋地环境中依然会多多少少的锈蚀,以不锈钢为主体的接地系统不宜在腐蚀性严重的环境中使用。表面处理过的铜是很好的抗锈蚀材料,铜包钢是铜-钢复合材料,钢材表面覆盖铜,可以节约大量的贵金属—铜材。套管法或电镀法生产,表面铜层的厚度从0.01mm到0.50mm,厚度越厚防腐效果越好。纯铜材料防腐性能最好,但是要耗用大量的贵金属,在性能要求较高的工程中使用。由于接地系统大多向垂直方向伸展,所以接地面积大多要求很小,可以满足地形严重局限的工程需要。可以达到非常好的效果。

柔性石墨复合接地体应用技术研究

柔性石墨复合接地体应用技术研究 目前电力系统接地体主要面临腐蚀和降阻问题,而传统广泛使用的镀锌钢降阻效果有限,同时耐腐蚀能力不足,文章对新型柔性石墨复合接地材料的应用效果进行研究,获得该材料的实际效果,为今后推广应用提供经验。 标签:柔性石墨;接地体;应用 随着电力系统容量的不断增大,接地网安全运行的要求越来越严格,对杆塔接地电阻的稳定性的要求也越高。目前电力系统接地体主要面临腐蚀和降阻问题,长期以来,国内外开展了大量接地技术研究课题,提出了等离子接地棒、石墨接地模块、降阻剂等降阻技术,以及阴极保护防腐技术,但至未从根本上解决接地腐蚀及接地降阻问题[1]。 文章从长效稳定接地新材料应用的角度出发,开展石墨基柔性复合接地体的应用技术研究。通过对输电线路杆塔进行接地改造,并实测改造后的接地电阻,对柔性石墨复合接地体的效果进行评价。 1 柔性石墨复合接地体 石墨是导电性良好的非金属材料,常温下石墨的电阻率可达到8~13×10-6Ω·m,接近金属的导电性能。通常取3.25×10-5Ω·m作为石墨复合接地材料本体电阻率的稳态测量值,若辅以导电纤维其电阻率可降至10-6Ω·m级别。由于石墨复合接地材料采用抗磁性的石墨导体,石墨材料磁化后的磁场方向与外加磁场相反,是一种抗磁性非金属材料,其相对磁导率为0.999979,计算中一般近似为1。 接地体相对磁导率越大时,分布在接地体表层的电流密度值越大,趋肤效应也就越明显。钢、镀锌钢、不锈钢等铁磁材料相对磁导率较大,而铜接地材料及石墨复合接地材料的相对磁导率均小于1,非磁性接地材料的有效散流截面积大于钢接地材料。接地体的电导率越高,接地体的趋肤深度越小,从而有效散流面积越小,导体材料的利用率不高。相对于金属接地材料,石墨复合接地材料的导体利用率较高。综合看来,石墨复合接地材料具有良好的电磁特性[2]。 柔性石墨复合接地体采用加强纤维作为骨架,以高纯膨胀石墨作为主体,辅以水溶性导电胶进行压制,通过多次编织成型,最终得到高密度柔性复合接地体。经过试验验证柔性石墨复合接地体具有耐腐蚀、可弯曲、价格低、便安装以及防盗等优点,在高压输电线路接地网的研究及应用上具有可观的推广价值。 2 接地改造 文章针对某220kV发生过雷击跳闸事故,且接地电阻偏高的8基输电线路杆塔,调研输电线路接地系统的实际运行情况及存在的问题,对杆塔接地情况进

柔性石墨复合接地材料及其在输电线路杆塔接地网中的应用_胡元潮

第38卷第10期电网技术V ol. 38 No. 10 2014年10月Power System Technology Oct. 2014 文章编号:1000-3673(2014)10-2851-07 中图分类号:TM 753 文献标志码:A 学科代码:470·4051 柔性石墨复合接地材料及其在输电线路 杆塔接地网中的应用 胡元潮,阮江军,龚若涵,刘振武,吴泳聪,文武 (武汉大学电气工程学院,湖北省武汉市 430072) Flexible Graphite Composite Electrical Grounding Material and Its Application in Tower Grounding Grid of Power Transmission System HU Yuanchao, RUAN Jiangjun, GONG Ruohan, LIU Zhenwu, WU Yongcong, WEN Wu (School of Electrical Engineering, Wuhan University, Wuhan 430072, Hubei Province, China) ABSTRACT: In allusion to the troubles that the existing metallic grounding material has to be faced such as corrosion, the difficulty in transportation and construction, bigger clearance between the grounding body and soil and easy to be stolen, a new flexible graphite composite electrical grounding material is developed. Firstly, the grounding characteristics of this new grounding material is described briefly and the influences of electromagnetic characteristics of this grounding material on impulse grounding resistance are analyzed, and further the structural improvement of this new grounding material is performed; secondly, the feasibility of applying this new grounding material in the transmission tower grounding grid is analyzed; finally, a brief illustration of the application of this new grounding material in 110 kV transmission tower grounding project is given and it is shown that the new graphite composite grounding material can meet the demand of actual engineering under poor geological ground condition. KEY WORDS: corrosion of grounding material; non-metal grounding material; flexible graphite composite electrical grounding material; expanding graphite composite grounding material; application in tower grounding grid 摘要:针对电力接地领域现行金属接地材料通常面临的腐蚀、运输施工难度大、与土壤间隙大、易被偷盗以及高成本等问题,研发一种柔性石墨复合接地材料。首先对该新型接地材料的接地特性作简要阐述,分析了接地材料电磁特性对冲击接地电阻的影响,进一步地对新型接地材料进行结构改进,制备了扩径石墨复合接地材料。接着对该新型接地材料在输电线路杆塔接地应用的可行性进行分析。最后将该新型接地材料在110 kV输电线路杆塔接地工程中的应用作简要阐述,表明了柔性石墨复合接地材料在恶劣地质条件下能够满足 基金项目:国家重点基础研究发展计划项目(973计划)(2011CB- 209404);中央高校基本科研业务费专项资金项目(2012207020204)。 The National Basic Research Program (973 Program) (22011CB209404); Fundamental Research Funds for the Central Universities(2012207020204).实际工程要求。 关键词:接地材料腐蚀;非金属接地材料;柔性石墨复合接地材料;扩径接地材料;杆塔接地应用 DOI:10.13335/j.1000-3673.pst.2014.10.037 0 引言 输电线路是电力系统的基本组成部分,频繁的雷击跳闸事故一直是输电线路面临的最主要自然灾害故障[1]。从输电线路所处的地形及气候环境来看,雷电作用下输电线路出现一定的雷击跳闸难以避免[2]。实际运行经验表明,杆塔接地电阻偏大是引起线路反击跳闸的主要原因,“防雷在于接地”,低阻值、长期稳定的输电线路杆塔接地网是减少输电线路雷击事故、维护电力设备安全稳定运行的重要电力装置。 长期以来,国内外输电线路接地网通常采用扁钢、不锈钢、铜等金属类接地材料,以及含电镀金属层的镀锌钢、不锈钢包钢、铜包钢金属接地材料。除运输及施工难度大、易发生偷盗现象[3-4]以外,金属接地材料最大的瓶颈问题是接地材料的腐蚀。实际运行经验表明,扁钢以及镀锌钢接地材料腐蚀较快,一般运行3~7 a即发生严重腐蚀[5-6]。近年来发展的不锈钢及不锈钢包钢虽然抗腐蚀性能有所改善,但由于价略高且中间芯棒容易出现点腐蚀并且随着土壤中Cl 离子的增加腐蚀加重,因此实际运行经验较少[7]。铜的耐腐蚀能力是钢的3~4倍,过高的材料成本是限制其在输电线路杆塔接地网应用的主要原因。铜包钢接地材料防腐性能较好,一般在接地体端部容易出现点腐蚀,当铜包钢接地体因自然因素发生扭曲或弯折时,表面铜覆盖层易破裂进而加速内部钢材料的腐蚀速率,并且腐蚀试验

变电站接地网材料的选择

变电站接地网材料的选择 编辑:万佳防雷-小黄 电力系统的接地是对系统和网上电气设备安全可靠运行及操作维护人员安全都起着重大的作用。研究接地体的布置、连接,接地体的材质等是保证系统安全稳定运行的必要措施之一,所以说设计、施工高标准的接地系统的变电站防雷工作的重中之重。 一、变电站接地网作用概述 接地网作为变电站交直流设备接地极防雷保护接地,对系统的安全运行起着重要的作用。由于接地网作为隐性工程容易被人忽视,往往只注意最后的接地电阻的测量结果。随着电力系统电压等级的升高及容量的增加,接地不良引起的事故扩大问题屡有发生。因此,接地问题越来越受到重视。变电站接地网因其在安全中的重要地位,一次性建设、维护苦难等特点在工程建设中受到重视。另外,在设计及施工时也不易控制,这也是工程建设中的难点之一。因此,为保证电力系统的安全运行,降低接地工程造价,应采用最经济、合理的接地网设计思路,本文拟重点就材料选用方面进行相关探讨。 二、变电站接地网常用材料比较 目前广泛使用的接地工程材料有各种金属材料、非金属接地体、降阻剂和离子接地系统等。 1、金属接地材料。金属接地材料(主要指铜材和钢材),由于其具备良好的导电性和经济性,很长时期以来一直是接地工程中最重要的材料之一。但是由于金属材料存在容易腐蚀的问题,对接地电阻的影响也比较大,是安全生产中的一个大的隐患,这个问题一直困扰着用户。同时,近年生产资料价格猛涨造成接地成本增加,使得金属接地材料的缺点逐渐突显,一些行业或地区已经在渐渐地减少金属接地材料的使用,转而使用其它新型的接地材料。 2、非金属接地体。非金属接地材料是目前行业里新生的一种金属接地体的替换产品,由于其特有的抗腐蚀性能和良好的导电性和较高的性价比被广大用户所接受。目前非金属接地产品主要是以石墨为主要材料。基本成分是导电能力优越的非金属材料材料符合加工成型的,加工方法有浇注成型和机械压模成型。一般来说浇注成型的产品结构松散、强度低、导电性能差,而且质量不稳定,一些小型厂家少量生产使用这样的办法:机械压模法,是使用设备在几到十几吨的压力下成型的,不仅尺寸精度较高、外观较好,更重要的是材料结构致密、电学性能好、抗大电流冲击能力强,质量也相当稳定,但是生产成本较高,批量生产多采用。选型时,尽量采用后者,特别是接地体有抗大电流或打冲击电流的要求(如电力工作地、防雷接地)时,不宜采用浇注成型的非金属接地体。非金属接地体的特点是稳定性优越,其气候、季节、寿命都是现有接地材料中最好的,是不受腐蚀的接地体,所以,不需要地网维护,也不需要定期改造,但是,非金属接地体施工需要的地网面积比传统接地面积小很多,但是在不同地质条件下也需要的保证足够接地面积才可以达到良好的效果。 3、降阻剂。降阻剂分为化学降阻剂和物理降阻剂,化学降阻剂自从发现有污染水源事故和腐蚀地网的缺陷以后基本上没有使用了,现在广泛接受的是物理降阻剂(也称为长效型降阻剂)。物理降阻剂是接地工程广泛接受的材料,属于材料学中的不定性复合材料,可以根据使用环境形成不同形状的包裹体,所以使用范围广,可以和接地环或接地体同时运用,包裹在接地环和接地体周围,达到降低接触电阻的作用。并且,降阻剂有可扩散成分,可以改善周边土壤的导电属性。 现在的较先进降阻剂都有一定的防腐能力,可以加长地网的使用寿命,其防腐原理一般来说有几种:牺牲阳极保护(电化学防护),致密覆盖金属隔绝空气,加入改善界面腐蚀电位的

输电线路杆塔石墨基柔性接地体温升计算、标记示例

由于石墨基柔性接地体内含化学纤维、胶粘剂等物质,工作温度不能超过160?C,因此在计算工频短时大电流耐受时,石墨基柔性接地体温升限值为120?C(环境温度为40?C)。 对于单纯由石墨构成的石墨基柔性接地体,温升计算公式: 石墨温升: 2 11 11 = I k R t T C M ? ?T:石墨温升,?C I:短路电流有效值,A R1:石墨单位长度直流电阻,Ω k1:趋肤效应系数,取值为1.1 C1:石墨比热容,取值为710J/(kg×℃) M1:单位长度质量,kg t:时间取为1s 对于由石墨和铜复合构成的石墨基柔性接地体,单位长度直流电阻下的温升分别为: 石墨温升: () () 2 2 1122 12 111122 = I k R t k R T C M k R k R ? + 铜丝温升: () () 2 2 2211 22 221122 = I k R t k R T C M k R k R ? + R2:铜单位长度直流电阻,Ω k2:铜趋肤效应系数,取值为1.05 C2:铜比热容,取值为386J/(kg×℃) M2:铜单位长度质量,kg

不同型号的石墨基柔性接地体产品以下面方式进行标记。 FG- ?/ 尺寸:对于圆形:Φx(直径),mm;对于矩形:x×y,mm 工频1s耐受电流,0.5kA、1kA、3kA、5kA、7kA、9kA、11kA等 T(含铜),O(不含铜) 柔性石墨 石墨基柔性接地体产品的标记示例如下: 示例1:工频1s耐受电流0.5kA,直径为28mm的不含铜的接地体:FG-O0.5/Φ28 示例2:工频1s耐受电流0.5kA,截面为10×60mm的不含铜的接地体:FG-O0.5/10×60 示例3:工频1s耐受电流4kA,直径为28mm的含铜的接地体:FG-T4/Φ28 示例4:工频1s耐受电流4kA,截面为10×40mm的含铜的接地体:FG-T4/10×40

复合材料特性

(1)力学性能 石墨烯被认为是迄今为止强度最高的物质,添加石墨烯可以增加聚合物的力学性能。拓展石墨烯的改性范围,开发出多种的增强复合材料变得尤为重要。改性的程度有许多影响因素,例如强相的浓度和在基质中的分布状态,界面粘合性和增强相的长径比等。石墨稀纳米片和聚合物基体之间的界面粘合性强,是进行有效加固的关键。局部两相间不相容性可能由于石墨稀对基体的附着力差而降低应力转移几率,导致了一个较低的机械性能复合材料。可使用氢键和范德华力非共价键改善界面相互作用,提高聚合物基体机械性能[1]。 尽管些物理相互作用可以提高复合材料的性能,在外部受力下填料与基体之间相对移动是不可避免的。这限制了材料的最大使用强度。为了缓解该问题,关键是选择有效的手段,提高界面与基体间的抗剪切强度。改善填料与基体之间靠共价键形成的应力传递。例如,利用GO表面的羟基(-OH)与聚氨酯链上的端部的-NCO基团反应,形成聚氨甲酸酯键(-NH-CO)而共价键合到聚氨酯上。(2)导电导热性能 石墨烯的导电性能是目前已知导电材料中最好的,其载流子迁移率达15000 cm2·V- 1·s- 1[ 2]。这个数值是目前已知具有最高迁移率的锑化铟材料的两倍,是商用硅片迁移率的10倍以上。石墨烯具有高导电性,当加入到聚合物基体中,可导电的石墨烯分散在基体中形成导电网络,可以大大提高复合材料的导电性。复合材料表现出导电性随石墨烯含量的增加呈现一种非线性增长。 石墨烯的导热性能很高,在室温下为3000W·M-1·K-1,已被用来作为基体填充物,以改善聚合物的热导率和热稳定性。片状石墨稀的二维片层结构在聚合物较低的界面热电阻,从而产生更好的导电性增强聚合物复合材料。其他因素,例如石墨稀片的长径比,取向和分散,基体的种类等也将影响复合材料的热性能。(3)热稳定性 热稳定性是复合材料的另一个重要性能,可以通过在聚合物基体中嵌入石墨烯来实现。高的热稳定性和层状结构的石墨烯的加入,会使复合材料热性能显著提高。Ramanathan等[3]系统研究发现石墨烯的加入可以使聚甲基丙烯酸甲酯的模量、强度、玻璃化转变温度和热分解温度大幅度提高。并且石墨烯的作用效果远远好于单壁碳纳米管和膨胀石墨。 (4)气体阻隔性能 石墨烯的加入相对于原始的聚合物可以显着减少气体对聚合物复合材料的透过率。各种研究表明,气体渗透性降低可能由于石墨稀长径比和高表面积,以及在聚合物基体中形成的“弯曲通道”效应 (tortuous path effect),从而有效的阻隔了气体分子的扩散和穿透。Pinto等[4]研究了聚乳酸/石墨稀复合材料对氧气和氮气的阻隔性。结果表明,与未加入石墨稀前相比在复合物中使用0.4%(重量)添加量可以使复合材料对氧气的透过量下降三倍,对氮气的透过量下降四倍。(5)吸附性能 众所周知,吸附强烈依赖于孔隙结构和表面面积,以及吸附剂的官能团。石

导电混凝土+石墨接地技术

导电混凝土+石墨接地技术 发表时间:2017-09-07T09:55:45.140Z 来源:《基层建设》2017年第13期作者:张定军 [导读] 摘要:根据区域水文地质调查资料、现场踏勘及附近工程资料,本工程线经区内低山丘陵段约占线路长度的90%。 张家界创远电力勘测设计有限责任公司湖南张家界 427000 摘要:根据区域水文地质调查资料、现场踏勘及附近工程资料,本工程线经区内低山丘陵段约占线路长度的90%。该段土壤电阻率在1200~2200Ω?m之间;低洼水田、旱地约占线路长度的10%,该段土壤电阻率在100~600Ω?m之间;工程区域内土壤电阻率整体偏高。本工程所处地区雷暴日取值60天,属于多雷区。根据不同地形、不同土壤电阻率、不同接地形式分别使用圆钢、扩径柔性石墨带、复合导电混凝土作为接地材料。针对低山丘陵段的高土壤电阻率区域,设计了少开挖的紧凑的立体接地形式。经理论计算验证,立体式接地形式散 流特性好,接地体利用率高,能有效解决高土壤电阻率地区的接地降阻难题。针对不同地形条件、土壤电阻率,分别优选不同的接地材料、接地型式,较大地提高了接地降阻效率。新型接地材料与新接地型式的配合使用,能有效减小接地装置规模、缩短施工工期,整体接地工程费用较常规接地方法减少约7%。 关键词:混凝土;导电混凝土;石墨接地技术;接地技术 1 本工程地质水文情况 1.1 沿线地形地貌 本工程拟建线路位于湖南省怀化市洪江市、中方县境内,经 过区域为低山丘陵地貌单元,全线海拔高度一般在200m~450之间,相对高差变化较大,一般在20~240m之内。 1.2 水文地质条件 根据区域水文地质调查资料、现场踏勘及附近工程资料,对于途经山地、丘陵且杆塔位基岩为粉砂岩、砂岩时,地下水主要以裂隙水的形式赋存,杆塔位基岩为灰岩时,地下水主要以溶蚀裂隙水的形式赋存。 据当地建筑经验,地下水和场地土对混凝土结构具微腐蚀;对混凝土结构中的钢筋具微腐蚀。 1.3 土壤电阻率参考值 1)山地丘陵 低山丘陵段约占线路长度的90%,其地层结构为:上覆第四系硬塑粘性土、粉质粘土,厚度一般在0.5~4.0m之间,下伏强~中等风化基岩,局部地段基岩直接出露。该段的电阻率在1200~2200Ω。 2)低洼水田、旱地 低洼水田、旱地段约占线路长度的10%,其地层结构为:上部为第四系软塑~硬塑粘性土,厚度一般在1.0~5.0m之间,下部多为强~中等风化基岩,局部地段下部为砂卵石层。该段的电阻率在100~600Ω。 1.4 雷暴日 根据沿线气象站气温和雷暴日数的统计资料,并参考附近已建输电线路的设计取值和运行经验,本线路雷暴日数60天,属于多雷区。 2 接地设计原则 为优化接地设计,本接地设计在遵循一般计原则的情况下,还应考虑以下原则: (1)雷电流是高频电流,有很强的趋肤性,一般沿地表散流,深层土壤散流作用很差。因此垂直接地的设计不宜过深。(2)雷电流的高频性使接地体出现高电感效应,将阻碍雷电流向末端扩散,因此水平接地体不宜过长。 (3)应尽量减小接地装置占地范围,宜采用非开挖形式、少开挖式的接地设计。 根据《110kV~750kV架空输电线路设计规范》(GB 50545-2010),有地线的杆塔应接地。送电线路的杆塔接地装置主要是为了导泄雷电流入地,以保持线路有一定的耐雷水平。接地电阻的大小是影响输电线路耐雷水平最敏感的因素。雷电流通过接地装置向大地扩散时,起作用的是接地装置的冲击接地电阻而不是工频接地电阻。因此,如何保证冲击接地电阻合格,相当关键。 2.1 工频接地电阻设计要求 根据《交流电气装置的接地设计规范》(GB/T 50065-2011),有地线的线路杆塔的工频接地电阻,不宜超过下表的规定。

膨胀石墨综述

HUNAN UNIVERSITY 膨胀石墨制备 膨胀石墨制备 学生姓名:张成智 学生学号:B1513Z0359 学院名称:材料科学与工程学院 指导老师:陈刚 二〇一五年十一月 膨胀石墨制备工艺综述 摘要:随着近代生产向高速度、高参数发展,尤其是原子能、导电、地热、宇航等新技术的兴起,对材料的要求也越来越高。例如,旋转发动机顶点部分的滑

动密封、石油、化工、冶金、地热工业中的高温密封、核工业上的耐辐射密封等,都需要一种既耐高温、耐腐蚀、耐辐射、又有柔软性、回弹性和长寿命抗氧化的高性能密封材料。近年来实践证明,膨胀石墨和以它为基体的复合材料能够很好地满足诸方面的要求。本文通过查阅文献总结了膨胀石墨的制备方法、工艺、应用,以及发展趋势。 关键词:膨胀石墨;机理;复合材料;应用 膨胀石墨,研究碳材料的同仁肯定不陌生,但是如何定义“膨胀”二字呢能膨胀到多少倍的石墨才叫膨胀石墨呢可膨胀石墨与膨胀石墨又没有一个明确的定义和区分;可膨胀石墨与石墨层间化合物是不是一种物质可膨胀石墨是指已经插层了层间化合物还是可以膨胀的石墨的一个统称还有鳞片石墨的尺寸在一个什么范围内,石墨才具有膨胀性,为什么这些都需要给一个明确的定义才行。天然石墨是层状结构如图1(a)所示,石墨是共价键结合的正六边形片状结构单元,层间依靠离域π键和范德华力连接并可相对滑动。天然石墨层间的范德华力非常微弱,所以可以用物理或化学的方法将其它异类粒子如原子、分子、离子甚至原子团插入到晶体石墨层间,有些可与层内电子发生局部化学反应[1],形成层间化合物[(Graphite Intercalation Compound)简称GIC,图1(b)]。天然石墨可与硝酸、硫酸、高锰酸钾、双氧水、臭氧等强氧化剂混合形成可膨胀石墨,当可膨胀石墨通过马弗炉或微波加热时,石墨碳层沿C轴方向发生大幅膨胀,形成结构疏松、低密度的蠕虫石墨、内部具有大量独特的网状微孔结构,也即膨胀石墨或石墨蠕虫(Worm-1ike Graphite)[( Expanded Graphite)简称EG,图1(c)][2]。可膨胀石墨之所以能够膨胀是由于其层间的化合物受热分解产生大量的气体,这些气体受压产生很大的推力,而其碳层因受到该推力而向外膨胀, 图1 这个时候的膨化温度为起始膨化温度[3]。最早是德国科学家Schafautl发现可膨胀石墨。在1841年,他在浓硫酸和浓稍酸的混合液中加入石墨,将反应得到的

柔性石墨接地装置的研究

柔性石墨接地装置的研究 发表时间:2018-09-11T11:49:11.083Z 来源:《河南电力》2018年6期作者:郭明明 [导读] 输电线路杆塔接地装置的接地电阻大小直接影响到线路的耐雷水平以及线路杆塔周围的电气安全 郭明明 (宁夏宁电电力设计有限公司宁夏银川 750011) 摘要:输电线路杆塔接地装置的接地电阻大小直接影响到线路的耐雷水平以及线路杆塔周围的电气安全。线路遭受雷击过电压时,接地电阻过高可能会引起线路发生“反击”事故。根据工程的具体情况,选用合适的计算方法,采用柔性石墨接地装置,提高杆塔接地安全性,对电网安全稳定运行具有重要意义,也具有良好的社会效益。 关键词:输电线路;接地装置;柔性石墨 1.输电线路杆塔接地的要求 1.1输电线路杆塔接地设计要求 (1)杆塔接地装置采用方框水平放射型,铁塔采用四腿接地,接地体采用φ10圆钢,埋设深度根据土质不同规定为:水田中不小于0.8米,粘土地区不小于0.5米,岩石地区不小于0.3米,相邻两射线间的最小距离应不小于5米,接地引下线采用φ12镀锌圆钢。 (2)本工程接地电阻值按照《交流电气装置的过电压保护和绝缘配合》规定,杆塔逐基接地,在雷雨季节干燥时,变电站进出线5km段范围内,杆塔接地电阻值要求在10欧姆及以下(双回路塔接地电阻在7欧姆及以下),其他地区铁塔不连接架空地线的工频接地电阻不大于下表中的数值。 (3)在居民区和耕种土中的接地装置需增设防盗桩,对防盗角桩的设置,应在接地方框的四角各设置一个,射线每15米安装一个防盗角桩,射线长度大于30米的,在中间加一个。 (4)对于土壤电阻率特别高,接地电阻难于降低至要求值的塔位,为减小接地电阻,可采用接地模块。 2接地装置材料及性能比较 2.1柔性石墨防雷接地体与金属产品相比较 柔性石墨防雷接地体与金属产品(以铜包钢为例)相比较,两类产品刚开始都能够达到降阻效果。但是,随着时间的推移,金属产品会逐渐发生锈蚀,锈蚀出现后,由于电偶腐蚀的作用会加剧腐蚀,导致接地电阻升高而易发生事故。 2.2柔性石墨防雷接地体与非金属产品相比较 非金属制品常见的为降阻模块产品。其内置镀锌接地扁钢(钢管、圆钢、角钢),将其与被保护的地线焊接,因而金属接地体与大地的有效接触面积大大增加,通过潮性作用达到降阻效果。 2.3施工工艺的比较 2.3.1柔性石墨防雷接地体施工工艺: 1)挖设接地体沟:一般深度为60cm,宽度40cm; 2)敷设:将石墨接地体沿沟敷设; 3)连接:连接时采用搭接法,采用专用石墨线搭接,无需电气焊; 4)埋设:用细湿土分层夯实。 2.3.2圆钢接地体施工工艺: 1)挖设接地体沟:一般深度为:60cm,宽度:上部60cm,下部40cm; 2)敷设:将圆钢沿沟敷设,弯折处角度须>90°; 3)连接:采用焊接,联接长度>80mm; 4)防腐:焊接完毕后,焊接处用银粉漆涂刷焊点; 5)埋设:回填泥土,压实。 2.3.3接地模块施工工艺: 1)模块检查:表面是否平整、光滑,是否掉角、缺损、裂痕; 2)基坑开挖:避免在斜坡上,每侧垫腐蚀土,寒冷地区位于冻土层以下; 3)与接地体连接:采用焊接,雨雪天气禁止露天焊接,焊件表面潮湿或有冰雪须清除干燥; 4)防腐:焊接处涂刷防腐漆; 5)埋设:回填细土,用泥浆灌注密实,填土厚度不得小于50mm,周围须洒水使模块与土壤保持湿润。 2.4不同土质的比较 2.4.1农田 一般农田土壤电阻率较低,土质松散,杆塔多分布于农田内。使用金属接地体时,须使用电气焊,设备及机械进入农田对农田破坏较大,增加占地费用。由于农田中农药、化肥的使用量较大,导致土壤腐蚀性极强,金属接地体埋设后,腐蚀速度极快,尤其是焊点,会形成电偶腐蚀,加剧了金属的锈蚀,导致接地极寿命严重缩短、接地电阻升高,极易发生跳闸等事故。柔性石墨防雷接地体,化学性能稳定,在常温条件下不受强酸、强碱、有机溶剂及电偶腐蚀,且施工时对农田破坏小,减少征地费用,降低了工程成本。 2.4.2丘陵、山地 丘陵、山地一般地势偏高,土壤电阻率较高,接地体用量较平原、农田大。使用金属接地体可能无法达到降阻效果,须辅助以垂直接地体、降阻模块或使用降阻剂来达到降阻效果。使用垂直接地体、降阻模块施工时须下打垂直孔或挖基坑,而且施工过程中连接采用焊

复合材料总思考题及参考答案

复合材料概论总思考题 一.复合材料总论 1.什么是复合材料?复合材料的主要特点是什么? ①复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。 ②1)组元之间存在着明显的界面;2)优良特殊性能;3)可设计性;4)材料和结构的统一 2.复合材料的基本性能(优点)是什么?——请简答6个要点 (1)比强度,比模量高(2)良好的高温性能(3)良好的尺寸稳定性(4)良好的化学稳定性(5)良好的抗疲劳、蠕变、冲击和断裂韧性(6)良好的功能性能 3.复合材料是如何命名的?如何表述?举例说明。4种命名途径 ①根据增强材料和基体材料的名称来命名,如碳纤维环氧树脂复合材料 ②(1) 强调基体:酚醛树脂基复合材料(2)强调增强体:碳纤维复合材料 (3)基体与增强体并用:碳纤维增强环氧树脂复合材料(4)俗称:玻璃钢 4.常用不同种类的复合材料(PMC,MMC,CMC)各有何主要性能特点? PMC MMC CMC(陶瓷基) 使用温度60~250℃400~600℃1000~1500℃ 材料硬度低高最高 强度较高较高较高 耐老化性能差中优 导热性能差好一般 耐化学腐蚀性能好差好 生产工艺难易程度成熟居中最复杂 生产成本最低居中最高 5.复合材料在结构设计过程中的结构层次分几类,各表示什么?在结构设计过程中的设计层次如何,各包括哪些内容?3个层次 答:1、一次结构:由集体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何和界面区的性能; 二次结构:由单层材料层复合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何三次结构:指通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结构几何。 2、①单层材料设计:包括正确选择增强材料、基体材料及其配比,该层次决定单层板的性能; ②铺层设计:包括对铺层材料的铺层方案作出合理安排,该层次决定层合板的性能; ③结构设计:最后确定产品结构的形状和尺寸。 6.试分析复合材料的应用及发展。 答:①20世纪40年代,玻璃纤维和合成树脂大量商品化生产以后,纤维复合材料发展成为具有工程意义的材料。至60年代,在技术上臻于成熟,在许多领域开始取代金属材料。 ②随着航空航天技术发展,对结构材料要求比强度、比模量、韧性、耐热、抗环境能力和加工性能都好。针对不同需求,出现了高性能树脂基先进复合材料,标志在性能上区别于一般低性能的常用树脂基复合材料。以后又陆续出现金属基和陶瓷基先进复合材料。 ③经过60年代末期使用,树脂基高性能复合材料已用于制造军用飞机的承力结构,今年来又逐步进入其他工业领域。

石墨基柔性接地体

石墨基柔性接地体 技术条件 1.总则 为规范石墨基柔性接地体技术标准和要求,依据国家和行业的有关标准、规程和规范,特制定本规范。 2.范围 本技术条件规定了石墨基柔性接地体的名词术语定义、技术要求、运行维护、包装运输等要求。 3.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款 GB2900.1—2008 电工名词术语 GB/T21698-2008 复合接地体技术条件 GB/T17949.1—2000接地系统的土壤电阻率、接地阻抗和地面电位测量导则GB/T16927.1—2011 高电压试验技术第一部分:一般试验要求 GB/T16927.2-1997 高电压试验技术第二部分:测量系统 DL/T437—2012 高压直流接地极技术导则 GB/T50065—2011 交流电器装置的接地设计规范 4. 定义 GB2900.1-2008、DL/T437-2012中确立的名词术语以及下列内容和定义适用于本标准。 4.1 石墨基柔性接地体 一种由全石墨组成的接地体,埋入土壤中或混凝土基础中作散雷电流用的导体,能明显降低工频接地电阻和不受土壤中水分、盐、酸、碱等因素侵蚀的新型接地体。 4.2 电阻率 : 一般指接地体的单位体积电阻值,以ρ表示,单位为Ω.m。 5. 技术条件 5.1 一般技术准则 接地体应符合本标准规定,并按规定程序批准的图样和工艺文件进行制造,尺寸应满足相应图样尺寸要求,接地体表面应连续光滑。 5.1.1石墨基柔性接地体设计应分别考虑最大短时工作电流、最大连续电流和持 续额定工作电流。

5.1.2石墨基柔性接地体的设计寿命在规定的运行方式下不应少于40年。 5.1.3环境温度:-40oC~+60oC 5.1.4适应环境湿度:90%±5% 5.2 极址选择 按照DL/T437—2012的规定执行。 5.3大地参数 符合DL/T437—2012的规定 5.4 设计标准 符合DL/T437—2012的规定 5.5 材料组成 5.5.1 石墨基柔性接地体由全石墨组成,不含金属导体(引下线接塔金具除外)5.5.2 外观 圆滑、呈黑色金属光泽。 5.5.3 理化指标 理化指标见表1 6.1 外观:直径为28mm,石墨线层编织均匀,致密,无明显断线连接点 6.2 接地体电阻率:ρ≤5×10-5 mΩ.m,与接续金具的接触电阻不大于4mΩ 6.3 接地体工频接地电阻:工频电流20A下持续5次,直流电阻变化率不大于 10%、与接续金具的接触电阻不大于4mΩ 6.4 冲击电流耐受:大于200kA标准雷电电流冲击,直流电阻变化率不大于10%, 与接续金具的接触电阻不大于4mΩ 6.5 高温性能:经100℃恒温烘烤,保持0.5h,恢复至室温后,其直流电阻率 变化不大于10%,与接续金具的接触电阻不大于4mΩ。 6.6 抗拉性能:承受1KN拉力,直流电阻变化率不大于10%,与接续金具的接 触电阻不大于4mΩ 6.7 抗腐蚀性能:采用浸入酸碱土壤模拟溶液,在pH3~9的五种溶液中分别浸 泡时间72h后洗净烘干,其直流电阻率变化不大于10%,与接续金具的接触电阻不大于4mΩ 7 标志、包装、运输及储存 7. 1 标志 在包装箱上应注明: a)公司名称。 b)商标。

石墨防雷接地体招标技术规范

柔性石墨防雷接地体-技术规范 招标文件 技术部分 招标文件 (技术规范书)

1、总则 1.1 本技术规范规定了输电线路柔性石墨防雷接地功能要求、性能指标、资料交付、服务、验收等方面的技术要求。 1.2 本技术规范书提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,卖方应提供符合工业标准和本规范书的优质产品。 1.3 如果卖方没有以书面形式对本规范书的条文提出异议,则意味着卖方提供的设备完全符合本规范书的要求。如有异议,不管是多么微小,都应在报价书中以“对规范书的意见和同规范书的差异”为标题的专门章节中加以详细描述。 1.4 标书内技术资料应根据技术条件参数提供投标产品,提供制造方主要的材料明细。 1.5投标人在投标文件中应提供下列有关资格文件,如果以下资质不满足要求、投标资料不详实、严重漏项将导致废标: 1)投标人应建立了完善的质量保证体系,并出具ISO 9000系列或等同质量体系的证书。 2)应标产品应有全国10个省以上的供货记录,且出具不同环境下的运行记录、合同及运行报告等材料。 3)本次招标要求投标单位具备独立研发和生产能力,不接受所投标国产材料/系统的代理商、经销商投标。 4)应标产品应提供国家权威机构的检测报告原件。 1.6本技术条件书经招标、投标双方确认后作为订货合同的技术附件,与合同正文具有同等法律效力。 1.7 应标产品应提供权威专家或机构技术水平鉴评报告。 1.8本技术规范未尽事宜, 由买、卖双方协商确定。 2、服务界限 2.1供货商必须在输电线路柔性石墨防雷接地等领域有成熟的产品、1年以上成功的应用经验和丰富的工程经验及丰富的使用报告(至少30份以上)。 2.2供货商应负责对输电线路柔性石墨防雷接地接地进行施工,包括:开挖、掩埋、接地体组装、接地电阻的测量等工作,一年内免费保修,并终身维修。

复合材料

1、复合材料的定义、分类、命名 定义:用经过选择的、含一定数量比的两种或两种以上的组分(或称组元),通过人工复合、组成多相、且各相之间有明显界面的、具有特殊性能的固体材料。 命名:(1)基体材料名称与增强体材料并用 (2)强调增强体时以增强体材料的名称为主 (3)强调基体时以基体材料的名称为主 分类:按基体材料分:聚合物基复合材料,金属基复合材料,陶瓷基复合材料,水泥基复合材料,碳基复合材料; 按增强材料形态分为以下三类 (1)、纤维增强复合材料: a.连续纤维复合材料 b.非连续纤维复合材料 (2)、颗粒增强复合材料:包括微米颗粒和纳米颗粒; (3)、板状增强体、编织复合材料:以平面二维或立体三维物为增强材料与基体复合而成。 (4)、层叠复合材料 按材料作用分两类 ①功能复合材料:使用的是材料的光、电、磁、热、声等非力学性能 ②结构复合材料:应用的材料的力学性能 2、复合材料都有哪些部分组成,各部分的作用是什么? 复合材料的结构通常是一个相为连续相,称为基体;基体的作用是将增强体粘合成整体并使复合材料具有一定的形状,传递外界作用力、保护增强体免受外界的各种侵蚀破坏作用。当然也决定复合材料的某些性能和加工工艺 另一相是以独立的形态分布在整个连续相中的分散相,与连续相相比,这种分散相的性能优越,会使材料的性能显著增强,故常称为增强体(也称为增强材料、增强相等,功能复合材料中也称功能体)。 相界面是一个具有一定厚度的,结构随组分而异、与基体和增强体明显不同的新相。界面区的范围是从增强体内部性质不同的一点开始,到基体内整体性质相一致的点之间的区域。 界面是基体和增强体之间连接的纽带,是应力及其他信息传递的桥梁。它的结构、性能以及结合强度等因素,直接关系到复合材料的性能。 3、复合材料都有哪些性能特点? (1)比强度、比模量高(2)良好的抗疲劳性能(3)优良的高温性能(4)减震性好(5)破断安全性好。 4、复合材料的界面定义是什么,包括哪些部分? 复合材料的界面是指基体与增强物之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的微小区域。 包括:基体表面区,相互渗透区,增强剂表面区 5、复合材料界面具有哪些效应,都有哪些界面理论? 界面的效应: (1)传递效应界面能传递力,即将外力传递给增强物,起到基体和增强物之间的桥梁作用。 (2)阻断效应结合适当的界面有阻止裂纹扩展、中断材料破坏、减缓应力集中的作用。 (3)不连续效应在界面上产生物理性能的不连续性和界面摩擦出现的现象,如抗电性、电感应性、磁性、耐热性、尺寸稳定性等。

膨胀石墨综述

HUNAN UNIVERSITY 膨胀石墨制备 膨胀石墨制备 学生姓名:张成智 学生学号:B1513Z0359 学院名称:材料科学与工程学院 指导老师:陈刚 二〇一五年十一月

膨胀石墨制备工艺综述 摘要:随着近代生产向高速度、高参数发展,尤其是原子能、导电、地热、宇航等新技术的兴起,对材料的要求也越来越高。例如,旋转发动机顶点部分的滑动密封、石油、化工、冶金、地热工业中的高温密封、核工业上的耐辐射密封等,都需要一种既耐高温、耐腐蚀、耐辐射、又有柔软性、回弹性和长寿命抗氧化的高性能密封材料。近年来实践证明,膨胀石墨和以它为基体的复合材料能够很好地满足诸方面的要求。本文通过查阅文献总结了膨胀石墨的制备方法、工艺、应用,以及发展趋势。 关键词:膨胀石墨;机理;复合材料;应用 膨胀石墨,研究碳材料的同仁肯定不陌生,但是如何定义“膨胀”二字呢?能膨胀到多少倍的石墨才叫膨胀石墨呢?可膨胀石墨与膨胀石墨又没有一个明确的定义和区分;可膨胀石墨与石墨层间化合物是不是一种物质?可膨胀石墨是指已经插层了层间化合物还是可以膨胀的石墨的一个统称?还有鳞片石墨的尺寸在一个什么范围内,石墨才具有膨胀性,为什么?这些都需要给一个明确的定义才行。天然石墨是层状结构如图1(a)所示,石墨是共价键结合的正六边形片状结构单元,层间依靠离域π键和范德华力连接并可相对滑动。天然石墨层间的范德华力非常微弱,所以可以用物理或化学的方法将其它异类粒子如原子、分子、离子甚至原子团插入到晶体石墨层间,有些可与层内电子发生局部化学反应[1],形成层间化合物[(Graphite Intercalation Compound)简称GIC,图1(b)]。天然石墨可与硝酸、硫酸、高锰酸钾、双氧水、臭氧等强氧化剂混合形成可膨胀石墨,当可膨胀石墨通过马弗炉或微波加热时,石墨碳层沿C轴方向发生大幅膨胀,形成结构疏松、低密度的蠕虫石墨、内部具有大量独特的网状微孔结构,也即膨胀石墨或石墨蠕虫(Worm-1ike Graphite)[( Expanded Graphite)简称EG,图1(c)][2]。可膨胀石墨之所以能够膨胀是由于其层间的化合物受热分解产生大量的气体,这些气体受压产生很大的推力,而其碳层因受到该推力而向外膨胀,

相关文档
最新文档