用因式分解法解一元二次方程(知识点-经典例题-综合练习)

用因式分解法解一元二次方程(知识点-经典例题-综合练习)
用因式分解法解一元二次方程(知识点-经典例题-综合练习)

用因式分解法解一元二次方程

【主体知识归纳】

1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.

2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A =0或B =0.

【基础知识讲解】

1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.

2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.

【例题精讲】

例1:用因式分解法解下列方程:

(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.

解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6.

(2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.

(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0.

∴x 1=0,x 2=2

3. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.

(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:

原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.

(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考?

例2:用适当方法解下列方程: (1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2

-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;

(6)4(3x +1)2=25(x -2)2.

剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.

解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.

(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27.

(3)移项,得3x 2-4x -1=0,

∵a =3,b =-4,c =-1, ∴x =3

7232)1(34)4()4(2±=?-??--±--, ∴x 1=372+,x 2=3

72-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0;

∴y -5=0或y +3=0,∴y 1=5,y 2=-3.

(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0,

∴x -3=0或4x -1=0,

∴x 1=3,x 2=4

1. (6)移项,得4(3x +1)2-25(x -2)2=0,

[2(3x +1)]2-[5(x -2)]2=0,

[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0,

(11x -8)(x +12)=0,

∴11x -8=0或x +12=0,∴x 1=11

8,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.

- 3 - / 8- 3 - / 8 (2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.

例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.

解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0.

当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0.

(2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程.

分解因式,得

[(a +b )x +(a -b )][(a -b )x -(a +b )]=0,

∵a +b ≠0且a -b ≠0,

∴x 1=b a a b +-,x 2=b

a b a -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.

例4:已知x 2-xy -2y 2

=0,且x ≠0,y ≠0,求代数式222

25252y xy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2

=0因式分解即可得x 与y 的比值.

解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y . 当x =2y 时,135y

13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+??+-??-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 2

22222222-=-=+?-?+--?-?--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.

【同步达纲练习】

1.选择题

(1)方程(x -16)(x +8)=0的根是( )

A .x 1=-16,x 2=8

B .x 1=16,x 2=-8

C .x 1=16,x 2=8

D .x 1=-16,x 2=-8

(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )

A ..x =21

B .x =2

C .x =1

D .x =-1

(3)方程5x (x +3)=3(x +3)解为( )

A .x 1=5

3,x 2=3 B .x =53

C .x 1=-53,x 2=-3

D .x 1=53,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )

A .y 1=5,y 2=-2

B .y =5

C .y =-2

D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( )

A .x 1=1,x 2=-5

B .x 1=-1,x 2=-5

C .x 1=1,x 2=5

D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为

( )

A .1

B .2

C .-4

D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )

A .5

B .5或11

C .6

D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( )

A .0

B .1

C .2

D .3

2.填空题

(1)方程t (t +3)=28的解为_______.

(2)方程(2x +1)2+3(2x +1)=0的解为__________.

(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.

(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.

(5)方程x (x -5)=5 -x 的解为__________.

3.用因式分解法解下列方程:

(1)x 2+12x =0;

(2)4x 2-1=0; (3)x 2=7x ;

(4)x 2-4x -21=0;

(5)(x -1)(x +3)=12; (6)3x 2

+2x -1=0;

(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.

4.用适当方法解下列方程:

(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;

(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);

(6)(3-y)2+y2=9;

(7)(1+2)x2-(1-2)x=0;

(8)5x2-(52+1)x+10=0;

(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.

5.解关于x的方程:

(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;

(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.

- 5 - / 8- 5 - / 8

6.已知x 2+3xy -4y 2=0(y ≠0),试求

y

x y x +-的值.

7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2

的值.

8.请你用三种方法解方程:x (x +12)=864.

9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.

10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.

11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.

当y =1时,x 2-1=1,x 2=2,∴x =±2.

当y =4时,x 2-1=4,x 2=5,∴x =±5.

∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.

以上方法就叫换元法,达到了降次的目的,体现了转化的思想.

(1)运用上述方法解方程:x 4-3x 2-4=0.

(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗

- 7 - / 8- 7 - / 8

参考答案

【同步达纲练习】

1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D

2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=2

1;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=3

1; (7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2. 4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=

253+,x 2=253-;(4)x 1=3,x 2=-1; (5)t 1=0,t 2=-2

3;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3; (8)x 1=

55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7. 5.(1)x 2

-4ax +4a 2=a 2-2a +1, (x -2a )2=(a -1)2,

∴x -2a =±(a -1),

∴x 1=3a -1,x 2=a +1.

(2)x 2+(5-2k )x +k 2

-5k -6=0, x 2+(5-2k )x +(k +1)(k -6)=0,

[x -(k +1)][x -(k -6)]=0,

∴x 1=k +1,x 2=(k -6).

(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2

∴x 1=4m ,x 2=-2m

(4)x 2+(2m +1)x +m (m +1)=0,

(x +m )[x +(m +1)]=0,

∴x 1=-m ,x 2=-m -1

6.(x +4y )(x -y )=0, x =-4y 或x =y

当x =-4y 时,y x y x +-=3

544=+---y y y y ; 当x =y 时,

y x y x +-=y y y y +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0,

(x 2+y 2)2-(x 2+y 2)-12=0,

(x 2+y 2-4)(x 2+y 2+3)=0,

∴x 2+y 2=4或x 2+y 2=-3(舍去)

8.x 1=-36,x 2=24

9.∵x 2+3x +5=9,∴x 2+3x =4,

∴3x2+9x-2=3(x2+3x)-2=3×4-2=10 10.10=-5(t-2)(t+1),∴t=1(t=0舍去) 11.(1)x1=-2,x2=2

(2)(x2-2)(x2-5)=0,

(x+2)(x-2)(x+5)(x-5)=0

因式分解-复习-专题-讲义-知识点-典型例题

因式分解复习 一、基础知识 1.因式分解概念: 把一个多项式化成几个整式的乘积的形式,这就叫做把这个多项式因式分解,也可称为 将这个多项式分解因式,它与整式乘法互为逆运算。 2.常用的因式分解方法: (1)提公因式法:把ma mb mc ++,分解成两个因式乘积的形式,其中一个因式是 各项的公因式m ,另一个因式()a b c ++是ma mb mc ++除以m 所得的商,像这种分解因 式的方法叫做提公因式法。 ①多项式各项都含有的相同因式,叫做这个多项式各项的公因式。 ②公因式的构成:系数:各项系数的最大公约数; 字母:各项都含有的相同字母; 指数:相同字母的最低次幂。 (2)公式法: ①常用公式 平方差:)b a )(b a (b a 22-+=- 完全平方:222)b a (b 2ab a ±=+± ②常见的两个二项式幂的变号规律: 22()()n n a b b a -=-;2121()()n n a b b a ---=--.(n 为正整数) (3)十字相乘法 ①二次项系数为1的二次三项式 q px x ++2中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成 ()()()b x a x ab x b a x q px x ++=+++=++22 ②二次项系数不为1的二次三项式c bx ax ++2 中,如果能把二次项系数a 分解成两 个因数21,a a 的积,把常数项c 分解成两个因数21,c c 的积,并且1221c a c a +等于一次项系 数b ,那么它就可以分解成:()=+++=++2112212212c c x c a c a x a a c bx ax ()()221c x a a x a ++。 (4)分组分解法 ①定义:分组分解法,适用于四项以上的多项式,例如22 a b a b -+-没有公因式, 又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。再提公因式,即可达到分解因式的目的。 例如22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。 ②原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分 解。 ③有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多 项式正确分解即可。

一元二次方程经典测试题(附答案解析)

. . . 一元二次方程测试题 考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育 第Ⅰ卷(选择题) 一.选择题(共12小题,每题3分,共36分) 1.方程x(x﹣2)=3x的解为() A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5 2.下列方程是一元二次方程的是() A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣ 1)2+1=0 3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为() A.﹣1 B.1 C.1或﹣1 D.3 4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是() A.12(1+x)=17 B.17(1﹣x)=12 C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17 5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是() A.2秒钟B.3秒钟C.4秒钟D.5秒钟 6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为() A.x(x+12)=210 B.x(x﹣12)=210 C.2x+2(x+12)=210 D.2x+2(x﹣12)=210 7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是() A .有两个正根B.有一正根一负根且正根的绝对值大 C.有两个负根D.有一正根一负根且负根的绝对值大 8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为() A.﹣1 B.或﹣1 C.D.﹣或1 9.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是() A.有两个正根B.有两个负根 C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大 10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是() A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根 B.如果方程M有两根符号相同,那么方程N的两根符号也相同 C.如果5是方程M的一个根,那么是方程N的一个根 D.如果方程M和方程N有一个相同的根,那么这个根必是x=1 11.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是() A.7 B.11 C.12 D.16

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

高一数学集合知识点归纳及典型例题

高一数学集合知识点归纳及典型例题 Revised on November 25, 2020

集合 一、知识点: 1、元素: (1)集合中的对象称为元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ?; (2)集合中对象元素的性质:确定性、互异性、无序性; (3)集合表示方法:列举法、描述法、图示法; (4)常用数集:R Q Z N N N ;;;;;*+ 2、集合的关系: 子集 相等 3、全集 交集 并集 补集 4、集合的性质: (1);,,A B B A A A A A ?=?=?=?φφ (2) ;,A B B A A A ?=?=?φ (3) );()(B A B A ??? (4);B B A A B A B A =??=??? (5));()()(),()()(B C A C B A C B C A C B A C S S S S S S ?=??=? 二、典型例题 例1. 已知集合 }33,)1(,2{22++++=a a a a A ,若A ∈1,求a 。 例2. 已知集合M ={}012|2=++∈x ax R x 中只含有一个元素,求a 的值。 例3. 已知集合 },01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。 \ 例4. 已知方程02=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A ={1,3,5,7,9}, B ={1,4,7,10},若C B C C A =Φ= ,,试求b , c 的值。 例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A , (1)若Φ=B A , 求m 的范围; (2)若A B A = , 求m 的范围。 例6. 已知A ={0,1}, B ={x|x ?A},用列举法表示集合B ,并指出集合A 与B 的关系。 三、练习题 1. 设集合M =,24},17|{=≤a x x 则( ) A. M a ∈ B. M a ? C. a = M D. a > M

因式分解易错题和经典题型精选

因式分解易错题精选 班级 姓名 成绩 一、填空:(30分) 1、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。 2、22)(n x m x x -=++则m =____n =____ 3、232y x 与y x 612的公因式是_ 4、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。 5、在多项式4224222294,4,,t s y x b a n m +-+--+中,可以用平方差公式分解因式的 有________________________ ,其结果是 _____________________。 6、若16)3(22+-+x m x 是完全平方式,则m=_______。 7、_____))(2(2(_____)2++=++x x x x 8、已知,01200520042=+++++x x x x 则.________2006=x 9、若25)(162++-M b a 是完全平方式M=________。 10、()22)3(__6+=++x x x , ()2 2)3(9___-=++x x 11、若229y k x ++是完全平方式,则k=_______。 12、若442-+x x 的值为0,则51232-+x x 的值是________。 13、若)15)(1(152-+=--x x ax x 则a =_____。 14、若6,422=+=+y x y x 则=xy ___。15、方程042 =+x x ,的解是________。

1、多项式))(())((x b x a ab b x x a a --+---的公因式是( ) A 、-a 、 B 、))((b x x a a --- C 、)(x a a - D 、)(a x a -- 2、若22)32(9-=++x kx mx ,则m ,k 的值分别是( ) A 、m=—2,k=6, B 、m=2,k=12, C 、m=—4,k=—12、 D m=4,k=12、 3、下列名式:4 422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公 式分解因式的有( )A 、1个,B 、2个,C 、3个,D 、4个 4、计算)10 11)(911()311)(211(2232---- 的值是( ) A 、21 B 、2011.,101.,201D C 5、1.下列等式从左到右的变形是因式分解的是………………………………………( ) (A )(x +2)(x –2)=x 2-4(B )x 2-4+3x =(x +2)(x –2)+3x (C )x 2-3x -4=(x -4)(x +1)(D )x 2+2x -3=(x +1)2-4 6.分解多项式 bc c b a 2222+--时,分组正确的是……………………………( ) (A )()2()222bc c b a --- (B )bc c b a 2)(222+-- (C ))2()(222bc b c a --- (D ))2(222bc c b a -+- 7.当二次三项式 4x 2 +kx +25=0是完全平方式时,k 的值是…………………( ) (A )20 (B ) 10 (C )-20 (D )绝对值是20的数 8.二项式15++-n n x x 作因式分解的结果,合于要求的选项是………………………( ) (A ))(4n n x x x -+ (B )n x )(5x x - (C ))1)(1)(1(21-+++x x x x n (D ))1(41-+x x n 9.若 a =-4b ,则对a 的任何值多项式 a 2+3ab -4b 2 +2 的值………………( ) (A )总是2 (B )总是0 (C )总是1 (D )是不确定的值

一元二次方程典型例题解析

龙文教育学科辅导学案 教师: 学生: 年级: 日期:2013. 星期: 时段: 学情分析 课 题 一元二次方程章节复习及典型例题解析 学习目标与 考点分析 学习目标:1、通过对典型例题、自身错题的整理,抓住本章的重点、突破学习的难点; 2、通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法; 3、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决 问题中的作用 考点分析:1一元二次方程的定义 、解法、及根与系数的关系 学习重点 理解并掌握一元二次方程的概念及解法 学习方法 讲练说相结合 学习内容与过程 一 回顾梳理旧的知识点(这些知识点必须牢牢掌握) 一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

集合典型例题

集合·典型例题 能力素质 例用符号∈或填空1 ? 1________N , 0________N , -3________N , 0.5N N ,;2 1________Z , 0________Z , -3________Z , 0.5Z Z ,;2 1________Q , 0________Q , -3________Q , 0.5Q Q ,;2 1________R , 0________R , -3________R , 0.5R R ,;2 分析元素在集合内用符号∈,而元素不在集合内时用符号. ? 解∈, ∈,-,,; 1N 0N 3N 0.5N N ???2 1Z 0Z 3Z 0.5Z Z 1Q 0Q 3Q ∈, ∈,-∈,,;∈,∈,-∈,??2 0.5Q Q 1R 0R 3R 0.5R R ∈,; ∈,∈,-∈,∈,; 22?? 说明:要注意符号的规范书写. 例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来; (2)设集合A ={(x ,y)|x +y =6,x ∈N ,y ∈N},试用列举法表示集合A ; 分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0). 解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或|x|x =2n ,n ∈N ,n <6}. (2)A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 说明:注意(2)中集合A 的元素是点的坐标.

高考集合知识点总结与典型例题

集合 一.【课标要求】 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。 预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体 三.【要点精讲】 1.集合:某些指定的对象集在一起成为集合 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或 者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系: (1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?); 集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; (2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:

因式分解练习题(超经典)

因式分解习题 一、填空: 1、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。 2、22)(n x m x x -=++则m =____n =____ 3、232y x 与y x 612的公因式是__________. 4、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。 5、在多项式4224222294,4,,t s y x b a n m +-+--+中,可以用平方差公式分解因式的 有___________________________ ,其结果是 _______________________________________。 6、若16)3(22+-+x m x 是完全平方式,则m=_______。 7、_____))(2(2(_____)2++=++x x x x 8、已知,01200520042=+++++x x x x Λ则.________2006=x 9、若25)(162++-M b a 是完全平方式M=________。 10、()22)3(__6+=++x x x , ()22)3(9___-=++x x 11、若229y k x ++是完全平方式,则k=_______。 12、若442-+x x 的值为0,则51232-+x x 的值是________。 13、若)15)(1(152-+=--x x ax x 则a =_________。 14、若6,422=+=+y x y x 则=xy ________。 15、方程042=+x x ,的解是________。 二、选择题:(8分) 1、多项式))(())((x b x a ab b x x a a --+---的公因式是( ) A 、-a B 、))((b x x a a --- C 、)(x a a - D 、)(a x a -- 2、若22)32(9-=++x kx mx ,则m ,k 的值分别是( ) A 、m=—2,k=6 B 、m=2,k=12 C 、m=—4,k=—12 D m=4,k=12 3、下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公式分解因式的有( ) A 、1个 B 、2个 C 、3个 D 、4个 三、分解因式: 1、234352x x x -- 2、2633x x - 3、22)2(4)2(25x y y x --- 4、x x -5 5、24369y x - 6、811824+-x x 四、代数式求值

一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 如果 a x =2那么 a x ±= 注意;x 可以是多项式 一、用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 配方法解一元二次方程的步骤: 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) (1)当b 2-4ac>0时,=1x ,=2x 。 (2)当b 2-4ac=0时,==21x x 。 (3)当b 2-4ac<0时,方程根的情况为 。 二、用公式解法解下列方程。 1、0822=--x x 2、22314y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x 7.x 2+4x -3=0 8. .03232=--x x 方法四:因式分解法 因式分解的方法: (1)提公因式法: (2)公式法:平方差: 完全平方: (3)十字相乘法: 一、 用因式分解法解下列一元二次方程。 1、x x 22= 2、0)32()1(22=--+x x 3、0862=+-x x 4、22)2(25)3(4-=+x x 5、0)21()21(2=--+x x 6、0)23()32(2=-+-x x

高一数学集合练习题及答案-经典

选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A= }{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U= {}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________.

【离散数学】知识点典型例题整理

【半群】G非空,·为G上的二元代数运算,满足结合律。 【群】(非空,封闭,结合律,单位元,逆元)恰有一个元素1适合1·a=a·1=a,恰有一个元素a-1适合a·a-1=a-1·a=1。 【Abel群/交换群】·适合交换律。可能不只有两个元素适合x2=1 【置换】n元置换的全体作成的集合Sn对置换的乘法作成n 次对称群。 【子群】按照G中的乘法运算·,子集H仍是一个群。单位子群{1}和G称为平凡子群。 【循环群】G可以由它的某元素a生成,即G=(a)。a所有幂的集合an,n=0,±1,±2,…做成G的一个子群,由a生成的子群。若G的元数是一个质数,则G必是循环群。 n元循环群(a)中,元素ak是(a)的生成元的充要条件是(n,k)=1。共有?(n)个。【三次对称群】{I(12)(13)(23)(123)(132)} 【陪集】a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),a≡b(右mod H)。H有限,则H的任意右陪集aH的元数皆等于H的元数。任意两个右陪集aH和bH或者相等或者不相交。 求右陪集:H本身是一个;任取a?H而求aH又得到一个;任取b?H∪aH而求bH又一个。G=H∪aH∪bH∪… 【正规子群】G中任意g,gH=Hg。(H=gHg-1对任意g∈G都成立) Lagrange定理G为有限群,则任意子群H的元数整除群G的元数。 1有限群G的元数除以H的元数所得的商,记为(G:H),叫做H在G中的指数,H的指数也就是H的右(左)陪集的个数。 2设G为有限群,元数为n,对任意a∈G,有an=1。 3若H在G中的指数是2,则H必然是G的正规子群。证明:此时对H的左陪集aH,右陪集Ha,都是G中元去掉H的所余部分。故Ha=aH。 4G的任意多个子群的交集是G的子群。并且,G的任意多个正规子群的交集仍是G的正规子群。 5 H是G的子群。N是G的正规子群。命HN为H的元素乘N的元素所得的所有元素的集合,则HN是G的子群。 【同态映射】K是乘法系统,G到K的一个映射σ(ab)=σ(a)σ(b)。 设(G,*),(K,+)是两个群,令σ:x→e,?x∈G,其中e是K的单位元。则σ是G到K 内的映射,且对a,b∈G,有σ(a*b)=e=σ(a)+ σ(b)。即,σ是G到K的同态映射,G~σ(G)。σ(G)={e}是K的一个子群。这个同态映射是任意两个群之间都有的。 【同构映射】K是乘法系统,σ是G到σ(G)上的1-1映射。称G与σ(G)同构,G?G′。同构的群或代数系统,抽象地来看可以说毫无差别。G和G′同态,则可以说G′是G的一个缩影。 【同态核】σ是G到G′上的同态映射,核N为G中所有变成G′中1′的元素g的集合,即N=σ-1(1′)={g∈G∣σ(g)=1′}。 N是G的一个正规子群。对于Gˊ的任意元素aˊ,σ-1(aˊ)={x|x∈G ,σ(x)= aˊ}是N在G 中的一个陪集。Gˊ的元素和N在G中的陪集一一对应。 设N是G的正规子群。若A,B是N的陪集,则AB也是N的陪集。 【环】R非空,有加、乘两种运算 a+b=b+a2)a+(b+c)=(a+b)+c, 3)R中有一个元素0,适合a+0=a, 4)对于R中任意a,有-a,适合a+(-a)=0, 5)a(bc)=(ab)c,

因式分解经典题与解析

2013组卷 1.在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x﹣3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法: x2+2x﹣3=x2+2×x×1+12﹣1﹣3﹣﹣﹣﹣﹣﹣① =(x+1)2﹣22﹣﹣﹣﹣﹣﹣② =… 解决下列问题: (1)填空:在上述材料中,运用了_________的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法; (2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x﹣3; (3)请用上述方法因式分解x2﹣4x﹣5. 2.请看下面的问题:把x4+4分解因式 分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢 19世纪的法国数学家菲?热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2) 人们为了纪念菲?热门给出这一解法,就把它叫做“热门定理”,请你依照菲?热门的做法,将下列各式因式分解. (1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab. 3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程. 解:设x2﹣4x=y 原式=(y+2)(y+6)+4(第一步) =y2+8y+16(第二步) =(y+4)2(第三步) =(x2﹣4x+4)2(第四步) 回答下列问题: (1)该同学第二步到第三步运用了因式分解的_________. A、提取公因式B.平方差公式 C、两数和的完全平方公式D.两数差的完全平方公式 (2)该同学因式分解的结果是否彻底_________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________. (3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解. 4.找出能使二次三项式x2+ax﹣6可以因式分解(在整数围)的整数值a,并且将其进行因式分解. 5.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.

一元二次方程典型例题整理版

一元二次方程 专题一:一元二次方程的定义 典例分析: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 2、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( ) A .2±=m B .m=2 C .2-≠m D .2±≠m 3、关于x 的一元二次方程(a -1)x 2+x+a 2-l=0的一个根是0。则a 的值为( ) A 、 1 B 、-l C 、 1 或-1 D 、 1 2 4、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 5、关于x 的方程0)2(2 2=++-+b ax x a a 是一元二次方程的条件是( ) A 、a ≠1 B 、a ≠-2 C 、a ≠1且a ≠-2 D 、a ≠1或a ≠-2 专题二:一元二次方程的解 典例分析: 1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 2、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 3、已知a 是0132=+-x x 的根,则=-a a 622 。

4、若方程ax 2+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是_______。 5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - 课堂练习: 1、已知一元二次方程x 2+3x+m=0的一个根为-1,则另一个根为 2、已知x=1是一元二次方程x 2+bx+5=0的一个解,求b 的值及方程的另一个根. 3、已知322-+y y 的值为2,则1242++y y 的值为 。 4、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 专题三:一元二次方程的求解方法 典例分析: 一、直接开平方法 ();0912=--x 二、配方法 . 难度训练: 1、如果二次三项式16)122++-x m x ( 是一个完全平方式,那么m 的值是_______________.

集合典型例题

1。集合得含义及其表示 (一)集合元素得互异性 1、已知,则集合中元素x所应满足得条件为 变式:已知集合,若,则实数得值为_______ 2。中三个元素可以构成一个三角形得三边长,那么此三角形可能就是 ①直角三角形②锐角三角形③钝角三角形④等腰三角形 (二)集合得表示方法 1. 用列举法表示下列集合 (1) __________________________ 变式:已知a,b,c为非零实数,则得值组成得集合为___ (2) ____ 变式1: 变式2: (3)集合用列举法表示集合B (4)已知集合M=,则集合M中得元素为 变式:已知集合M=,则集合M中得元素为 2。用描述法表示下列集合 (1)直角坐标系中坐标轴上得点_______________________________ 变式:直角坐标平面中一、三象限角平分线上得点______________ (2)能被3整除得整数_______________________、 3.已知集合,, (1)用列举法写出集合;(2)研究集合之间得包含或属于关系 4。命题(1) ;(2);(3);(4)表述正确得就是、 5、使用与与数集符号来替代下列自然语言:

(1)“255就是正整数” (2)“2得平方根不就是有理数” (3)“3、1416就是正有理数” (4)“-1就是整数” (5)“不就是实数” 6、用列举法表示下列集合: (1)不超过30得素数(2)五边形得对角线 (3)左右对称得大写英文字母(4)60得正约数 7。用描述法表示:若平面上所有得点组成集合, (1)平面上以为圆心,5为半径得圆上所有点得集合为_________ (2)说明下列集合得几何意义:; 8。当满足什么条件时,集合就是有限集?无限集?空集? 9、元素0、空集、、三者得区别? 10. 请用描述法写出一些集合,使它满足: (i)集合为单元素集,即中只含有一个元素; (ii)集合只含有两个元素; (iii)集合为空集 11.试用集合概念分析命题:先有鸡还就是先有鸡蛋? 解释:表述问题时把有关集合得元素说清楚,大有好处。先有鸡还就是先有鸡蛋?让我们运用集合概念来分析它。设地球上古往今来得鸡组成一个集合,孵出了最早得鸡得蛋算不算鸡蛋呢?这就是关键问题。设所有得鸡蛋组成集合,要确定得元素,就得立个标准,说定什么就是鸡蛋,一种定义方法就是:鸡生得蛋才叫鸡蛋;另一种定义方法就是:孵出了鸡得蛋与鸡生得蛋都叫鸡蛋。如果选择前一种定义,问题得答案只能就是先有鸡;选择后一种定义,答案当然就是先有鸡蛋。至于如何选择,不就是数学得任务,那就是生物学家得事。 (三)空集得性质 1.若?{x|x2≤a,a∈R},则实数a得取值范围就是________ 2、已知a就是实数,若集合{x| ax=1}就是任何集合得子集,则a得值就是_______.0?

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

因式分解--典型例题及经典习题

14.3 因式分解 典型例题 【例1】 下列各式由左边到右边的变形中,是因式分解的是( ). A .a (x +y )=ax +ay B .y 2-4y +4=y (y -4)+4 C .10a 2-5a =5a (2a -1) D .y 2-16+y =(y +4)(y -4)+y 【例2】 把多项式6a 3b 2-3a 2b 2-12a 2b 3分解因式时,应提取的公因式是( ). A .3a 2b B .3ab 2 C .3a 3b 3 D .3a 2b 2 【例3】 用提公因式法分解因式: (1)12x 2y -18xy 2-24x 3y 3; (2)5x 2-15x +5; (3)-27a 2b +9ab 2-18ab ; (4)2x (a -2b )-3y (2b -a )-4z (a -2b ). 用平方差公式分解因式 两个数的平方差,等于这两个数的和与这两个数的差的积.即a 2-b 2=(a +b )(a -b ). 【例4】 把下列多项式分解因式: (1)4x 2-9; (2)16m 2-9n 2; (3)a 3b -ab ; (4)(x +p )2-(x +q )2. 用完全平方公式分解因式 a 2+2a b +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2. 【例5】 把下列多项式分解因式: (1)x 2+14x +49; (2)(m +n )2-6(m +n )+9; (3)3ax 2+6axy +3ay 2; (4)-x 2-4y 2+4xy . 因式分解的一般步骤 一般步骤可概括为:一提、二套、三查. 【例6】 把下列各式分解因式: (1)18x 2y -50y 3; (2)ax 3y +axy 3-2ax 2y 2. 【例7】 下列各式能用完全平方公式分解因式的是( ). ①4x 2-4xy -y 2;②x 2+25x +125;③-1-a -a 24 ;④m 2n 2+4-4mn ;⑤a 2-2ab +4b 2;⑥x 2-8x +9. A .1个 B .2个 C .3个 D .4个

相关文档
最新文档