2020年低压配电设计规范GB50054-2011

2020年低压配电设计规范GB50054-2011
2020年低压配电设计规范GB50054-2011

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!

2020年低压配电设计规范GB50054-2011

1 总则

1.0.1为使低压配电设中,做到保障人身和财产安全、节约能源、技术先进、功能完善、经济合理、配电可靠和安装运行方便,制订本规范。

1.0.2本规范适用于新建、改建和扩建工程中的交流、工频1000V 及以下的低压配电设计。

1.0.3低压配电设计除应符合本规范外,尚应符合国家现行有关标准的规定。

2 术语

2.0.1预期接触电压 prospective touch voltage

人或动物尚未接触到可导电部分时,可能同时触及的可导电部分之间的电压。

2.0.2约定接触电压限值 conventional prospective touchvoltage limit

在规定的外界影响条件下,允许无限定时间持续存在的预期接触电压的最大值。

2.0.3直接接触 direct contact

人或动物与带电部分的电接触。

2.0.4间接接触 indirect contact

人或动物与故障状况下带电的外露可导电部分的电接触。

2.0.5直接接触防护 protection against indirect contact

无故障条件下的电击防护。

2.0.6间接接触防护 protection against indirect contact

单一故障条件下的电击防护。

2.0.7附加防护 additional protection

直接接触防护和间接接触防护之外的保护措施。

2.0.8伸臂范围 arm’s reach

从人通常站立或活动的表面上的任一点延伸到人不借助任何手段,向任何方向能用手达到的最大范围。

2.0.9外护物 enclosure

能提供与预期应用相适应的防护类型和防护等级的外罩。

2.0.10保护遮栏 protective barrier

为防止从通常可能接近方向直接接触而设置的防护物。

2.0.11保护阻挡物 protective obstacle

为防止无意的直接接触而设置的防护物。

2.0.12电气分隔 electrical sepation

将危险带电部分与所有其他电气回路和电气部件绝缘以及与地绝缘,并防止一切接触的保护措施。

2.0.13保护分隔 protective separation

用双重绝缘、加强绝缘或基本绝缘和电气保护屏蔽的方法将一电路与其他电路分隔。

2.0.14特低电压 extra-low voltage

相间电压或相对地电压不超过交流方均根值50V的电压。

2.0.15 SELV 系统 SELV system

在正常条件下不接地,且电压不能超过特低电压的电气系统。

2.0.16 PELV系统 PELV system

在正常条件下接地,且电压不能超过特低电压的电气系统。

2.0.17 FELV 系统 FELV system

非安全目的而为运行需要的电压不超过特低电压的电气系统。

2.0.18等电位联结 equipotential bonding

多个可导电部分间为达到等电位进行的联结。

2.0.19保护等电位联结 protective-equipotential-bonding

为了安全目的进行的等电位联结。

2.0.20功能等电位联结 functional-equipotential-bonding

为保证正常运行进行的等电位联结。

2.0.21总等电位联结 main equipotential bonding

在保护等电位联结中,将总保护导体、总接地导体或总接地端子、建筑物内的金属管道和可利用的建筑物金属结构等可导电部分连接到一起。

2.0.22辅助等电位联结 supplementary equipotential bonding

在导电部分间用导线直接连通,使其他电位相等或接近,而实施的保护等电位联结。

2.0.23局部等电位联结 local equipotential bonding

在一局部范围内将各导电部分连通,而实施的保护等电位联结。

2.0.24接地故障 earth fault

带电导体和大地之间意外出现导电通路。

2.0.25导管 conduit

用于绝缘导线或电缆可以从中穿入或更换的圆形断面的部件。

2.0.26电缆槽盒 cable tray

用于将绝缘导线、电缆、软电线完全包围起来且带有可转移盖子的底座组成的封闭外壳。2.0.27电缆托盘 cable brackets

带有连续底盘和侧边,没有盖子的电缆支撑物。

2.0.28电缆梯架 cable ladder

带有牢固地固定在纵向主支撑组件上的一系列横向支撑构件的电缆支撑物。

2.0.29 电缆支架 cable brackets

仅有一端固定的、间隔安置的水平电缆支撑物。

2.0.30移动设备 mobile equipment

运行时可移动或在与电源相连接时易于由一处移到另一处的电气设备。

2.0.31手持设备 hand-held equipment

正常使用时握在手中的电气设备。

2.0.32开关电器 switching device

用于接通或分断电路中电流的电器。

2.0.33 开关 switching device

在电路正常的工作条件或过载工作条件下能接通、承载和分断电流,也能在短路等规定的非正常条件下承载电流一定时间的一种机械开关电器。

2.0.34隔离开关 switch-disconnector

在断开位置上能满足对隔离器的隔离要求的开关。

2.0.35隔离电器 device for isolation

具有隔离功能的电器。

2.0.36断路器 circuit-breaker

能接通、承载和分断正常电路条件下的电流,也能在短路等规定的非正常条件下接通、承载电流一定时间和分断电流的一种机械开关电器。

2.0.37矿物绝缘电缆 mineral insulated cables

在同一金属护套内,由经压缩的矿物粉绝缘的一根或数根导体组成的电缆。

3 电器和导体的选择

3.1 电器的选择

3.1.1低压配电设计所选用的电器,应符合国家现行的有关产品标准,并应符合下列规定:

1、电器应适应所在场所及其环境条件

2、电器的额定频率应与所在回路的频率相适应:

3、电器的额定电压应与所在回路标称电压相适应;

4、电器的额定电流不应小于所在回路的计算电流;

5、电器应满足短路条件下的动稳定与热稳定的要求;

6、用于断开短路电流的电器应满足短路条件下的接通能力和分断能力。

3.1.2验算电器在短路条件下的接通能力和分段能力应采用接通或分断时安装处预期短路电流,当短路点附近所接电动机额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响。

3.1.3当维护、测试和检修设备需断开电源时,应设置隔离电器。隔离电器宜采用同时断开电源所有极的隔离电器或彼此靠近的单级隔离器。当隔离电器误操作会造成严重事故时,应采取防止误操作的措施。

3.1.4 在TN-C系统中不应将保护接地中性导体隔离,严禁将保护接地中性导体接入开关电器。3.1.5隔离电器应符合下列规定:

1、断开触头之间的隔离距离,应可见或能明显标示“闭合”和“断开”状态;

2、隔离电器应能防止意外的闭合:

3、应有防止意外断开隔离电器的锁定措施。

3.1.6隔离电器应采用下列电器:

1、单极或多极隔离电器、隔离开关或隔离插头;

2、插头与插座;

3、连接片

4、不需要拆除导线的特殊端子;

5、熔断器;

6、具有隔离功能的开关的断路器。

3.1.7 半导体开关电器,严禁作为隔离电器。

3.1.8独立控制电气装置的电路的每一部分,均应装设功能性开关电器。

3.1.9功能性开关电器可采用下列电器:

1、开关

低压配电设计规范(GB50054-95)

低压配电设计规(GB50054-95) 第一章总则 第1.0.1条为使低压配电设计执行国家的技术经济政策。做到保障人身安全、配电可靠、电能质量合格、节约电能、技术先进、经济合理和安装维护方便,制订本规。 第1.0.2条本规适用于新建和扩建工程的交流、工频500V 以下的低压配电设计。 第1.0.3条低压配电设计应节约有色金属,合理地选用铜铝材质的导体。 第1.0.4条低压配电设计除应执行本规外,尚应符合现行的国家有关标准、规的规定。 第二章电器和导体的选择 第一节电器的选择 第2.1.1条低压配电设计所选用的电器,应符合国家现行的有关标准,并应符合下列要求。 一、电器的额定电压应与所在回路标称电压相适应; 二、电器的额定电流不应小于所在回路的计算电流; 三、电器的额定频率应与所在回路的频率相适应; 四、电器应适应所在场所的环境条件; 五、电器应满足短路条件下的动稳定与热稳定的要求。用于断开短路电流的电器,应满足短路条件下的通断能力。 第2.1.2条验算电器在短路条件下的通断能力,应采用安装处预期短路电流周期分量的有效值,当短路点附近所接电动机额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响。 第2.1.3条当维护、测试和检修设备需断开电源时,应设置隔离电器。 第2.1.4条隔离电器应使所在回路与带电部分隔离,当隔离电器误操作会造成严重事故时,应采取防止误操作的措施。 第2.1.5条隔离电器宜采用同时断开电源所有极的开关或彼此靠近的单极开关。 第2.1.6条隔离电器可采用下列电器: 一、单极或多极隔离开关、隔离插头; 二、插头与插座; 三、连接片 四、不需要拆除导线的特殊端子; 五、熔断器。 第2.1.7条半导体电器严禁作隔离电器 第2.1.8条通断电流的操作电器可采用下列电器 一、负荷开关及断路器; 二、继电器、接触器; 三、半导体电器; 四、10A及以下的插头与插座。 第二节导体的选择 第2.2.1条导体的类型应按敷设方式及环境条件选择。绝缘导体除满足上述条件外,尚应符合工作电压的要求。 第2.2.2条选择导体截面,应符合下列要求: 一、线路电压损失应满足用电设备正常工作及起动时端电压的要求; 二、按敷设方式确定的导体载流量,不应小于计算电流; 三、导体应满足动稳定与热稳定的要求; 四、导体最小截面应满足机械强度的要求,固定敷设的导线最小芯线截面应符合表2.2.2的规定。 固定敷设的导线最小芯线截面表2.2.2

我国特高压规划及其发展步伐

我国特高压规划及其发展步伐 1、国家电网公司在"十二五"规划 国家电网公司在"十二五"规划中提出,今后我国将建设联接大型能源基地与主要负荷中心的"三纵三横一环网"特高压骨干网架和13项直流输电工程(其中特高压直流10项),形成大规模"西电东送"、"北电南送"的能源配置格局。其中, 3个纵向输电通道为: 1)锡盟~北京东~天津南~济南~徐州~南京; 2)张北~北京西~石家庄~豫北~驻马店~武汉~南昌; 3)陕北(蒙西)~晋中~晋东南~南阳~荆门~长沙。 3个横向输电通道为: 1)蒙西~晋北~石家庄~济南~潍坊; 2)靖边~晋中~豫北~徐州~连云港; 3)雅安~乐山~重庆~长寿~万县~荆门~武汉~皖南~浙北~上海。 特高压双环网为:淮南~南京~泰州~苏州~上海~浙北~皖南~淮南长三角。 到2015年,基本建成以特高压电网为骨干网架、各级电网协调发展,具有信息化、自动化、互动化特征的坚强智能电网,形成"三华"(华北、华中、华东)、西北、东北三大同步电网,使国家电网的资源配置能力、经济运行效率、安全水平、科技水平和智能化水平得到全面提升。 2、国家电网公司在"十三五"规划 根据"十三五"规划中提出,到2020年,国家电网将建成"五纵五横"特高压交流骨干网架和27条特高压直流输电工程,形成4.5亿kW的跨区跨省输送能力,建成以"三华"电网为核心,通过直流和东北、西北、南方电网互联,联接各大煤电基地、大水电基地、大核电基地、大可再生能源基地和主要负荷中心的统一坚强智能电网。 我国特高压的发展步伐 1、我国第一条特高压输电线路 晋东南-南阳-荆门是我国第一条特高压输电线路,也是世界上目前运行电压最高、技术水平最为先进的交流输变电工程。该线路全长654km,静态投资约57亿元,于2006年8月开工建设,2009年1月投入商业运行。经过一年多试运行后,2010年8月特高压交流输电试验示范工程获得国家验收通过。这标志着特高压交流输电工程从示范阶段进入大规模建设阶段。 该项目是我国自主研发、自主设计和自主建设的世界上电压等级最高、输送容量最大、送电距离最远、技术水平最先进的交流输电工程。工程于2007年4月26日核准,2010年7月8日投

特高压电网建设的过去、现在与未来

特高压电网建设的过去、现在与未来 2013国际智能电网论坛于9月24~25日在德国柏林举行,来自40个国家的500余名代表云集于此。论坛上,中国特高压输电标准被定为国际标准。 中国自2009年提出建设以特高压电网以来,已建成2条世界上最高电压等级的1000kV交流输电线路和4条800kV直流输电线路。几年来,中国特高压项目经受住了各种运行方式的考验,安全、环境、经济等各项指标达到和超过了设计的标准和要求。 截止到目前,我国已经在大电网控制保护、智能电网、清洁能源接入电网等领域取得一批世界级创新成果,已经建立了系统的特高压与智能电网技术标准体系,编制相关国际标准19项,中国的特高压输电技术在世界上处于领先水平。 特高压发展现状 就我国目前绝大多数电网来说,高压电网指的是110kV和220kV的电网;超高压电网指的是330kV、500kV和750kV的电网。特高压电网指的是以1000kV输电网为骨干网架,超高压输电网和高压输电网,以及特高压直流输电和配电网构成的分层、分区、结构清晰的现代化大电网。 据了解,特高压输电技术包括特高压交流输电和特高压直流输电两大类。其中,特高压交流输电是指电压等级1000kV及以上的交流输电,特高压直流输电是指电压等级±800kV及以上的直流输电。 2010年初国家电网电力工业“十二五”规划研究报告中公布了特高压建设“十二五”规划。根据国家电网的计划,到2015年将建成华北、华东、华中特高压电网,形成“两纵两横”的格局。同时,在直流特高压方面,为配合西南水电、西北和华北煤电以及风电基地的开发,在“十二五”期间将建设7回特高压直流输电工程,建成青藏直流联网工程,满足西藏供电,实现西藏电网与西北主网联网。到2017年,国网规划建成“三纵三横”特高压目标网架。到2020年,“三华”特高压同步电网形成“五纵五横”主网架。 2013年1月18日,“特高压交流输电关键技术、成套设备及工程应用”荣获国家2013年科学技术进步奖特等奖。这是我国电工领域在国家科技奖上收获的最高荣誉,中国特高压输电工程的成功建设,树立了世界电网发展新的里程碑,开启了以特高压为最高电压等级电网建设的新纪元,在电网科技领域实现了“中国引领”和“中国创造”,展示了中国在世界电力工业的一流形象。 我国的特高压输电工程实践已取得了丰硕的成果:在试验、研发基地方面,已建成特高压交流、特高压直流、高海拔、工程力学四个试验基地以及大电网仿真、直流成套设计两个研发中心。在示范工程方面,国内已有数个1000kV交流输电工程与±800kV直流输电工程投运。在技术标准制定方面,中国已建立特高压与智能电网技术标准体系,制定了200余项国家标准和行业标准,同时编制20余项国际标准。在相关工程技术创新方面,我国已攻克了多个特高压交、直流输电的关键技术,成功地自主研制了特高压交、直流设备,同时掌握了特高压工程设计、施工、试验和运行维护全套技术 特高压建设成果 十几年来,我国在特高压输电领域的实践中不断取得成功,一次又一次地震惊了国际同行。作为全球为数不多的实现特高压电网商业化运营的国家,截止到目前,中国已经建立了众多的特高压电网项目。 2006年8月9日,国家发改委印发了《关于晋东南至荆门特高压交流试验示范工程项目核准的批复》,正式核准了晋东南经南阳至荆门特高压交流试验示范工程。

《低压配电设计规范》GB 50054-2011

《低压配电设计规范》GB 50054-2011 前言 本规范是根据原建设部《二OO一~二OO二年度工程建设国家标准制定、修改计划的通知》(建标【2002】85号)的要求,由中机中电设计研究院有限公司会同有关单位在原《低压配电装置及线路设计规范》(GB50054-95)基础上修订而成的。 本规范在编制过程中,编制组经广泛调查研究,认真总结实践经验,参考了国家标准和国外先进标准,并在广泛征求意见的基础上,最后经审查定稿。 本规范共分7章和1个附录,主要技术内容包括:总则、术语、电气和导体的选择、配电设施的布置、电气装置的电击防护、配电线路的保护、配电线路的敷设等。 修订的主要技术内容有: 1.将规范适用范围的电压由交流、工频500V以下修改为交流、工频1000V 及以下; 2.取消了原规范总则中对于选用铜、铝导体材质的规定; 3.增设术语为单独一章,删除附录中的名词解释; 4.补充了功能性开关电器和剩余电流动作保护电器选择和安装的规定; 5.补充了选用具有中性极的开关电器的规定; 6.补充了IT系统中安装绝缘监测电器的规定; 7.补充了等电位联结用的保护联结导体截面积选择的规定; 8.将原第三章“配电设备的布置”中的第二节“配电设施布置中的安全措施”和第四章“配电线路的保护”中的第四节“接地故障保护”合并,并增加“SELV系统和PELV系统及FELV系统”一节,为第5章“电气装置的电击防护”; 9.在“配电线路的保护”一章中增加了“配电线路电气火灾防护”一节; 10.增加了关于“可弯曲金属导管布线”、“地面内暗装金属槽盒布线”、“矿物绝缘电缆敷设”、“预分支电缆敷设”的规定; 11.对原规范部分条文进行了补充、完善和调整。 本规范中以黑体字标志的条文为强制性条文,必须严格执行。

我国的特高压电网情况简介

我国的特高压电网情况简介 2014-11-17王淑娟 前言 光伏电站选址时有个说法较“摸着电线走”,电网是制约光伏发电最重要的因素之一。在光伏等可再生能源遇到送出、消纳瓶颈时,国家一方面大力发展分布式,让光伏项目直接建在需求侧;另一方面,修建特高压线路,集中解决大型可再生能源基地的送出问题。本文为大家收集了我国特高压建设的一些情况,希望对大家的工作有所帮助。 一、什么是“特高压” 输电电压一般分高压、超高压和特高压。国际上, 高压(HV)通常指35~220kV的电压; 超高压(EHV)通常指330kV及以上、1000kV以下的电压; 特高压(UHV)指1000kV及以上的电压。 高压直流(HVDC)通常指的是1600kV及以下的直流输电电压,±800kV以上的电压称为特高压直流输电(UHVDC)。 我国目前绝大多数电网来说, 低压电网指的是1kV及以下的电网; 中压电网指的是35kV的电网; 高压电网指的是66kV、110kV和220kV电网; 超高压电网指的是330kV,500kV和750kV电网。

特高压输电指的是正在开发的1000 kV交流电压和±800kV直流电压输电工程和技术。 特高压电网指的是以1000kV输电网为骨干网架,超高压输电网和高压输电网以及特高压直流输电高压直流输电和配电网构成 的分层、分区、结构清晰的现代化大电网。 二、特高压的优点 特高压最大优点就是可以长距离、大容量、低损耗输送电力。据测算,1000kV交流特高压输电线路的输电能力超过500万kW,接近500kV超高压交流输电线路的5倍。±800kV直流特高压的输电能力达到700万kV,是±500kV超高压直流线路输电能力的2.4倍。 除此之外,特高压线路还具有:线路造价低;输电损耗小;输送容量大;限制短路电流;线路故障时的自防护能力强;节省线路走廊;实现非同步电网互联;功率调节控制灵活;特别适合电缆输电等优点。 三、我国特高压的规划 1、国家电网公司在“十二五”规划

低压配电设计规范(GB50054-95)

低压配电设计规范(GB50054-95) 第一章总则 第1.0.1条为使低压配电设计执行国家的技术经济政策。做到保障人身安全、配电可靠、电能质量合格、节约电能、技术先进、经济合理和安装维护方便,制订本规范。 第1.0.2条本规范适用于新建和扩建工程的交流、工频500V 以下的低压配电设计。 第1.0.3条低压配电设计应节约有色金属,合理地选用铜铝材质的导体。 第1.0.4条低压配电设计除应执行本规范外,尚应符合现行的国家有关标准、规范的规定。 第二章电器和导体的选择 第一节电器的选择 第2.1.1条低压配电设计所选用的电器,应符合国家现行的有关标准,并应符合下列要求。 一、电器的额定电压应与所在回路标称电压相适应; 二、电器的额定电流不应小于所在回路的计算电流; 三、电器的额定频率应与所在回路的频率相适应; 四、电器应适应所在场所的环境条件; 五、电器应满足短路条件下的动稳定与热稳定的要求。用于断开短路电流的电器,应满足短路条件下的通断能力。 第2.1.2条验算电器在短路条件下的通断能力,应采用安装处预期短路电流周期分量的有效值,当短路点附近所接电动机额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响。 第2.1.3条当维护、测试和检修设备需断开电源时,应设置隔离电器。 第2.1.4条隔离电器应使所在回路与带电部分隔离,当隔离电器误操作会造成严重事故时,应采取防止误操作的措施。 第2.1.5条隔离电器宜采用同时断开电源所有极的开关或彼此靠近的单极开关。 第2.1.6条隔离电器可采用下列电器: 一、单极或多极隔离开关、隔离插头; 二、插头与插座; 三、连接片 四、不需要拆除导线的特殊端子; 五、熔断器。 第2.1.7条半导体电器严禁作隔离电器 第2.1.8条通断电流的操作电器可采用下列电器 一、负荷开关及断路器; 二、继电器、接触器; 三、半导体电器; 四、10A及以下的插头与插座。 第二节导体的选择 第2.2.1条导体的类型应按敷设方式及环境条件选择。绝缘导体除满足上述条件外,尚应符合工作电压的要求。 第2.2.2条选择导体截面,应符合下列要求: 一、线路电压损失应满足用电设备正常工作及起动时端电压的要求; 二、按敷设方式确定的导体载流量,不应小于计算电流; 三、导体应满足动稳定与热稳定的要求; 四、导体最小截面应满足机械强度的要求,固定敷设的导线最小芯线截面应符合表2.2.2的规定。 固定敷设的导线最小芯线截面表2.2.2

特高压电网还需要做哪些方面

https://www.360docs.net/doc/cc6219623.html, 国家电网正在建设由特高压交流和特高压直流构成的大规模复杂特高压电网,以期解决电源与负荷中心之间大规模、远距离、大容量的电力输送难题,实现资源优化配置。电网的发展逐步呈现出形态复杂,而区域电网间则呈现出相互影响与依赖增强、电网中不确定因素逐渐增加的特点,使电网运行面临更多且更复杂的风险因素。 特高压大电网建设既要保证安全性、可靠性、稳定性、经济性的运行条件,又要适应国家经济社会的发展。特高压电网结构复杂,加之特高压工程建设和电源核准中存在的不确定性,一些薄弱环节将会给复杂电网的稳定分析、控制和运行带来了一系列挑战。 特高压电网凭借其独特的优势在现代电力系统中占有举足轻重的地位。特高压输电作为实现电网紧密互联和区域性新能源并网消纳的最具潜力输电方式,建设以特高压为骨干,各级电网协调发展的坚强电网是能源发展的必然选择也是未来中国电网发展的必然趋势。为了提高电网输送能力和受电能力,提高新能源并网和消纳能力,提高电网运行的安全性和经济性,在特高压电网规划、建设、运行和控制上需进一步深入研究。 1)规划中的特高压直流输电和多端直流输电相关技术需要特高压交流电网提供坚强的网架支撑,含交、直流特高压的复杂电网的动态特性,运行方式,稳定性分析、预测及控制策略等方面需进一步研究。 2)随着电力系统的发展,先进的通信、信息和故障检测等方面的技术为特高压电网的安全运行和控制保护提供了必要支撑,使系统监控与调度智能化、决策多样化。能量管理系统和数据采集系统的自动化、准确化有待进一步研究。 3)电力电子器件和电力电子技术的发展促进了SVC、SVG、STATCOM等器件的应用和发展,基于这些新的技术对电力系统无功优化调控的影响,利用新的控制方法和新的控制器协调各地区调节电压、无功优化、提高电压稳定性等方面需加强研究。

特高压电网基本知识

第一篇特高压电网基本知识 1. 电能生产、输送和消费的主要特点是什么 ? 电能与其他能源不同, 主要特点是不能大规模储存 , 发电、输电、配电和用电在同一瞬间完成 ; 发电和用电之间必须时刻保持供需平衡 ,一旦平衡被破坏 , 将危及用电和设备的安全。 2. 什么是电网? 什么是电力系统? 电能的输送由升压变压器、降压变压器及其相连的输电线路完成。所有输变电设备连接起来构成输电网。所有配电设备连接起来构成配电网。输电网和配电网统称为电网。 电力系统是由发电机、变压器、输电线路、用电设备( 负荷) 组成的网络, 它包括通过电的或机械的方式连接在网络中的设备。 3. 输电电压的电压等级如何划分 ? 特高压是怎样定义的 ? 电能的远距离输送分交流输电与直流输电两种形式。国际上,高压(HV) 通常指35~220 千伏的电压;超高压(EHV) 通常指330 千伏及以上、1000 千伏以下的电压; 特高压(UHV) 指1000 千伏及以上的电压。 直流输电电压在国际上分为高压和特高压。高压直流(HVDC) 通常指的是±600 千伏及以下直流系统, ±600 千伏以上的直流系统称为特高压直流。在我国, 高压直流指的是±660 千伏及以下直流系统,特高压直流指的是±800 千伏及以上直流系统。 我国特高压电网建成后, 将形成以1000 千伏交流输电网和±1100 千伏、±800 千伏直流系统为骨干网架的、与各级输配电网协调发展的、结构清晰的现代化大电网。 4. 什么是电网的输电能力? 电网的输电能力是指在电力系统中从一个局部系统( 或发电厂) 到另一个局部系统( 或变电站) 之间的输电系统容许的最大送电功率( 一般按受电端计) 。

我国特高压发展所面临的问题

1、我国电网存在的问题 (1)新中国成立以来我国长期处于电力短缺状态,多年来致力于增加电源建设以满足电力供给需求。因此,形成了电网作为电源的配套工程的局面,电网被动地跟随着电源和符合的发展而发展,未能通过电网的发展主动地引导电源的建设,结果导致我国南北向跨大区大容量输电网络规模过小,输电能力不足。近年来,由于我国经济发达地区燃煤电厂发展比较快,而山东、河北、河南等地区的电煤供应日渐短缺,电煤的供应更多地依靠山西、内蒙古、陕西等北部地区的煤炭基地,在北电南送能力不足的条件下,使得北煤南运的数量和运程大大增加,最终导致近年来我国中部、东部和南部大部分地区电煤因运输“瓶颈”的限制而供应不足,出现严重缺电的局面。这一问题如不及时解决,将来随着上述地区用电负荷的进一步增长,缺点局面将会更加严重。 (2)现有 500kV 电网输送能力不能满足大范围电力资源优化配置和电力职场的要求。输电走廊限制了输电线路的假设,沿海经济发达地区线路走廊尤其紧张,规划中拟建设的火电基地规模巨大,要将其电力输送往用电负荷中心,如果全部采用 500kV 及以下电压等级的输电线路,则输电线回路将过多,线路走廊紧张的矛盾难以解决。 (3)电力负荷密集地区电网短路电流控制困难,例如华东、华北电网已经出现有一部分 500kV 及以下电压等级的输电线路,则输电线路回数将过多,线路走廊紧张的矛盾难以解决。 (4)长链型电网结构动态稳定问题突出,在东北、华北、华中电网500kV 交 流联网结构比较薄弱的情况下,存在低频震荡问题。 (5)受端电网存在多直流集中落点和电压稳定问题。到 2020 年,如果西电东送华东电网全部采用直流输电方式,落点华东电网的直流换流站将超过10 个,受端电网在严重短路故障的情况下,电力系统因电压低落发生连锁反应的风险较大。 为避免因能源运输“瓶颈”的制约而影响我国国民经济的健康持续发展,必须实现我国能源资源的优化配置。而解决将来因北煤南运运力不足和运费过高导致我国中部、东部和南部电力不足和电费过高的问题,需要建设和发展大电网,例如特高压电网,以实现输电与输煤并举的战略。而建设和发展大电网必须同时解决上述电网发展中的技术问题,建设一个网络功能强大、具备跨区域、远距离、大容量、低损耗、高效率“西电东送、南北互供”的基本能力、满足我国电力市场灵活交易要求的国家电网。 2 、我国电网的发展方向 从理论上和国外大电网联网的发展实践看,建设跨大区大规模同步电网在技术上是可行的。但由于交流联网具有故障传播速度快、事故波及面大的特点,电力系统震荡或失稳现象比较突出,特别易形成区域性震荡模式,系统运行较为复杂,因此,在实施大区互联之前,需要通过电力系统模拟进行计算分析。我国大区电网模拟计算结果表明:当大区特高压电网交流互联达到一定强度后,受扰动后的区域性振荡能较快地平息,大规模同步电网抵御严重故障能力也比较强。以上结论在以特高压电网为骨干电网实现多大区同步联网的国家电网模拟计算分析中得到进一步验证。由此可以确认,我国采用更高一级电压等级的交流输电线路实现大区电网同步互联,形成一个稳定性满足要求的全国同步电网在技术上是可行的。从我国能源流通量大、距离远的实际情况看,应建立强大的特高压交流输电网络。一方面,它可以减轻运力不足的压力;另一方面,和超高压相比,它又可以大大的减少输电损耗,因而,它能减少能源运输燃料费用,降低能源输送的成本。在运输燃料价格急剧上升的趋势下,特高压交流输电网络的这一优势至关重要。此外,通过建立强大的特高压电网,500kV 电网短路电流过大、长链型交流电网结构动态稳定型较差、受端电网直流集中落点过多等诸多问题均可得到较好的解决。从电网规划方案安全稳定性和经济性计算结果看,对于输电距离为 1500km 之内的大容量输电工程,如果在输电线路中间落点可获得电压支

低压配电设计规范

低压配电设计规范 GB 50054-95 主编部门:中华人民共和国机械工业部 批准部门:中华人民共和国建设部 施行日期:1996年6月1日 第一章总则 (1) 第二章电器和导体的选择 (2) 第一节电器的选择 (2) 第二节导体的选择 (2) 第三章配电设备的布置 (4) 第一节一般规定 (4) 第二节配电设备布置中的安全措施 (5) 第三节对建筑的要求 (6) 第四章配电线路的保护 (6) 第一节一般规定 (6) 第二节短路保护 (6) 第三节负载保护 (7) 第四节接地故障保护 (8) 第五节保护电器的装设位置 (11) 第五章配电线路的敷设 (11) 第一节一般规定 (11) 第二节绝缘导线布线 (12) 第三节钢索布线 (13) 第四节裸导体布线 (14) 第五节封闭式母线布线 (15) 第六节电缆布线 (15) 第七节竖井布线 (18) 附录一名词解释 (19) 第一章总则 第1.0.1条为使低压配电设计执行国家的技术经济政策,做到保障人身安全、配电可靠、电能质量合格、节约电能、技术先进、经济合理和安装维护方便,制订本规范。 第1.0.2条本规范适用于新建和扩建工程的交流、工频500V以下的低压配电设计。 第1.0.3条低压配电设计应节约有色金属,合理地选用铜铝材质的导体。 第1.0.4条低压配电设计除应执行本规范外,尚应符合现行的国家有关标准、规范的规定。

第二章电器和导体的选择 第一节电器的选择 第2.1.1条低压配电设计所选用的电器,应符合国家现行的有关标准,并应符合下列要求: 一、电器的额定电压应与所在回路标称电压相适应; 二、电器的额定电流不应小于所在回路的计算电流; 三、电器的额定频率应与所在回路的频率相适应; 四、电器应适应所在场所的环境条件; 五、电器应满足短路条件下的动稳定与热稳定的要求。用于断开短路电流的电器,应满足短路条件下的通断能力。 第2.1.2条验算电器在短路条件下的通断能力,应采用安装处预期短路电流周期分量的有效值,当短路点附近所接电动机额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响。 第2.1.3条当维护、测试和检修设备需断开电源时,应设置隔离电器。 第2.1.4条隔离电器应使所在回路与带电部分隔离,当隔离电器误操作会造成严重事故时,应采取防止误操作的措施。 第2.1.5条隔离电器宜采用同时断开电源所有极的开关或彼此靠近的单极开关。 第2.1.6条隔离电器可采用下列电器: 一、单极或多极隔离开关、隔离插头; 二、插头与插座; 三、连接片; 四、不需要拆除导线的特殊端子; 五、熔断器。 第2.1.7条半导体电器严禁作隔离电器。 第2.1.8条通断电流的操作电器可采用下列电器: 一、负荷开关及断路器; 二、继电器、接触器; 三、半导体电器; 四、10A及以下的插头与插座。 第二节导体的选择 第2.2.1条导体的类型应按敷设方式及环境条件选择。绝缘导体除满足上述条件外,尚应符合工作电压的要求。 第2.2.2条选择导体截面,应符合下列要求: 一、线路电压损失应满足用电设备正常工作及起动时端电压的要求; 二、按敷设方式及环境条件确定的导体载流量,不应小于计算电流; 三、导体应满足动稳定与热稳定的要求; 四、导体最小截面应满足机械强度的要求,固定敷设的导线最小芯线截面应符合表2.2.2的规定。

《低压配电设计规范》GB50054_2011

1 总则 1.0.1为使低压配电设中,做到保障人身和财产安全、节约能源、技术先进、功能完善、经济合理、配电可靠和安装运行方便,制订本规范。 1.0.2本规范适用于新建、改建和扩建工程中的交流、工频1000V 及以下的低压配电设计。 1.0.3低压配电设计除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语 2.0.1预期接触电压 prospective touch voltage 人或动物尚未接触到可导电部分时,可能同时触及的可导电部分之间的电压。 2.0.2约定接触电压限值 conventional prospective touchvoltage limit 在规定的外界影响条件下,允许无限定时间持续存在的预期接触电压的最大值。 2.0.3直接接触 direct contact 人或动物与带电部分的电接触。 2.0.4间接接触 indirect contact 人或动物与故障状况下带电的外露可导电部分的电接触。 2.0.5直接接触防护 protection against indirect contact 无故障条件下的电击防护。 2.0.6间接接触防护 protection against indirect contact 单一故障条件下的电击防护。 2.0.7附加防护 additional protection 直接接触防护和间接接触防护之外的保护措施。 2.0.8伸臂范围 arm’s reach 从人通常站立或活动的表面上的任一点延伸到人不借助任何手段,向任何方向能用手达到的最大范围。 2.0.9外护物 enclosure 能提供与预期应用相适应的防护类型和防护等级的外罩。 2.0.10保护遮栏 protective barrier 为防止从通常可能接近方向直接接触而设置的防护物。 2.0.11保护阻挡物 protective obstacle 为防止无意的直接接触而设置的防护物。

我国特高压现状及2020年规划

我国特高压现状及2020年规划 时间:2012-08-15点击:661 长川电气新闻中心: 特高压电网:指交流1000千伏、直流正负800千伏及以上电压等级的输电网络。 在电力传输领域,""高压""的概念是不断改变的鉴于实际研究工作与运行的需要,对电压等级范围的划分,目前通常统一为:35kv及以下电压等级称配电电压。110kv~220kv电压等级称高压。330kv~500kv 电压等级称超高压。1000 kv及以上电压等级称特高压。 低压:24V、36V、127V、220V、380V 高压:3kV、6kV 、10kV、35kV、63kV、110kV 、220kV 超高压:330KV、550KV 、800KV 特高压: 1000KV 特高压电网优势 ?1000千伏特高压交流输电线路输送功率约为500千伏线路的4至5倍;正负800千伏直流特高压输电能力是正负500千伏线路的两倍多。 特高压交流线路在输送相同功率的情况下,可将最远送电距离延长3倍,而损耗只有5 00千伏线路的25%至40%。输送同样的功率,采用1000千伏线路输电与采用500千伏的线路相比,可节省60%的土地资源。 中国有世界第一条特高压电网线路:起于山西省长治变电站,经河南省南阳开关站,止于湖北省荆门变电站,联接华北、华中电网,全长654公里,申报造价58.57亿元,动态投资200亿元,已于2008年12月28日建成进行商业化运营。 国家特高压电网发展情况及规划 2010 年,国家特高压电网将在华北、华中和华东地区形成晋东南~南阳~荆门~武汉~芜湖~杭北~上海~无锡~南~徐州~安阳~晋东南双环网作为特高压主网架;西北、华北火电通过蒙西~北~石家庄~安阳以及蒙西~陕北~晋东南2个独立送电通道注入特高压主网,西南水电通过?乐山~重庆~恩施~荆门双回路通道注入特高压主网。 2010年特高压工程总规模将到20座交流变电站(开关站),主变台数将达到26台,总变电容量达到7725万千伏安,交流特高压线路长度达到11580公里。

特高压规划详细解析

特高压电网:指交流1000千伏、直流正负800千伏及以上电压等级的输电网络。到目前为止,国外并没有1000千伏交流线路在长距离运行,和我国现有主要以500千伏交流和正负500千伏直流系统为主要的电网相比较,前者如同电网中的高速公路,后者如同普通快速路,两者在流量、流速、经济性等方面均不可同日而语。 目前,我国超高压输电线路以220千伏、330千伏、500千伏交流输电和500千伏直流输电线路为骨干网架。全国已经形成5个区域电网和南方电网。其中:华东、华北、华中、东北4个区域电网和南方电 丫 纬闪?00千伏的主网架,西北电网在330千伏网架的基础上,正在建设750千伏网架。但是,由于我国电网跨区域输电主要依靠500千伏交流和正负500千伏直流,在提高电力输送能力方面受到技术、环保、土地资源等多方面的制约。 而特高压电网能够适应东西2000至3000公里,南北800至2000公里远距离大容量电力输送需求,有利于大煤电基地、大水电基地和大型核电站群的开发和电力外送。第一条由集团公司西北电力设计院承担设计工作的750千伏的官厅至兰州东输变电工程截至今年运行安全稳定,为规划中的国家特高压电网打下坚实基础。 特高压电网的优势 1000千伏特高压交流输电线路输送功率约为500千伏线路的4至5倍;正负800千伏直流特高压输电能力是正负500千伏线路的两倍多。同时,特高压交流线路在输送相同功率的情况下,可将最远送电距离延长3倍,而损耗只有500千伏线路的25%至40%。输送同样的功率,采用1000千伏线路输电与采用500千伏的线路相比,可节省60%的土地资源。到2020年前后,国家电网特高压骨干网架基本形成,国家电网跨区输送容量将超过2亿千瓦,占全国总装机容量的20%以上。届时,从周边国家向中国远距离、大容量跨国输电将成为可能。 中国也是世界第一条特高压电网线路:起于山西省长治变电站,经河南省南阳开关站,止于湖北省荆门变电站,联接华北、华中电网,全长654公里,申报造价58.57亿元,动态投资200亿元,将于2008年12月28日建成后进行商业化运营。 国家特高压电网发展规划: (一) 2010年,国家特高压电网将在华北、华中和华东地区形成晋东南~南阳~荆门~武汉~芜湖~杭北~上海~无锡~南~徐州~安阳~晋东南双环网作为特高压主网架;西北、华北火电通过蒙西~北~石家庄~安阳以及蒙西~陕北~晋东南2个独立送电通道注入特高压主网,西南水电通过乐山~重庆~恩施~荆门双回路通道注入特高压主网。 2010年特高压工程总规模将达到20座交流变电站(开关站),主变台数将达到26台,总变电容量达到7725万千伏安,交流特高压线路长度达到11580公里。 (二)2015年,交流特高压骨干网架将形成长梯形、多受端的交流主网架结构:在中部及东部地区分别建成一条南北方向的大通道,即北东~石家庄~豫北~南阳~荆门~长沙的双回线路、唐山~天津~济南~徐州(连云港)~南(无锡)~芜湖~杭北~金华~温州~福州~泉州,两条大通道间通过北东~唐山单回、石家庄~济南单回、豫北~徐州双回、荆门~武汉~芜湖双回、长沙~南昌~金华单回等共7回线路联系。蒙西火电、陕北火电、宁夏火电及川西水电等大电源经各自的特高压站汇集后,通过百万伏级线路注入中部大通道。沿海核电直接接入东部大通道,为东部受端电网提供必要的电压支撑。华北、华中、华东等受端地区分别形成北东~唐山~天津~济南~石家庄环网、荆门~武汉~南昌~长沙环网、南~无锡~上海北~上海西~杭北~芜湖双环网。 2015年规划建成特高压直流5回,包括:金沙江一期溪洛渡和向家坝水电站送电华东、华中;锦屏水电站送电华东;呼盟煤电基地送电华北,哈密送华中。 2015年特高压工程规模将达到38座交流变电站,主变台数将达到55台,总变电容量达

我国特高压发展历程简介

2004年12月27日,国家电网公司党组会议提出发展特高压输电技术,建设以特高压电网为核心的坚强国家电网的战略构想。 2005年2月16日,国家发展改革委下发《关于开展百万伏级交流、±80万伏级直流输电技术前期研究工作的通知》,这标志着特高压工程前期研究进入实质性阶段。 2005年5月19日,国家电网公司正式启动交流特高压试验示范工程预初步设计。 2005年8月31日,国家电网公司向国家发展改革委报送《关于溪洛渡、向家坝水电站采用3回±800千伏640万千瓦直流输电方案的请示》和《关于推荐晋东南—南阳—荆门作为交流特高压试验示范工程的请示》。 2005年10月,国家电网公司正式上报晋东南-南阳-荆门特高压试验示范工程可行性研究报告。2005年12月22日,国务院在批准国家发展改革委关于核准金沙江、溪洛渡水电站项目的请示中明确,该两电站初定采用3回±800千伏640万千瓦的直流输电方案。 2006年5月29日至30日,交流特高压试验示范工程晋东南-南阳-荆门1000kV输电线路工程初步设计路径评审会在北京召开,这标志着1000kV试验示范工程建设已拉开序幕。2006年8月19日、8月20日、8月26日,晋东南-南阳-荆门交流特高压试验示范工程晋东南变电站、南阳开关站、荆门变电站分别举行了奠基仪式,这标志着交流特高压1000kV 试验示范工程进入启动建设阶段。 2006年9月13日,晋东南-南阳-荆门1000千伏特高压交流试验示范工程变电站及线路大跨越工程初步设计正式通过了审查,这标志着特高压交流试验示范工程进入全面建设阶段。2006年12月26日,1000千伏特高压输电线路工程——黄河大跨越正式开工;12月28日1000千伏特高压交流输电线路试验示范工程——汉江大跨越正式开工,这标志着1000千伏特高压示范工程全面进入实质性、关键性建设阶段。 2006年11月4日至5日,国家电网公司组织召开了向家坝-上海±800kV特高压直流换流站预初步设计审查会。本次会议标志着向家坝-上海特高压直流工程进入了一个新的阶段。2006年11月8日,晋东南-南阳-荆门1000千伏特高压交流试验示范工程线路初步设计评审会在京召开,预计2007年上半年1000千伏特高压交流试验示范工程线路将开工建设。2006年12月19日,云南-广东±800kV特高压直流示范工程开工仪式在云南楚雄举行。这是世界上第1个±800kV直流输电工程。该工程线路长度1438km,额定输送容量5000MW,动态总投资137亿元,计划2009年单极投运,2010年双极投运。

特高压电网规划环境影响评价及风险防范研究

特高压电网规划环境影响评价及风险防范研究 发表时间:2017-07-14T16:39:27.183Z 来源:《基层建设》2017年第8期作者:康卫伟 [导读] 摘要:近年来,特高压电网规划的环境影响评价及风险防范问题得到了业内的广泛关注,研究其相关课题有着重要意义。 合肥工业大学安徽合肥 230009 摘要:近年来,特高压电网规划的环境影响评价及风险防范问题得到了业内的广泛关注,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了特高压电网规划的特点。在探讨特高压电网规划环境影响识别方法和过程的同时,结合相关实践经验,分别从多个角度与方面提出了特高压电网工程环境保护管理的建议,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。 关键词:特高压电网;环境影响评价;风险防范 1前言 作为特高压电网规划中的一项重要方面,对其环境影响评价及风险的分析占据这极为关键的地位。该项课题的研究,将会更好地提升对特高压电网规划环评问题的分析与掌控力度,从而通过合理化的措施与途径,进一步优化该项工作的最终整体效果。 2概述 特高压电网作为未来国家经济命脉的基础设施,事关国家安全和经济稳定运行的大局。因此,掌握特高压变电站和输电线路在建设和运行中的环境影响因素、特性,并提出有效的控制措施,能有效地降低特高压电网规划项目对自然环境和人们生产、生活等方面的影响。做好特高压输变电工程的环境影响评价和环境保护管理工作,对于保证特高压输变电事业可持续性发展是十分重要的。随着经济社会发展对电力需求急剧增加的同时,加强对规划电网项目建设前的环境评价显得极为重要。因此要确保电网规划实施后生态与环境的可持续性,最有效的方法之一就是对将要实施的电网规划进行环境影响评价。特高压电网作为电网未来的主干,开展对特高压电网规划环境影响评价具有现实的意义。 3特高压电网规划的特点 3.1特点 特高压电网项目建设是一项建设周期长的工程,一般项目施工时间需要大约两年的时间,项目从规划到建设至少需要5年以上的时间,因此对特高压电网工程开展规划环境影响评价时十分必要的。此外项目建设将会对环境造成一定的影响,项目投运之后的电磁辐射等环境问题也会对人们的生活造成一定程度的影响。因此,在特高压输电项目建设的前期阶段,必须严格按照《中华人民共和国环境影响评价法》的规定,开展环境影响评价工作,对建设实施后可能造成的环境影响进行分析评估,并且有针对性地提出预防或减轻不良环境影响的对策和措施,使项目对环境的影响尽可能减少到最小,确保工程达到国家相关环保标准要求。此外特高压电网工程涉及面广,特高压电网建设涉及方方面面的问题。其工程量具有巨大性、工程建设艰巨性等特点。 3.2环保问题 作为未来我国电网发展的骨干网架—特高压电网,其建设周期长,建设过程中和其他土木类工程相似,必然会引起一系列的环境问题。此外特高压因为其特有的特点,在建设和运行过程中会带来其他特殊的环境保护问题。特高压变电站、换流站和输电线路在保障经济发展的同时。其建设、运行也对环境带来一定的影响,主要表现在输电线路及塔基占地带来的土地功能及结构的改变、砍伐林木、破坏植被、扰动地表带来的对生态环境的影响、造成水土流失等。同时特高压变电站、换流站和输电线路的运行会产生电磁感应的影响,伴随着产生工频电场和工频磁场可能会对人们的日常生活及无线广播电视信号等产生一定的影响。因此必须重视在特高压建设过程中的各个环节可能产生的环境问题,对特高压电网进行规划影响评价,并对特高压电网建设和运行过程中可能产生的环境问题开展风险防范工作。 4特高压电网规划环境影响的识别方法和过程 在进行环境影响识别的过程中,应当判断建设项目的类别。即建设项目是属于污染型建设项目还是非污染型建设项目。特高压电网工程由于其直接对环境造成的污染相比而言较弱,因此属于非污染型项目。对该类项目的识别一般采取以下方法: 4.1列表清单法 列表清单法就是对项目规划后的环境影响因子和其产生的影响性质用一张表格进行罗列出来。这种方法在规划环境影响识别中普遍使用。对特高压电网工程规划环境影响的识别采用列表清单法,这样可以清楚的反映出特高压电网工程各个环境影响因子。 4.2矩阵法 矩阵法是由列表清单法延伸而来的。这种方法既具有识别功能,还可以对规划环境影响进行综合评价。矩阵法就是将列表清单中的各个环境影响因子进行排列,把规划项目的各项活动和受影响的环境要素组成一个矩阵。从而建立起规划活动与环境影响之间的因果关系,确定他们之间的相互作用。 4.3其他识别方法 其他环境影响因子的识别方法主要有叠图法、网络法、系统流图法和灰色关联度法等。叠图法在规划环境影响评价中通过应用一系列的资源、环境图重叠,然后预测环境影响,标记环境影响要素、对环境影响不同区域内的相对重要性进行判断。叠图法主要涉及地理空间相对大的规划项目,比如铁路规划环境影响的识别、天然气管道规划等的环境影响识别等项目。以上几种方法在规划环评中都可以用到,由于特高压电网规划的影响范围广、时间长,与区域社会经济发展关系密切。 5特高压电网工程环境保护管理的建议 在电网环境管理中也遵循预则立不预则废的原则。开展电网环境风险管理对于电网环境管理工作的开展是十分重要的。特高压电网工程环境风险防范就是指对特高压电网工程建设和运行期可能发生的可以预测的环境风险进行评估,从而提出合理的防范、应急和减缓措施,使得特高压电网工程项目事故发生率和环境影响达到最低水平。 首先,要努力加强全过程管理电网环保工作,以提高其工作质量。电网规划编制阶段,应对提前分析和控制可能存在的环境影响因素。在可研阶段,应充分考虑环境制约对选址选线的影响,合理避让环境敏感目标,尽量避免线路穿越环境敏感区;认真负责的把好电网建设环评报告内审的关,努力提高其环评工作质量。初步设计和施工图设计阶段,应具体落实批复文件和环评报告中提出的各项环保要求和措施:在物资招标中?应从源头上控制和降低噪声,优先选用低噪声设备,严格控制主声源设备的性能指标。在施工阶段,要加强环境保护“三同时”管理,努力减少施工期对周边环境的影响;认真开展环境监理试点,做到环保工作可控在控。竣工环保验收阶段,严格履行相关

电气低压配电设计要求

第二章电器和导体的选择 第一节电器的选择 第2.1.1条低压配电设计所选用的电器,应符合国家现行的有关标准,并应符合下列要求。 五、电器应满足短路条件下的动稳定与热稳定的要求。用于断开短路电流的电器,应满足短路条件下的通断能力。 第2.1.2条验算电器在短路条件下的通断能力,应采用安装处预期短路电流周期分量的有效值,当短路点附近所接电动机额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响。 第2.1.3条当维护、测试和检修设备需断开电源时,应设置隔离电器。 第2.1.5条隔离电器宜采用同时断开电源所有极的开关或彼此靠近的单极开关。 第2.1.6条隔离电器可采用下列电器: 一、单极或多极隔离开关、隔离插头; 二、插头与插座; 三、连接片; 四、不需要拆除导线的特殊端子; 五、熔断器。 第2.1.7条半导体电器严禁作隔离电器 第2.1.8条通断电流的操作电器可采用下列电器 一、负荷开关及断路器; 二、继电器、接触器; 三、半导体电器; 四、10A及以下的插头与插座。 第二节导体的选择 第2.2.2条选择导体截面,应符合下列要求:

一、线路电压损失应满足用电设备正常工作及起动时端电压的要求; 二、按敷设方式确定的导体载流量,不应小于计算电流; 三、导体应满足动稳定与热稳定的要求; 四、导体最小截面应满足机械强度的要求,固定敷设的导线最小芯线截面应符合表2.2.2的规定。 注:L为绝缘子支持点间距。 第2.2.3条沿不同冷却条件的路径敷设绝缘导线和电缆时,当冷却条件最坏段的长度超过5m,应按该段条件选择绝缘导线和电缆的截面,或只对该段采用大截面的绝缘导线和电缆。 第2.2.4条导体的允许载流量,应根据敷设处的环境温度进行校正,温度校正系数可按下式计算: 第2.2.5条导线敷设处的环境温度,应采用下列温度值: 一、直接敷设在土壤中的电缆,采用敷设处历年最热月的月平均温度;

相关文档
最新文档