微积分在物理学上的应用备课讲稿

微积分在物理学上的应用备课讲稿
微积分在物理学上的应用备课讲稿

微积分在物理学上的应用

1 引言

微积分是数学的一个基本学科,内容包括微分学,积分学,极限及其应用,其中微分学包括导数的运算,因此使速度,加速度等物理元素可以使用一套通用的符号来进行讨论。而在大学物理中,使用微积分去解决问题是及其普遍的。对于大学物理问题,可是使其化整为零,将其分成许多在较小的时间或空间里的局部问题来进行分析。只要这些局部问题分的足够小,足以使用简单,可研究的方法来解决,再把这些局部问题的结果整合起来啊,就可以得到问题的结果。而这种将问题无限的分割下去,局部问题无限的小下去的方法,即称为微分,而把这些无限个微分元中的结果进行求和的方法,即是积分。这种解决物理问题的思想和方法即是微积分的思想和方法。

2 微积分的基本概念及微分的物理含义

微积分是一种数学思想,其建立在函数,实数和极限的基础上,其主要探讨的就是连续变量。在运用微积分去解决物理问题时,可以将我们所需要得出的结果看成是一个整体,再将这个整体先微分,即将其分成足够小的个体,我们可以将这个个体的变量看成衡量,得出个体结果后,再将其积分,即把个体的结果累积起来进行求和。例如,在我们研究匀变速直线运动时,我们就可以在其运动过程中选取一个微小的时间dt,而这一时间内的位移为dt,在每一段时间内速度的变化量非常小,可以近似忽略,那么我们就可以将这段时间内的运动近似看成匀速直线运动,再把每段时间内的位移相加,无限求和,就可以得出总的位移。

在物理学中,每个物理公式都是某些物理现象和规律的数学表示,因此,我们在使用这些公式时,面对物理量和公式的微分形式我们不能仅仅从数学方面去考虑,更要从物理含义上去考虑。在我们使用微分符号时,不能只从数学角度去理解其为无限小,更要结合具体的物理量和角度去判断他的正确含义。

例:如图所示,一通有交流电流i=的长直导线旁有一共面的单匝矩形线圈ABCD,试求线圈中的感应电动势大小。

解:设在某个时刻,长直导线电流产生的磁场为

B=

在图中做一个微元面dS,dS=ldx,则该面元上的磁场可以近似于均匀磁场,微元面dS上的磁通量为

d

线圈围成的面上通过的磁通量为

线圈中的感应电动势为

在这个例题中,微元面dS的磁通量与线圈的感应电动势都有,但他们的物理含义却是不一样的,前者的表示微元面dS上的磁通量,是一个微小量,而后者的表示的是微笑时间内的磁通量变化量,是一个微小变化量。

3 微元的选取以及微积分解决物理问题时的一般步骤

3.1 微元的选取

在使用微积分去解决物理问题时,微元的选取是非常重要的,有的时候在微元的选择上并不是仅仅只有一个,因此,选取一个合适的微元对我们解决问题会有很大帮助。

我们通常在微元的选取方面有以下几点注意,第一,在我们选取微元时,要保证我们们所选择的微元能够让我们可以将原本的问题近似处理的比较简单,以使我们能够更加便利且清晰的区解决物理问题;第二,我们要使我们选择的微元尽可能地大,这样在我们去积分时可以更为方便,如果微分过细,那么我们的过程会更精准,可是相对的,我们在积分时面临的过程也会更加繁琐,因此我们要处理好微分和积分之间的运算;第三,能用一元微元去解决问题时尽量使用一元微元,因为重积分使用起来要比一元积分麻烦的很多。

选取微元要遵循以下几个原则:1.可加性原则,由于在题目中我们所选取的微元要可以叠加演算,因此,选取的微元要具备可加性;2.有序性原则,为了保证我们所选取的微元能够在叠加区域可以不遗漏,不重复的叠加,我们就需要注意按照量的某种序来选取微元;

3.平权型原则,叠加演算实际上就是一种复杂的“加权叠加”。对于一般的“权函数”而言,叠加演算,也就是求定积分是十分复杂的,但如果“权函数”具备了“平权性”特征(在定义域内的值处处相等),原本复杂的题目就会化成简单的形式更有利于我们去解决问题。例:求半径为R的均匀带电半球面在点O的电场强度,设球面上电荷面密度σ>0.

解法一:如图,在球面上任取面元dS,将其上的电荷为一点电荷dq,则有 dq=dS=(Rd)(R)d

=d d

则该点电荷元在点O产生的场强

dE=dq/(4ε0)=d d/(4ε0)

根据对称性,即得出点O场强E0沿Z轴正方向,大小为

E=∫∫dE=/(4ε0)

解法二:如图,沿着与Z轴的垂直方向把半球面分割成许多不同半径的带电圆环,任取一圆环,其上的电荷在点O产生的场强

dE=dqz/[4ε0]

=(/2ε0)d

方向沿OZ轴正方向,点O场强

E=∫dE=/(4ε0)

由例子可知选取的微元不同,解法也是不同的,代表的物理含义也是不一样的,然而微元的选取并不影响结果,因此我们要正确理解其含义,才能更好地从物理概念,物理实质上去把握微积分。

3.2 微积分解决物理问题时的一般步骤

1.根据题意分析,选取一个具有广泛意义的微元,对微元进行分析,若是题目简单且物理含义比较明显,且遵从题意,可直接进行积分。

2.若是题目较复杂,根据题意,对于一个暂态过程写出一个平衡等式,然后对两边微分,在得到一个微元结果后,对这个分式进行积分操作。

以上步骤都是在遵从题意的基础下进行,进行微分分析的结果一般是一个微分方程,在求解时要注意初始条件,在积分时,更要注意取上下限时,要满足边界条件。

例:圆柱形桶的内壁高为h,内半径为R,桶底有一半径为r的小孔,试问从盛满水开始打开小孔直至流完桶中的水,共需多长时间?

解:如图建立坐标系,在没有摩擦力的情况下,当桶内水位高度为h-x时,水从小孔中单位时间内流过单位截面积的流量为v=,其中g为重力加速度

设积分变量x,其变化区间为[0,h]

任取[x,x+Δx]∈[0,h],当桶中液体下降Δx时,所需要的时间用dt表示,根据水的流量体积相等得dx=v dt

所以dt=/[]dx,x∈[0,h]

流完一桶水所需的时间

t f=dx

但因为被积函数是[0,h]上的无界函数,所以

t f =dx

=

由此题可看出,在我们通常使用微积分解决物理问题时,建立坐标系是很好的一个方法,可以有助于我们更好地去解决问题。

4 微积分在物理学各领域的应用

4.1 微积分在质点力学的应用

微积分在力学中的使用是非常普遍的,要用好微积分去解决问题,首先要在思想上认识到物体在运动过程中,反应其运动特征的物理量是随着时间的变化而变化的。运用微积分可以得出质点的运动方程以及他的运动状态。就比如说当我们对函数中的t进行求一阶导数时,我们就可以得到该函数所表示的质点的加速度函数。而我们可以将微积分在质点运动时的问题可以分成以下几类:

1.在已知道运动方程的前提下求其中的加速度和速度;

2.在已知质点的加速度,以及该质点的初始速度的前提下,求该质点的运动方程。

例1:一人站在岸上,用一条绳子拉船使其向岸边靠拢,如图所示,若人以恒定速率v0收绳,求船的速度。

解:

如图所示,设设船与轮子的距离为l,船的瞬时位移为x,由图可知

=-

那么船的瞬时速度为

v===

根据题意可知 v0=-

所以 v=-v0

在解决此类问题时,我们要善于从几何关系中找到质点的运动方程,而在一般情况下运动方程往往是t的隐函数形式。因此,将方程中的t进行一阶及二阶求导,就可以得出瞬时速度和瞬时加速度随着一些空间变量的变化规律。

例2:如图,质量M=2.0kg的木箱,悬挂在一轻弹簧下,弹簧静伸长x0=0.01m,一质量m=2.0kg 的橡皮泥距箱子底板h=0.30m处自由落下,黏在箱子底部后,同箱子一起向下运动,求箱子下降的最大距离。

解:球落到箱子底部时的速度为 v0=

设当橡皮泥与箱子一起运动时的速度为v,

则 mv0=(M+m)v

所以 v=v0

根据动量定理知(Mg+mg-kx)dt=d[(m+M)v]

得出 (Mg+mg-kx)dx=(M+m)vdv

上式积分后得dx=

化简整理后(M+m)+k=-(M+m)gx1+k

整理之后得出 x=0.03m

例3:质量为m的质点在力的作用下做平面曲线运动,其运动方程为=A+B,式

中,A,B,ω都是正的恒量,则力在=0到=这段时间内做的功是多少?

解:在这段时间内质点动能的增量为

Δ=-

=+

=m[(-

=

由动能定理知,功W等于动能增量Δ,所以

W=

4.2 微积分在刚体的定轴转动中的应用

刚体的定轴转动的一些基本公式:

运动方程:=(t)(表示角位置随时间t的变化关系)

角速度:=

角加速度:==

例1:一长为l,质量为m的均匀直杆,两端分别固定有质量为2m和m的小球,杆可绕与杆

垂直的水平光滑固定轴O在直面内转动,轴到杆中心C的距离OC=.开始杆与水平方向成角,且处于静止状态,如图所示,求杆释放后,转到竖直位置时的角速度及质心C的速度和加速度。

解:应用积分转动定律,当杆转动到如图(1)的位置时

=I

其中=mg

= (1)

I为各物体对轴O的转动惯量之和,即

I=[

=

结合上述式子

=I=I

得到

质心速度为

质心加速度为

在熟练掌握定理的同时运用微积分来解答此类问题是对我们是十分有帮助的,因此在解题过程中我们要把两者结合好,才更有利于我们解决此类问题。

例2:如图所示,一半径为r的空心管放在竖直的平面内,管内有一链条,它的线密度为。开始时,链条的两端分别与管口A和B重合,受到干扰后,链条的一端由管口滑下,求图示位置链条的速度。

解:如图所示(2)所示

取管内链条上的一小质元dm=,其重力对点O力矩为

d

则管内部分链条的重力对O力矩为

(2)

而管外链条下垂部分重力对O力矩为

则瞬时和力矩为

M=

根据角动量定理得到

M=

所以即

对其进行积分,得到

解得 v=

当我们遇到这样的题目,要善于在题目中间找到等价关系,灵活的运用微积分和定理之间的关系更有利于我们去解决问题。该题利用角动量定理,再对其进行积分,以此求出速度v。

4.3 微积分在静电场方面的应用

设真空中的电荷为q,P点位于空间一点,为从q到P点的矢径。P点的电场强度为

由叠加原理,点电荷系在空间P点处的电场强度

由定积分的定义,连续带电体在空间P点处的电场强度

设真空中的电荷为q,P点位于空间一点,为从q到P点的矢径。P点的电势为

由叠加原理,点电荷系在空间P点处的电势

由定积分的定义,连续带电体在空间P点处的电势

例1:在一半径为R的非导体细圆环上,电荷的线密度,式中为正的常数,如图所示,为方位角,求环心处的场强和电势。

解:在圆环上取一线元dl,其上电荷可视为点电荷,在圆心O处产生的场强大小为

=

其方向如图(3)所示

=

=

所以

= (3)

=

圆心0处的电势为

例2:如图所示,一半径为R的均匀带电圆盘,电荷面密度为,在其轴线上有一点电荷,距盘中心为x,求二者的相互作用能。

解:在盘上取一半径为r,宽为dr的环带,此环带电荷在点电荷处产生的电势

则盘上所有电荷在点P产生的电势

因此,得二者之间的相互作用能为

大学物理复习提纲

《大学物理》上册复习纲要 第一章 质点运动学 一、基本要求: 1、 熟悉掌握描述质点运动的四个物理量——位置矢量、位移、速度和加速度。会处理两类问题:(1)已知运动方程求速度和加速度;(2)已知加速度和初始条件求速度和运动方程。 2、 掌握圆周运动的角速度、角加速度、切向加速度和法向加速度。 二、内容提要: 1、 位置矢量: k z j y i x r ++= 位置矢量大小: 2 22z y x ++= 2、 运动方程:位置随时间变化的函数关系 k t z j t y i t x t r )()()()(++= 3、 位移?: z y x ?+?+?=? r s z y x ?≠?≠?+?+?=222)()()( 无限小位移:dr ds k dz j dy i dx r d ≠=++=???? 4、 瞬时速度: dt r d v = dt ds = = 5、 瞬时加速度: k dt z d j dt y d i dt x d k dt dv j dt dv i dt dv a z y x 222222++=++= 6、 圆周运动: 角速度dt d θω= 角加速度 22 dt d dt d θωα== 法向加速度速度方向的变化)(2 n n e r v a = 切向加速度速度大小的变化)(t αr e dt dv a t ==

例题:1.质点运动学(一):2,4,5,8;2.质点运动学(二):1,2,3,5; 第二章 牛顿定律 一、 基本要求: 1、 理解牛顿定律的基本内容; 2、 熟练掌握应用牛顿定律分析问题的思路和解决问题的方法。能以微积分为工具,求解一维变力作用下的简单动力学问题。 二、 内容提要: 1、 牛顿第二定律: a m F = 指合外力 合外力产生的加速度 在直角坐标系中: x x ma F = y y ma F = z z ma F = 在曲线运动中应用自然坐标系: r v m ma F n n 2 == dt dv m ma F t t == 例题:3、牛顿定律 2,3,5,8,9 第三章 动量守恒定律和能量守恒定律 一、 基本要求: 1、 理解动量、冲量概念,掌握动量定理和动量守恒定律,并能熟练应用。 2、 掌握功的概念,能计算变力作功,理解保守力作功的特点及势能的概念。 3、 掌握动能定理、功能原理和机械能守恒定律并能熟练应用。 二、 内容提要 (一) 冲量 1、 冲量: )212 1 t t dt F I t t -?=? 2、 动量: m = 3、 质点的动量定理: 12 2 1 m m dt t t -=?? 4、 动量守恒定律 条件:系统所受合外力为零或合外力在某方向上的分量为零; ∑-==n i i i m 1 恒矢量

物理中的微积分思想

高中物理中微积分思想 浙江省湖州中学物理组 潘建峰 伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。 微积分(Calculus )是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。 微积分学是微分学和积分学的总称。 它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分堪称是人类智慧最伟大的成就之一。在高中物理中,微积分思想多次发挥了作用。 1、解决变速直线运动位移问题 匀速直线运动,位移和速度之间的关系x=vt ;但变速直线运动,那么物体的位移如何求解呢? 例1、汽车以10m/s 的速度行驶,到某处需要减速停车,设汽车以等减速2m/s 2刹车,问从开始刹车到停车,汽车走了多少公里? 【解析】 现在我们知道,根据匀减速直线运动速度位移公式at v v +=0 2021at t v x +=就可以求得汽车走了0.025公里。 但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即202 1at t v x +=。 【微积分解】汽车在减速运动这段时间内速度随时间变化的关系t at v v 2100-=+=,从开始刹车到停车的时间t=5s , 所以汽车由刹车到停车行驶的位移 km t t t a t v dt at v dt t v x 025.0)10()2()()(5025 02050050=-=+=+==?? 小结:此题是一个简单的匀变速直线运动求位移问题。对一般的变速直线运动,只要结合物理知识求速度关于时间的函数,画出v -t 图像,找“面积”就可以。或者,利用定积分就可解决. 2、解决变力做功问题 恒力做功,我们可以利用公式直接求出Fs W =;但对于变力做功,我 们如何求解呢? 例2:如图所示,质量为m 的物体以恒定速率v 沿半径为R 的竖直圆轨道运 动,已知物体与竖直圆轨道间的摩擦因数为μ,求物体从轨道最低点运动到

微积分在物理 中的简单应用

求解在立体斜面上滑动的物体的速度 一物体放在斜面上,物体与斜面间的摩擦因数μ恰好满足αμtg =,α为斜面的倾角。今使物体获得一水平速度 0V 而滑动,如图一,求: 物体在轨道上任意一点的速度V 与φ的关系,设φ为速度与水平线的夹角。 解:物体在某一位置所受的力有:重力G , 弹力N 以及摩擦力f 。摩擦力f 总是与运动速度V 的方向相反,其数值 ααααμμsin cos cos mg mg tg mg N f ==== 重力在斜面上的分力为1G ,如图二,将1 G 分解为两个分力:1G ''是1G 沿轨迹切线方向的分 力,φαφsin sin sin 11 mg G G =='' ;1G '是沿轨 迹 法 向 的 分 力 , φαφcos sin cos 11 mg G G ==',如图三。 根据牛顿运动定律,得运动方程为 τma f G =-''1 (1) n ma G ='1 (2) 由(1), )1(sin sin )sin sin sin (1 -=-= φααφατg mg mg m a 而 ,dt dV a = τ得到 ,)1(sin sin dt g dV -=φα (3)

式中φ是t 的函数,但是这个函数是个未知函数,因此还不能对上式积分,要设法在φ与t 中消去一个变量,才能积分,注意到 φφ d d ds V V dS dt 1== (4) 而φ d ds 表示曲线在该点的曲率半径ρ,根据(2)式, ρ φα2 cos sin V m mg = (5) 由式(3)(4)(5),可得到 ,)sec (φφφd tg V dV -= φφφφ d tg V dV V V ??-=00)sec (, 积分,得到 )sin 1ln()ln(sec cos ln ln φφφφ+-=+--=tg V V , .sin 10 φ += V V 运用积分法求解链条的速度及其时间 一条匀质的金属链条,质量为m ,挂在一个光滑的钉子上,一边长度为1L ,另一边长度为,2L 而且120L L <<,如图一。试求: 链条从静止开始滑离钉子时的速度和所需要的时间。 解:设金属链条的线密度为.2 1L L m += λ当一边长度为 x L +1,另一边长度为x L -2时受力如图二所示,则根据牛 顿运动定律,得出运动方程 ,)()(11a x L T g x L λλ+=-+

大学物理课程

《大学物理》课程 教学大纲 课程代码: 2008099、2008100 课程名称:《大学物理》/University Physics 课程类型:公共基础课 学时学分:128学时/8学分 适用专业:全校理工类本科生(除地球物理学专业) 开课部门:基础课教学部 一、课程的地位、目的和任务 大学物理是高等学校理工科各专业学生的一门重要的必修基础课。 大学物理学课程的作用:第一方面是为学生较系统地打好必要的物理基础。物理学研究物质的基本结构、基本运动形式和物质的相互作用,是其他自然科学和工程技术的基础;因此,学生应通过学习物理学获得关于物质的基本结构、物质基本运动形式和物质的相互作用基本规律的知识,为学习其他课程打好基础。第二方面是使学生通过物理学的学习,初步学习科学的思想方法和研究方法,培养独立思考和分析问题、解决问题的能力,提高学习素质,激发求知和创新的精神。因此,学好本课程不仅对学生在校期间的学习有重要作用,而且对学生毕业后的工作和知识的更新也有较深远的影响。 本课程的教学目的为: 1. 使学生对物理学的基本概念、基本理论和基本方法有较系统的知识和正确的理解,为进一步学习打下坚实的基础; 2. 通过各教学环节培养学生的科学思维方法、严谨的科学工作作风,培养学生分析问题和解决问题的能力; 3. 培养和鼓励学生的探索精神和创新意识。 二、课程与相关课程的联系与分工 先修课程:《高等数学》 鉴于本课程对数学知识的需要,本课程适宜于大一第二学期和大二第一学期两学

期开设。 相关课程:《大学物理实验》 后续课程:各专业有关的专业基础课及专业课如理论力学、通信原理、电工原理、地震前兆测量、工程物探等 三、教学内容与基本要求 第一章质点运动学 1.教学内容 第一节质点运动的描述 (1)参考系、质点; (2)位置矢量、运动方程、位移; (3)速度、加速度; 第二节求解运动学问题举例 第三节圆周运动 (1)角位移、角速度; (2)切向加速度和法向加速度、角加速度; (3)匀速率和匀变速率圆周运动; 第四节相对运动 (1)时间与空间 (2)相对运动 2.重点难点 教学重点掌握位置矢量、位移、速度、加速度等物理量 教学难点运动学中各物理量的矢量性 3.基本要求 (1)掌握位置矢量、位移、速度、加速度等描述质点运动和运动变化的物理量。能借助于直角坐标系计算质点在平面内运动时的速度、加速度。能借助于极坐标计算质点作圆周运动时的角速度、角加速度、切向加速度和法向加速度。 (2)理解质点运动的瞬时性、矢量性和相对性。 (3)掌握运动学两类问题的求解方法。

微积分在物理学上的应用复习过程

微积分在物理学上的 应用

微积分在物理学上的应用 1 引言 微积分是数学的一个基本学科,内容包括微分学,积分学,极限及其应用,其中微分学包括导数的运算,因此使速度,加速度等物理元素可以使用一套通用的符号来进行讨论。而在大学物理中,使用微积分去解决问题是及其普遍的。对于大学物理问题,可是使其化整为零,将其分成许多在较小的时间或空间里的局部问题来进行分析。只要这些局部问题分的足够小,足以使用简单,可研究的方法来解决,再把这些局部问题的结果整合起来啊,就可以得到问题的结果。而这种将问题无限的分割下去,局部问题无限的小下去的方法,即称为微分,而把这些无限个微分元中的结果进行求和的方法,即是积分。这种解决物理问题的思想和方法即是微积分的思想和方法。 2 微积分的基本概念及微分的物理含义 微积分是一种数学思想,其建立在函数,实数和极限的基础上,其主要探讨的就是连续变量。在运用微积分去解决物理问题时,可以将我们所需要得出的结果看成是一个整体,再将这个整体先微分,即将其分成足够小的个体,我们可以将这个个体的变量看成衡量,得出个体结果后,再将其积分,即把个体的结果累积起来进行求和。例如,在我们研究匀变速直线运动时,我们就可以在其运动过程中选取一个微小的时间dt,而这一时间内的位移为dt,在每一段时间内速度的变化量非常小,可以近似忽略,那么我们就可以将这段时间内的运动近似看成匀速直线运动,再把每段时间内的位移相加,无限求和,就可以得出总的位移。

在物理学中,每个物理公式都是某些物理现象和规律的数学表示,因此,我们在使用这些公式时,面对物理量和公式的微分形式我们不能仅仅从数学方面去考虑,更要从物理含义上去考虑。在我们使用微分符号时,不能只从数学角度去理解其为无限小,更要结合具体 的物理量和角度去判断他的正确含义。 例:如图所示,一通有交流电流i=的长直导线旁有一共面的单匝矩形线圈ABCD,试求线圈中的感应电动势大小。 解:设在某个时刻,长直导线电流产生的磁场为 B= 在图中做一个微元面dS,dS=ldx,则该面元上的磁场可以近似于均匀磁场,微元面dS上的磁通量为 d 线圈围成的面上通过的磁通量为 线圈中的感应电动势为

高等数学在大学物理中的重要性

高等数学在大学物理中的重要性 专业:应用化学学号:5503211017 学生姓名:胡吉林指导老师:吴评 摘要:数学是物理的基础,是研究物理的重要工具和手段。而高等数学的思想方法,渗透于大学物理学习过程的各个环节。高等数学是一门抽象性的学科,而大学物理正是借助其理论结晶将抽象的数学思维方法与具体的自然规律结合了起来。我校之所以选择在上完高等数学(上册)之后,再开设大学物理课程,就是考虑到大学物理的学习需要运用到高等数学中的很多知识。而高等数学中的学习成果在大学物理中的验证与利用,能让我们对其印象更深,理解得更透彻。下面,本文将结合作者自身在大学物理学习过程中的感悟与体会,探讨高等数学的思想方法在大学物理中的重要体现。 关键词:高等数学;大学物理;思想方法;自然规律 1 建模的思想 数学建模,理工科的学生对此都很熟悉,为了使问题简化,建立合适的数学模型,常常要作出一些理想化的假设,忽略次要因素,突出主要矛盾。在大学物理中,类似这样建立理想模型的例子也不胜枚举,如力学中的质点、刚体,电学中的点电荷等,都是把复杂的实际问题抽象成了一个个基本的理想模型。这种建立理想模型的方法,借鉴了数学建模的思想,是物理学的基本研究方法之一。 2矢量的思想 大学物理中,很多物理量是矢量,如位移、速度、角动量、电场强度、磁感应强度等,而矢量的运算正是高等数学中的向量代数在大学物理中的运用。如:力的分解与合成其实是向量的加减法运算,而计算力矩、角动量、安培力等则用到了向量代数中向量积的运算。合理地借助向量工具,可使一些物理研究问题大为简化。 3导数的思想 中学物理与大学物理的不同在于:中学物理中所讨论的物理量大多是均匀变化的,而大学物理中所讨论的物理量一般都是非均匀变化的,因而需要用求导数的方法来解决这类问题。力学中导数的应用问题可以分为两类:第一类是已知物体的运动方程,求解物体的运动速度和加速度;第二类则是已知物体的加速度和初始条件,求解物体的运动方程。通过求导,也可以计算角速度、角加速度及电场强度等物理量的值。此外,在求解物理问题的过程中,常碰到一些求极值的问题,

高中物理竞赛辅导讲义-微积分初步

微积分初步 一、微积分的基本概念 1、极限 极限指无限趋近于一个固定的数值 两个常见的极限公式 0sin lim 1x x x →= *1lim 11x x x →∞??+= ??? 2、导数 当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限叫做导数。 0'lim x dy y y dx x ?→?==? 导数含义,简单来说就是y 随x 变化的变化率。 导数的几何意义是该点切线的斜率。 3、原函数和导函数 对原函数上每点都求出导数,作为新函数的函数值,这个新的函数就是导函数。 00()()'()lim lim x x y y x x y x y x x x ?→?→?+?-==?? 4、微分和积分 由原函数求导函数:微分 由导函数求原函数:积分 微分和积分互为逆运算。 例1、根据导函数的定义,推导下列函数的导函数 (1)2y x = (2) (0)n y x n =≠ (3)sin y x = 二、微分 1、基本的求导公式 (1)()'0 ()C C =为常数 (2)()1' (0)n n x nx n -=≠ (3)()'x x e e = *(4)()'ln x x a a a = (5)()1ln 'x x = *(6)()1log 'ln a x x a =

(7)()sin 'cos x x = (8)()cos 'sin x x =- (9)()21tan 'cos x x = (10)()21cot 'sin x x = **(11)() arcsin 'x = **(12)()arccos 'x = **(13)()21arctan '1x x =+ **(14)()2 1arccot '1x x =-+ 2、函数四则运算的求导法则 设u =u (x ),v =v (x ) (1)()'''u v u v ±=± (2)()'''uv u v uv =+ (3)2'''u u v uv v v -??= ??? 例2、求y=tan x 的导数 3、复合函数求导 对于函数y =f (x ),可以用复合函数的观点看成y =f [g (x)],即y=f (u ),u =g (x ) 'dy dy du y dx du dx == 即:'''u x y y u = 例3、求28(12)y x =+的导数 例4、求ln tan y x =的导数 三、积分 1、基本的不定积分公式 下列各式中C 为积分常数 (1) ()kdx kx C k =+?为常数 (2)1 (1)1n n x x dx C n n +=+≠-+?

微积分在物理学上的应用

微积分在物理学上得应用 1 引言 微积分就是数学得一个基本学科,内容包括微分学,积分学,极限及其应用,其中微分学 包括导数得运算,因此使速度,加速度等物理元素可以使用一套通用得符号来进行讨论。而在大学物理中,使用微积分去解决问题就是及其普遍得。对于大学物理问题,可就是使其化整为零,将其分成许多在较小得时间或空间里得局部问题来进行分析。只要这些局部问题分得足够小,足以使用简单,可研究得方法来解决,再把这些局部问题得结果整合起来啊,就可以得到问题得结果。而这种将问题无限得分割下去,局部问题无限得小下去得方法,即称为微分,而把这些无限个微分元中得结果进行求与得方法,即就是积分。这种解决物理问题得思想与方法即就是微积分得思想与方法。 2 微积分得基本概念及微分得物理含义 微积分就是一种数学思想,其建立在函数,实数与极限得基础上,其主要探讨得就就是 连续变量。在运用微积分去解决物理问题时,可以将我们所需要得出得结果瞧成就是一个整体,再将这个整体先微分,即将其分成足够小得个体,我们可以将这个个体得变量瞧成衡量,得出个体结果后,再将其积分,即把个体得结果累积起来进行求与。例如,在我们研究匀变速直线运动时,我们就可以在其运动过程中选取一个微小得时间dt,而这一时间内得位移为dt,在每一段时间内速度得变化量非常小,可以近似忽略,那么我们就可以将这段时间内得运动近似瞧成匀速直线运动,再把每段时间内得位移相加,无限求与,就可以得出总得位移。 在物理学中,每个物理公式都就是某些物理现象与规律得数学表示,因此,我们在使用 这些公式时,面对物理量与公式得微分形式我们不能仅仅从数学方面去考虑,更要从物理含义上去考虑。在我们使用微分符号时,不能只从数学角度去理解其为无限小,更要结合具体得物理量与角度去判断她得正确含义。 例:如图所示,一通有交流电流i=得长直导线旁有一共面得单匝矩形线圈ABCD,试求线圈中得感应电动势大小。 解:设在某个时刻,长直导线电流产生得磁场为 B= 在图中做一个微元面dS,dS=ldx,则该面元上得磁场可以近似于均匀磁场,微元面dS上得磁通量为 d 线圈围成得面上通过得磁通量为

微积分在大学物理的一些应

微积分在大学物理的一些应用

摘要 在大学物理中微积分有非常大的用处,随处可见给我们解题带来的方便。即如在质点运动,力学,功,热学,电磁学等都有体现出了。在习题解答中也处处能用到,也许是他们的特殊的性质和集合意义,让他们在物理应用中非常的全面。如在 质点运动中瞬时速度,用符号 “v ”表示,即00()()lim lim t t r t t r t r d r v t t dt ?→?→+?-?=== ?? 。微积分作为数学的一门分支学科,在物理学中有着非常重要的应用价值。大学物理 中,我们常常研究始终都在变化的物理量,会觉得很难研究,但通过微元分割成一小块一小块,那就就可以认为是常量处理,最终加起来就行了。 关键词:微积分,取极限,分割,求导

引言 微积分学是微分学和积分学的总称。它是一种数学思想,“无限细化”就是微分,“无限求和”就是积分。在学习物理的过程中,我们常常是在研究不规则的物理量或物理状态。有了这个思想,那我们就可以把问题细化,研究一个小的微元的变化量,然后相加,非常方便。 一、力学 1.1质点运动学 1、若质点在t ?时间内的位移r ? ,则定义r ? 与t ?的比值为质点在这段时间内的平 均速度,写为 r v t ?= ? 其分量形式r x y z v i j k t t t t ????==++???? 当0t ?→时,平均速度的极限值叫做瞬时速度,用符号“v ”表示,即 00()()lim lim t t r t t r t r d r v t t dt ?→?→+?-?=== ?? 0t ?→时,r ? 的量值r ? 可以看作和s ?相等,此时瞬时速度的大小d r v dt = 等于质 点在该点的瞬时速率 d s d t 。 t 时刻质点的速度为();v t 在t t +?时刻,质点位于下一点 时其速度为() v t t +? ;则在时间t 内,质点的速度为()()v v t t v t ?=+?- 。定义质点在 这段时间内的平均加速度为 v a t ?= ? 平均加速度是矢量,方向与速度增量的方向相同。 0t ?→时,平均加速度的极限值叫做瞬时加速度,即 22 0lim t v d v d r a t dt dt ?→?===? 这样在解题过程中就能用到。微积分在题目中的用处十分的便捷。 如下例题 例1、质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -?,x 的单位为 m. 质点在x =0处,速度为101s m -?,试求质点在任何坐标处的速度值.

物理中的微积分思想

物理中的微积分思想 你们不要老提我,我算什么超人,是大家同心协力的结果。我身边有300员虎将,其中100人是外国人,200人是年富力强的香港人。 高中物理中微积分思想 浙江省湖州中学物理组潘建峰 伟大的科学家牛顿 有很多伟大的成就 建立了经典物理理论 比如:牛顿三大定律 万有引力定律等;另外 在数学上也有伟大的成就 创立了微积分 微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支 微积分是建立在实数、函数和极限的基础上的 微积分最重要的思想就是用"微元"与"无限逼近"

好像一个事物始终在变化你很难研究 但通过微元分割成一小块一小块 那就可以认为是常量处理 最终加起来就行 微积分学是微分学和积分学的总称 它是一种数学思想 '无限细分'就是微分 '无限求和'就是积分 无限就是极限 极限的思想是微积分的基础 它是用一种运动的思想看待问题 微积分堪称是人类智慧最伟大的成就之一 在高中物理中 微积分思想多次发挥了作用 1、解决变速直线运动位移问题 匀速直线运动 位移和速度之间的关系x=vt;但变速直线运动那么物体的位移如何求解呢? 例1、汽车以10m/s的速度行驶

到某处需要减速停车 设汽车以等减速2m/s2刹车 问从开始刹车到停车 汽车走了多少公里? 【解析】现在我们知道 根据匀减速直线运动速度位移公式就可以求得汽车走了0.025公里 但是 高中所谓的的匀变速直线运动的位移公式是怎么来的 其实就是应用了微积分思想:把物体运动的时间无限细分 在每一份时间微元内 速度的变化量很小 可以忽略这种微小变化 认为物体在做匀速直线运动 因此根据已有知识位移可求;接下来把所有时间内的位移相加 即"无限求和" 则总的位移就可以知道 现在我们明白 物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的"面积" 即

大学物理微积分教学问题及对策.doc

大学物理微积分教学问题及对策- 【摘要】结合教学过程中体会,总结提出工科大学物理中微积分教学的重点关注点和有效解题模式。 【关键词】大学物理;微积分;教学方法 物理学是自然科学和现代工程技术的基础,是一门培养和提高学生科学素质、科学思维方法和科学研究能力的重要基础课程。与中学物理相比,大学物理的最大变化就是在规律的阐述和计算中出现了大量的微积分语言,作者认为,高等数学和大学物理对于微积分的教学侧重点不同。如何尽快的使学生理解微积分思想,并且熟练的运用微积分方法来分析物理问题是教师教学的重点和难点。 一、微积分在处理物理问题中的核心思维 与中学物理相比,大学物理最大的特点是所研究的物理量由原来的稳恒量和离散量变成了变量和连续量。利用微积分解决问题本质上是因为物理规律的可加型,如力的叠加原理、电场强度的叠加原理、磁感应强度等矢量的叠加原理;微积分通过微分-积分方法实现了有限向无限,近似向精确的转化。微积分思想和方法的精髓是:对物理对象取微元后,复杂物理对象变成简单对象,变量可看成常量,非均匀量可看成均匀量,曲面可看成平面,实现了变与不变的辩证转换。 二、大学物理微积分教学关注点 高等数学中有大量知识点和物理问题对应,例如:多重积分可以用于求解刚体的转动惯量;第二类曲线积分对应物理中的变力做功、静电场中电势的计算;第二型曲面积分则对应物理中的流量、电通量和磁通量的计算。但是数学是一门高度抽象的科

学,它完全摒弃了具体的现象,具有普适性,而物理研究的是客观物质世界的基本规律,所以解决物理问题的思维方式也并不等同于数学,物理学中的许多微元概念,他们有具体的物理含义,不能简单等同于数学上的微元。要形成独特的用微积分解决物理问题的思维。 (一)注重物理图像,跳出套用公式的思维定式 电通量、磁通量流量等对应高等数学中的第二类曲面积分,数学中对这类问题通常是已知曲面的函数,化为重积分计算,学生感觉数学学会了,会计算一定量的积分题目,但是碰到具体的物理问题还是觉得束手无策,不能达到融会贯通。物理中的电通量和磁通量是由通过与匀强场垂直的平面的通量引入的。并且大学物理教学中的问题是具有某种对称性的,所以从物理意义的角度分析问题更快捷,更有普适性。 (二)自觉用微积分方法分析和解决问题 例如,在高斯定理一节的讲解中,有一个问题是求解均匀带电球面的电场分布,教学中发现“由于电荷分布是球对称的,电场是由电荷产生的,可判断出空间的电场分布必然是球对称的,即与球心O距离相等的球面上各点电场强度大小相等,方向沿半径呈辐射状。”这样的语言并不能使学生清楚了解电场为什么是这样的分布,学生仍然搞不清楚为什么如此。为解决这个问题,我们以球面外任意一点为例,做过这个点的和球心的直线,我们沿垂直于此直线的方向将球面分割成无数的小圆环,我们知道均匀带点圆环在轴线上某一点的电场方向是沿轴线的,无数小圆环的电场方向都是沿轴线,所以整个球面在P点的电场方向就是沿OP轴线方向的,这样的具体分析使学生更容易接受,同时也锻炼了微积分分析问题的思想。

微积分知识在高考物理中应用例析.doc

微积分初步知识在今年物理高考中的应用例析 江苏省常州高级中学 丁岳林 物理学是一门精确科学,与数学有密切关系,在应用物理知识解决实际问题时,一般或多或少总要进行数学运算、进行数学推理,而且处理的问题愈是高深,应用的数学一般也愈多.“应用数学处理物理问题的能力”是物理科高考考试说明中的五条能力要求之一,说明中指出,“能够根据具体问题列出物理量之间的关系式,进行推导和求解,并根据结果得出物理结论……”.物理解题中运用的数学方法,通常包括方程(组)法、比例法、函数法、几何(图形辅助)法、图象法、数列与不等式及微积分初步等。其中,微积分初步是新编数学教材(本届高三学生是全国面上使用新教材的第一届)中增加的内容,因此往届高考物理试题中并未出现,但通观今年的高考物理试题,对微积分初步知识还是有一定要求的,本文就以今年的两道高考物理试题为例对这一要求来做一解读。 例1.如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r 0=0.10Ω/m ,导轨的端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20m 。有随时间变化的匀强磁场垂直于桌面,已知磁感强度B 与时间t 的关系为B =kt ,比例系数k =0.020T/s ,一电阻不计的金属杆可在导轨上无摩擦地滑动, 在滑动过程中保持与导轨垂直,在t =0时刻,金属杆紧靠 在P 、Q 端,在外力作用下,杆以恒定的加速度从静止开 始向导轨的另一端滑动,求在t =6.0s 时金属杆所受的安培 力。(2003年江苏省高考物理试题) 解析:求解本题的关键是正确计算回路中总感应电动势,从高考阅卷抽样统计来看该题的正确率极低,98%以上的考生都是错误地应用公式Blv =ε或t B S ??=ε计算电动势,原因是对公式的适用条件模糊不清,从而是乱代公式。 以a 表示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离22 1at x = 此时杆的速度at v =。这时穿过回路的磁通量为BS =Φ,其中xl S =,kt B =,因此, 32t kla =Φ,根据法拉第电磁感应定律223t kla dt d =Φ=ε 回路的总电阻02Lr R = 回路中的感应电流R i ε = 作用于杆的安培力Bli F = 解得 t r l k F 0 2 223=,代入数据为31044.1-?=F N 本题中的电动势第二种计算方法是,根据法拉第电磁感应定律运用数学上的极限工

微积分在物理学上的应用

1 引言 微积分是数学的一个基本学科,内容包括微分学,积分学,极限及其应用,其中微分学包括导数的运算,因此使速度,加速度等物理元素可以使用一套通用的符号来进行讨论。而在大学物理中,使用微积分去解决问题是及其普遍的。对于大学物理问题,可是使其化整为零,将其分成许多在较小的时间或空间里的局部问题来进行分析。只要这些局部问题分的足够小,足以使用简单,可研究的方法来解决,再把这些局部问题的结果整合起来啊,就可以得到问题的结果。而这种将问题无限的分割下去,局部问题无限的小下去的方法,即称为微分,而把这些无限个微分元中的结果进行求和的方法,即是积分。这种解决物理问题的思想和方法即是微积分的思想和方法。 2 微积分的基本概念及微分的物理含义 微积分是一种数学思想,其建立在函数,实数和极限的基础上,其主要探讨的就是连续变量。在运用微积分去解决物理问题时,可以将我们所需要得出的结果看成是一个整体,再将这个整体先微分,即将其分成足够小的个体,我们可以将这个个体的变量看成衡量,得出个体结果后,再将其积分,即把个体的结果累积起来进行求和。例如,在我们研究匀变速直线运动时,我们就可以在其运动过程中选取一个微小的时间dt,而这一时间内的位移为dt,在每一段时间内速度的变化量非常小,可以近似忽略,那么我们就可以将这段时间内的运动近似看成匀速直线运动,再把每段时间内的位移相加,无限求和,就可以得出总的位移。 在物理学中,每个物理公式都是某些物理现象和规律的数学表示,因此,我们在使用这些公式时,面对物理量和公式的微分形式我们不能仅仅从数学方面去考虑,更要从物理含义上去考虑。在我们使用微分符号时,不能只从数学角度去理解其为无限小,更要结合具体的物理量和角度去判断他的正确含义。 例:如图所示,一通有交流电流i=的长直导线旁有一共面的单匝矩形线圈ABCD,试求线圈中的感应电动势大小。 解:设在某个时刻,长直导线电流产生的磁场为 B= 在图中做一个微元面dS,dS=ldx,则该面元上的磁场可以近似于均匀磁场,微元面dS上的磁通量为 d 线圈围成的面上通过的磁通量为 线圈中的感应电动势为 在这个例题中,微元面dS的磁通量与线圈的感应电动势都有,但他们的物理含义却是不一样的,前者的表示微元面 dS上的磁通量,是一个微小量,而后者的表示

微积分在大学物理中的几点应用概要

毕业设计(论文)题目:微积分的几点物理应用 学院:数理学院 专业名称:应用物理 学号:200941220103 学生姓名:孙川 指导教师:李建 2013年05月18日 摘要

微元法在物理学中应用非常普遍.在大学物理学中, 从静电场到恒定磁场,从质点的运动学到刚体的力学,都要遇到用微积分来解决的问题.本论文主要探讨的是在大学物理学习中,应用微积分方法解决问题时几个问题. 微积分主要思想和方法利用微元法处理比较复杂物理问题时,可以先把它分割成许多在较小时间、空间等范围内的可以近似处理的基本问题,然后再对此可研究的简单的基本问题进行讨论,最后再把所有局部范围内研究的结果累积起来,就可以得到问题结果.在理论分析时,把分割过程无限地进行下去,局部范围便会无限地小下去,这就是微分;把所有的无限多个微分元的结果进行叠加,便是积分.这就是微积分的主要思想和方法,是一种辩证的思想和分析方法 关键字 微积分微元法质点力学刚体力学电磁学

Abstract Calculus is quite common in physics. In College Physics, from the particle motion mechanics to particle dynamics mechanics, both the electrostatic field and a constant magnetic field meet the question which needs use the calculus. This article mainly discusses the learning of university physics; Applied Calculus approach to the problem should pay attention to several issues. The main ideas and methods of the calculus, using the calculus method to deal with more complex physical problems. It’s f irst “break up the whole into parts “, it is divided into many smaller time, space Etc. within the range of processing of the basic Can be approximated. Then, to research simple questions hold discussion. Lastly, “Zero for the whole plot”, within the scope of all the result of study Accumulated. The results can be obtained. In theoretical analysis, the segmentation process is carried on unlimited. Then Local scope Narrow down unlimited. This is differentiation. All the Differential element Superimposed, it is integral calculus. This is the main ideas and methods of the calculus. Is a kind of dialectical thinking and analytical methods. Key words Calculus Micro-element method Particle mechanics Rigidbody mechanics Electricity and Magnetism

高中物理中微积分思想

高中物理中微积分思想 伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。 微积分(Calculus )是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。 微积分学是微分学和积分学的总称。 它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分堪称是人类智慧最伟大的成就之一。在高中物理中,微积分思想多次发挥了作用。 1、解决变速直线运动位移问题 匀速直线运动,位移和速度之间的关系x=vt ;但变速直线运动,那么物体的位移如何求解呢? 例1、汽车以10m/s 的速度行驶,到某处需要减速停车,设汽车以等减速2m/s 2刹车,问从开始刹车到停车,汽车走了多少公里? 【解析】 现在我们知道,根据匀减速直线运动速度位移公式at v v +=0 2 02 1at t v x + =就可以求得汽车走了0.025公里。 但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即 2 02 1at t v x + =。 【微积分解】汽车在减速运动这段时间内速度随时间变化的关系t at v v 2100-=+=,从开始刹车到停车的时间t=5s , 所以汽车由刹车到停车行驶的位移 km t t t a t v dt at v dt t v x 025.0)10()2()()(5025 205 005 0=-=+=+==?? 小结:此题是一个简单的匀变速直线运动求位移问题。对一般的变速直线运动,只要结合物理知识求速度关于 时间的函数,画出v -t 图像,找“面积”就可以。或者,利用定积分就可解决. 2、解决变力做功问题 恒力做功,我们可以利用公式直接求出Fs W =;但对于变力做功,我们如何求解呢? 例2:如图所示,质量为m 的物体以恒定速率v 沿半径为R 的竖直圆轨道运动,已知物体 中,摩擦力做与竖直圆轨道间的摩擦因数为μ,求物体从轨道最低点运动到最高点的过程了多少功。 【解析】物体沿竖直圆轨道从最低点匀速率运动到最高点的过程中,在不同位置与圆环间的正压力不同,故而摩擦力为一変力,本题不能简单的用s F W ?=来求。

微积分在普通物理学中的应用

微积分在普通物理学中的应用 1引言 从牛顿那个时代到今天,每个时代都在为一种事物惊叹不已,它不仅推动了物理学和数学的发展,也更新了人类的观念,是人类史上的里程碑,它就是微积分. 微积分可以称为是人类智慧最伟大的成就之一,在各个领域内都有重要应用.如果将整个人类科学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分.微积分在物理学、天文学等自然科学及应用科学等多个分支中,有越来越广泛的应用.可以说,微积分推动了现代人类社会的发展,所以我们很有必要对它进行了解和掌握. 微积分是微分和积分的总称,它是一种数学思想,其中‘无限细分’就是微分,‘无限求和’就是积分.极限的思想是微积分的基础,它是用变化的思想来看待问题的. 微积分在物理学中的应用相当普遍,本篇论文从导数、微分、积分三方面研究了微积分在其中的应用. 2导数在力学中的应用 导数在力学中有很重要的作用,通常可求得最小的力,最省的距离等极值问题,在实际生活中应用性很强.下面简单举出两个例子说明其应用(画图略). 例1 设有质量为5kg 的物体,置于水平面上,受力F 的作用开始移动,设摩擦系数 0.25,μ=问力F 与水平线的交角α为多少时,才可以使力F 的大小为最小? 解 由题意得 cos (sin )F P F ααμ=-,其中α0,2π?? ∈???? ,P 表示重力 cos sin P F μαμα = + 由于P μ为常数,欲求F 最小,只须 求分母U cos sin αμα=+的最大值. 记 U αcos sin αμα=+ 令U α '=sin cos 0αμα-+=

大学物理微积分基础

附录IV 微积分基础 由于在大学物理学习中,经常需要借助微积分工具解决问题,如速度、加速度、变力冲量、变力做功、高斯定理等物理问题,为了更好的理解和学习相关物理知识,需要对微积分有一定的认识,学会求简单函数的导数、微分、积分的方法. 一、函数 1 定义 在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是因变量,则可称y 是x 的函数。 函数的三要素为(1)定义域A ;(2)值域(){} A x x f U ∈=;(3)对应法则f . 注意: (1)函数符号()x f 表示y 是x 的函数,()x f 不是表示f 与x 的乘积; (2)f 表示对应法则,不同函数中f 的具体含义不一样; (3)相同函数必须满足:定义域、值域、对应法则三者相同。 2 基本初等函数 (1)幂函数()R a x y a ∈=; (2)指数函数x a y =(0>a 且1≠a ); (3)对数函数x y a log =(0>a 且1≠a ); (4)三角函数与反三角函数. ①正弦函数:x y sin = ; ②余弦函数:x y cos =;③正切函数:x y tan = ; ④余切函数: x y cot =;⑤正割函数:x y sec = ; ⑥余割函数:x y csc =以及它们所对应的反三角函数. 3、复合函数 (1)定义:设()u f y =的定义域为A ,()x g u =的值域为B ,若A B ?,则y 关于x 函数的 ()[]x g f y =叫做函数f 与g 的复合函数,u 叫中间量. 举例如下: ①函数( ) 14sin 2 -=x y 是由u y sin =和142 -=x u 两个函数复合而成; ②函数x e x y -=2 tan 2是由μ-=2 2u y 、x u tan =和x e =μ三个函数复合而成. 二、函数的导数 1 定义

定积分在物理上的应用(学习资料)

授课题目定积分在物理上的应用 课时数1课时 教学目标用定积分解决物理学上的变力做功以及液体压力问题。 重点与难点教学重点:定积分方法分析变力做功和液体压力。教学难点:定积分的元素法以及物理量的计算公式。 学情分析我所教授的学生从知识结构上来说属于好坏差别很大,有的接受新知识很快,有的很慢,有的根本听不懂,基 于这些特点,结合教学内容,我以板书教学为主,多媒 体教学为辅,把概念较强的课本知识直观化、形象化, 引导学生探索性学习。 教材分析本次课是学生学习完定积分的概念和计算方法以及定积分在几何上的应用后的学习,定积分的元素法在几何和 物理上的应用为学生尝试解决各种实际问题做了很好的 铺垫。将来把元素法的思想推广到多元函数后,其应用 范围将会更宽更广。所以无论从内容还是数学思想方面, 本次课在教材中都处于重要的地位。 教学方法根据对学生的学情分析,本次课主要采用案例教学法,问题驱动教学法,讲与练互相结合,以教师的引导和讲 解为主,同时充分调动学生学习的主动性和思考问题的 积极性。 教学手段传统教学与多媒体资源相结合。

课程资源 同济大学《高等数学》(第七版)上册 教学内容与过程 一、 变力沿直线所作的功 dx x F dW )(= ?=b a dx x F W )( ,求电场力所做的功。 处处移动到从距离点电荷直线下,一个单位正电荷沿电荷所产生的电场作用、在一个带例)(1b a b a q <+为时,由库仑定律电场力原点解:当单位正电荷距离r 2r q k F = dr r kq dW 2=则功的元素为: 所求功为 )11(]1[2b a kq r kq dr r kq W b a b a -=-==? 例2、在底面积为S 的圆柱形容器中盛有一定量的气体,由于气体的膨胀,把容器中的一个面积为S 的活塞a 移动到b 处(如图),求移动过程中气体压力所做的功。 解:建立坐标系如图. 由波义耳---马略特定律知压强p 与体积V 成反比,即xS k V k p == ,故作用在活塞上的力为 x k S p F =?= x a b x x x d +q +o r a b r r d r +1+S o x a b x x d x +

相关文档
最新文档