等离子发光原理

等离子发光原理
等离子发光原理

一. 等离子的定义及等离子显示屏的结构

「等离子显示屏」在台湾又名「电浆显示器」,虽然译名不同,但意义相通。要了解等离子显示屏,便先要了解一下什么是等离子。

在物理学的角度来说,「等离子」是指「第四种物质」;但当放在医学的学度上,「等离子」便是指「血浆」;另外,「等离子」亦可解作原形质或原生质,即包含了细胞核及细胞质的场所。然在Plasma Display Panel(PDP)的世界中,「等离子」是指「放电现象」。

等离子显示屏是由前后两片玻璃面板组成。前面板是由玻璃基层、透明电极、辅助电极、诱电体层和氧化镁保护层构成,并且在电极上覆盖透明介电层(Dielectric Layer)及防止离子撞击介电层的MgO层;后板玻璃上有Data电极、介电层及长条状的隔壁(BarrierRib)并且在中间隔壁内侧依序涂布红色、绿色、蓝色的荧光体,在组合之后分别注入氮、氖等体即构成等离子面板。

现时,各个等离子显示屏板面厂房均以生产42吋VGA(16:9)的等离子屏幕为主,因此每个细胞体的大小约为0.36mm。但当分辨率由VGA提高至XGA时,细胞体的尺寸会缩小至0.24mm,这样便会附带着其它原素的改变,如间隔壁的尺寸、电极尺寸、介电层膜厚度、萤光体的厚度、形状也会产生变化。一般高精细化的改变,意即高密度化的结构,相对会造成亮度的下降及IC成本的倍增。

而Pioneer及富士通精细的等离子显示屏板面产品解析度可高达SXGA,但

仍可表现高亮度的效果。世界各地逐渐开始高质素的数码扩播,等离子显示屏渐渐打入电视市场,因此提高画质将会是新款等离子显示屏的当前要务。

二. 等离子显示屏细胞的发光原理

等离子显示屏可以说是在一个母体中放进许多细小而带有萤光体的管道,由传统的手法去控制,一种是直流电(DC-),另一种是交流电(AC)。1964年,美国伊利诺大学开发了AC型等离子显示屏面板,经历了多年的技术改革,现时等离子技术是利用交流电,因为它简单的结构能延长等离子显示屏的寿命。

「放电现象」便是要将交流电导引入显示屏之中。面板的基本技术,是以两片玻璃基板和间隔壁之间形成多个密封空间,让离子及电子产生活跃的运动,并在这些密封的空间内注入稀有气体及氖。另外,在这个密封空间的上下装置上电极(正负电极),令粒子与气体以高速相撞,以产生高能量的状态。当这些粒子平静下来,能量便会慢慢消散,从而放射出紫外线,放电现象便是这样形成。而紫外线可刺激红、绿、蓝萤光体发光。每个细胞体均可独立产生放电现象,随着视讯讯源而控制每个细胞的开关。

接下来是说说产生色调的技术,要令等离子显示屏的色彩夺目,必须独立操控每个三原色细胞体。以往显像管是由左至右,由上而下,经过电子束的扫描而回放影像。但等离子则采用一个完全不同的方法,由于显示屏是同时全面发光,因此便以1秒60次,由上至下将画面交替显示但在这期间,之前的资料还保留在画面上,所以画面是处于不断发光的状态。

在影像的颜色方面,它不像显像管那样可以经由对电子束量的控制进行调整,因为紫外线和可视光都已经是处于饱和状态,所以使用通过电流的控制来操控亮度是不可能的。即使是电流改变,画面的明暗也不会改变。所以,等离子便要利用PCM(Pulse Code Modulation)技术来控制每一个区域内的脉冲,便可以改变画面的亮度。

首先,影像要由每秒60格(frame)构成;其次,便是将每1格分割成8个次区域,再遵照设定适当的脉冲规律,决定各个次区域的相对亮度。因应影像的资料令各区域的小萤光灯发亮及熄灭;最后,便是把这些次区域组合起来便可以显示256种色调。将色彩的总数结合,便是256×256x 256=16,777,216种色彩。

这个方法可说是非常复杂,而且还带出了一个严重的缺点便是残影的产生"为了解决这个问题,各个等离子显示屏的厂房也积极研究对策,如清除驱动法或利用屏幕保护程序,问题总算是解决了。

三.等离子在提高亮度的技术

由于等离子显示屏是全面发光因此耗电量必大,但在技术的改进下,等离子的耗电量已逐渐下以降至300W以下。但不可忘记的便是在亮度的提高下,仍要高亮度以加强画质效果。以往等离子的能量效率应只有1.4%,而发光效率则只有1.11m/W,所以必须要有改善的必要。科学家采用了两种改善方法,一,是从细胞体的开口率结构下手;二,是在材料方面作出改善。

以一般的等离子构造来看,要提高发光率,最直接的方法便是提高细胞体的开口率,令放电的空间增加。而放电的细胞体的开口率与等离子中的间隔壁(Barrier Rib)构造有关,利用新的制造方式,将间隔壁做得更薄来增加放电空间。-般等离子间隔壁的制造方式以Screer,Printing、SanfCiilUSt或PhrWesist方法为主流,但新的制造过程中,如TORAY的Photosensitive film paste或京瓷(Kyocera)的Press Method都能减少间隔壁所占空间,进而提高开口率。

此外,Pioneer将一般面板RGB排列方式由条状(stripe)改变成井字状,并采用T型透明电极,可防止萤光材漏光且增加荧光材发光面积,如此可以提高20%的发光效率。但以井字状的间隔壁,目前仍采用Sand-Blust1-方式,因此在制造过程上难度较高。

由于等离子是靠稀有气体放电产生真空紫外线,照射萤光粉发光。其发光效率取决于放电效率及发光粉转换效率。因为放电空间很小,放电效率自然很低,而萤光粉能量转换效率只有20%。

如果加上紫外幅射和各种吸收等因素,等离子显示屏目前的发光效率小于0.4%,流明效率小于1.11m/W,若相较于高清晰电的PDP 51 m/WAWO效率要求,尚有一段距离。提高放电效率的方法,除了减薄隔壁增大放电空间外,放电体的混合比例及气体最佳化;放电紫外线红移及增大交流维持放电的时间都是可行方案。

等离子发生器的工作原理及构造

等离子发生器得工作原理及构造 一.工作原理: 1.电弧得物理本质——气体放电 电弧就是在阴、阳两电极与它们之间得气体空间组成.电弧得带电粒子主要依靠气体空间得气体得电离与阴极电子发射两个物理过程所产生得。同时伴随着气体分子得离解、激励、扩散、复合等过程。 2.电离、电离度 ●电离:给气体以足够得能量。当气体粒子(分子与原子)得平均动能大于其电离能时,束缚在原子轨道上运动得电子就会脱离其轨道成为自由电子,失去电子得原子带有正电荷成正电离子.这种中性气体分子或原子分离成正离子与电子得现象称为电离. 气体电离因外加能量得种类不同可分为热电离,电场电离,光电离三种。 外界能量传递给气体粒子得途径,从本质上讲只有两种:碰撞传递与光辐射传递. ●激励:当中性气体粒子受到外来能量还不足以使电子完全脱离原子或 分子,但可以使电子从低能级转移到高能级,使中性粒子得稳定状态被破坏,这种状态称为激励。 ●电离度α: ηe—- ηi——) * 在热力学平衡条件下,电离度α仅与气体种类、粒子密度与温度有

关。 3.电子发射: 电弧中起导电作用得带电粒子除依靠电离过程产生外,还要从电极表面发射电子。使一个电子由金属表面飞逸出来所需最低外加能量称为逸出功.不同金属材料有不同得逸出功。所有金属得氧化物得逸出功都比原金属小。 按外加能量得形式不同,电子发射机构有热发射、电场发射、光发射、粒子碰撞发射四种。 4.等离子体—-—物质得第四态。 所谓等离子体就是气体电离度α达到一定程度得气体,这种等离子体具有下列特性: A、导电性:因为等离子体中存在自由电子、正、负离子,所以有很强得导电性、 B、电准中性:在等离子得空间内,带正电荷与带负电荷得粒子数量相等,符号相反,故等离子体呈电中性、 C、与磁场得可作用性:等离子体就是带电粒子组成得导电体,所以可用 磁场控制等离子体得位置、形状与运动、 在物理学中规定: α>0、1%就是等离子体、它具备等离子体得特性 α≤0、1%为弱电离气体、这种气体得性质与没有发 生电离得气体性质接近 等离子体分类: 高温等离子体: 按温度分 热等离子体 低温等离子体 冷等离子体

低温等离子工作原理

低温等离子 1、高科技创新产品:“低温等离子体”技术是电子、化学、催化等综合作用下 的电化学过程,是一全新的技术创新领域。是依靠等离子体在瞬间产生的强大电场能量电离、裂解有害气体的化学键能,从而破坏废气分子结构,达到净化目的。 2、 3、2、高效废气净化:本设备能高效去除挥发性有机物(VOC)、无机物、硫 化氢、氨气、硫醇类等主要污染物,以及各种恶臭味,除臭效率可达98%以上,对于长期弥漫、积累的恶臭、异味,24小时内即可祛除,并且具有强力杀灭空气中细菌、病毒等各种微生物能力,而且具有明显的防霉作用。 除臭效果超过国家颁布的恶臭污染物排放一级标准。 4、?? 5、3、无需添加任何物质:低温等离子体废气处理是一种干法净化过程,是一 种全新的净化过程,不需任何添加剂,不产生废水、废渣,不会导致二次污染。 6、?? 7、4、低温等离子适应性强:持久的净化功能,无须专人看管。可适应高浓度、 大气量、不同气态物质的净化处理,可在高温250℃,低温-50℃的环境内,净化区均可运转,特别是在潮湿,甚至空气。湿度饱和的环境下仍可正常运行,每天24小时连续工作,长期运行稳定可靠。 8、? 9、5、低耗节能:运行费用低廉、省电是“低温等离子体”专利核心技术之一, 处理1000M3/h臭气,耗电量仅0.25度。本设备无任何机械动作,自动化程度高,工艺简洁,操作简单,方便无需专人管理和日常维护,遇故障自动停机报警,只需作定期检查。 10、?? 11、6、低温等离子设备组合产品重量轻,体积小,可按场地要求立放、卧放, 可根据废气浓度、流量、成份进行串、并组合设计达到完全的废气净化。 12、?? 13、7、设备使用寿命长:本设备由不锈钢材,铜材、钼材、环氧树脂等材料 组成,抗氧化性强,对酸、碱气体、潮湿环境等具有良好的防腐性能。使用寿命长达15年以上。 14、?? 15、8、安全:“低温等离子体”设备内使用电压在36伏以下,安全可靠。 河南兴邦环保局指定合作单位,提供环评和检测等一站式服务 河南兴邦环保科技有限公司

等离子原理说明修订稿

等离子原理说明 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

低温等离子体技术简介 低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。 低温等离子体的产生途径很多,低温等离子体工业废气处理技术采用的放电形式为双介质阻挡放电 (Dielectric Barrier Discharge,简称DBD),该技术性能先进,运行稳定,获得广泛客户的认可。 装置示意图如图3-1所示。 介质阻挡放电是一种获得高气压下低温等离子体的放电方法,这种放电产生于两个电极之间。介质阻挡放电可以在0.1~10105Pa的气压下进行,具有辉光放电的大空间均匀放电和电晕放电的高气压运行的特点。整个放电是由许多在空间和时间上随机分布的微放电构成,这些微放电的持续时间很短,一般在10ns量级。介质层对此类放电有两个主要作用:一是限制微放电中带电粒子的运动,使微放电成为一个个短促的脉冲;二是让微放电均匀稳定地分布在整个面状电极之

间,防止火花放电。介质阻挡放电由于电极不直接与放电气体发生接触,从而避免了电极的腐蚀问题。 介质阻挡放电等离子体技术具有以下优点: ① 介质阻挡放电产生的低温等离子体中,电子能量高,几乎可以和所有的恶 臭气体分子作用。 ② 反应快,不受气速限制。 ③ 采用防腐蚀材料,电极与废气不直接接触,根本上解决了设备腐蚀问题。 ④ 只需用电,操作极为简单,无需派专职人员看守,基本不占用人工费。 ⑤ 设备启动、停止十分迅速,随用随开,不受气温的影响。 ⑥ 气阻小,工艺成熟。 低温等离子体净化工业废气的工作原理: 等离子体中能量的传递大致如下: 介质阻挡放电过程中,电子从电场中获得能量,通过碰撞将能量转化为污染 物分子的内能或动能,这些获得能量的分子被激发或发生电离形成活性基团,同时空气中的氧气和水分在高能电子的作用下也可产生大量的新生态氢、臭氧和羟图3-2 等离子体中能量

低温等离子工作原理

低温等离子工作原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

低温等离子 1、高科技创新产品:“低温等离子体”技术是电子、化学、催化等综合作用下 的电化学过程,是一全新的技术创新领域。是依靠等离子体在瞬间产生的强大电场能量电离、裂解有害气体的化学键能,从而破坏废气分子结构,达到净化目的。 2、 3、2、高效废气净化:本设备能高效去除挥发性有机物(VOC)、无机物、硫 化氢、氨气、硫醇类等主要污染物,以及各种恶臭味,除臭效率可达98%以上,对于长期弥漫、积累的恶臭、异味,24小时内即可祛除,并且具有强力杀灭空气中细菌、病毒等各种微生物能力,而且具有明显的防霉作用。除臭效果超过国家颁布的恶臭污染物排放一级标准。 4、? 5、3、无需添加任何物质:低温等离子体废气处理是一种干法净化过程,是 一种全新的净化过程,不需任何添加剂,不产生废水、废渣,不会导致二次污染。 6、 7、4、低温等离子适应性强:持久的净化功能,无须专人看管。可适应高浓 度、大气量、不同气态物质的净化处理,可在高温250℃,低温-50℃的环境内,净化区均可运转,特别是在潮湿,甚至空气。湿度饱和的环境下仍可正常运行,每天24小时连续工作,长期运行稳定可靠。 8、 9、5、低耗节能:运行费用低廉、省电是“低温等离子体”专利核心技术之一, 处理1000M3/h臭气,耗电量仅度。本设备无任何机械动作,自动化程度高,工艺简洁,操作简单,方便无需专人管理和日常维护,遇故障自动停机报警,只需作定期检查。 10、 11、6、低温等离子设备组合产品重量轻,体积小,可按场地要求立 放、卧放,可根据废气浓度、流量、成份进行串、并组合设计达到完全的废气净化。 12、 13、7、设备使用寿命长:本设备由不锈钢材,铜材、钼材、环氧树脂 等材料组成,抗氧化性强,对酸、碱气体、潮湿环境等具有良好的防腐性能。使用寿命长达15年以上。 14、 15、8、安全:“低温等离子体”设备内使用电压在36伏以下,安全可 靠。

等离子切割机工作原理

第九章空气等离子切割机 第一节空气等离子切割机工作原理 一、等离子弧的产生与特点 通常把电弧密度为自然条件下的电弧密度(未经压缩)的电弧称为自由弧;自由弧的导电气体设有完全电离,电弧的温度在6000℃到8000℃之间。而在气压、电压和磁场的作用下,柱状的自由弧(柱截面积正比于功率)可以压缩成等离子弧,等离子弧的导电截面小能量集中。弧柱中气体几乎可全部达到离子状态。电弧温度可高达15000℃-30000℃。能使金属等物体迅速熔化。 二、等离子切割的原理与应用 切割,一般指的是金属的切割。等离子弧切割是利用极细而高温的等离子弧,使局部金属迅速熔化,再用气流把熔化的金属吹走的切割方法。等离子弧切割由于切割效率高、损耗低、适用范围广等优点已广泛应用于各类工程建设、制造等行业。 三、等离子弧切割电源与氩弧焊电源技术参数比较 四、等离子切割机工作技术参数

五、等离子切割与气体切割比较 第二节等离子切割的起弧方式 一、接触起弧与转移起弧 等离子弧切割一般有两种起弧方式: 1、接触式:即把与极针绝缘的喷嘴贴在工件(联接切割电源正端)上,然后把高频 高压电流加到联接电源负端的电极针(钨针),使极针喷出电弧,电弧在电压、 气压、磁场作用下形成等离子弧,通过大电流维持等离子弧稳定燃烧,然后稍 抬高喷嘴(避免炽热的工件损坏喷嘴),开始切割。其过程简图如图9.1 这种切割方式多适用于小电流(小功率的切割机)。 图9.1 2、转移弧式(维弧式):即把电源正端通过一定的电阻和继电器开关联接到喷嘴上, 使得极针与喷嘴间形成电弧(由于有电阻限流,电弧较小),然后把喷嘴靠近直 接联接电源正端的工件上,极针与工件间便形成能量更大的电弧,电弧被压缩 后形成等离子弧,而喷嘴与电源正端的联接被断开,开始切割。 图9.2为其过程简图 图9.2 转移弧式切割方式可以避免电弧在气压的作用下偏离喷嘴中心而损坏喷嘴。此种方式适用于大功率切割机。 二、转移起弧控制电路原理 转移弧式切割方式要求先在极针上喷嘴间产生小电弧,然后靠近工件产生等离子弧,通以大电流维持电弧稳定后断开用于起弧的高频高压电流以及小电弧,其控制电路原理图9.3 图9.3

等离子切割机工作原理

工作原理: 等离子是加热到极高温度并被高度电离的气体,它将电弧功率将转移到工件上,高热量使工件熔化并被吹掉,形成等离子弧切割的工作状态。 压缩空气进入割炬后由气室分配两路,即形成等离子气体及辅助气体。等离子气体弧起熔化金属作用,而辅助气体则冷却割炬的各个部件并吹掉已熔化的金属。 切割电源包括主电路及控制电路两部分,电气原理方框图见图所示: 主电路包括接触器,高漏抗的三相电源变压器,三相桥式整流器,高频引弧线圈及保护元件等组成。由高漏抗引成陡将的电源外特性。控制电路通过割炬上的按钮开关来完成整个切割工艺过程: 预通气—主电路供电—高频引弧—切割过程—息弧—停止。 主电路的供电由接触器控制;气体的通短由电磁阀控制;由控制电路控制高频振荡器引燃电弧,并在电弧建立后使高频停止工作。 此外,控制电路尚具备以下内部锁定功能: 1.热控开关动作,停止工作。 切割故障 1)割不透: a:板材厚度超过设备适用范围。 b:切割速度太快。 c:割炬倾度过大。 d:压缩空气压力过大或过小。 e:电网电压过低。 2)等离子弧不稳定: a:割炬移动太慢。 b:电源两相供电,工作电压减小。 c:压缩空气压力过大。 割炬的安装、维护及零件更换: 1.安装或更换割炬零件时,将割炬头朝上,然后按保护罩—导电喷咀—气体分配器—电极—割炬体的顺序拆卸;按相反顺序装配。安装喷咀时,要保持与电极的同心度。保护罩要拧紧,喷咀要压紧,若有松动,不能切割。

2.合理使用割炬,将喷咀与工件接触后在引弧;而切割结束时,应先松开手把按钮断弧,再将割炬从工件表面移开,这样可延长零件的使用寿命。当喷咀因中心空大而影响切割质量时应及时更换。 3.电极中心凹陷深达2毫米以上或不能引弧时,可将电极反向安装使用或更新。 4.发现保护罩、分配器裂开或严重损坏时应及时更换。 5.发现割炬体绝缘、人造革外套、电缆线绝缘、气管损坏破裂时,应及时修复或更换。 6.若要卸下割炬,将人造革外套后退,拆开开关连接接线,向后退出手把,再拆割炬体的连接接头。 7.更换新的陶瓷保护罩时,将割炬体上的O形密封圈涂少许凡士林油再旋入,可延长密封圈使用时间。 八、常见故障原因及排除方法:

等离子原理说明

等离子原理说明 Hessen was revised in January 2021

低温等离子体技术简介 低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。 低温等离子体的产生途径很多,低温等离子体工业废气处理技术采用的放电形式为双介质阻挡放电 (Dielectric Barrier Discharge,简称DBD),该技术性能先进,运行稳定,获得广泛客户的认可。 装置示意图如图3-1所示。 介质阻挡放电是一种获得高气压下低温等离子体的放电方法,这种放电产生于两个电极之间。介质阻挡放电可以在~10105Pa的气压下进行,具有辉光放电的大空间均匀放电和电晕放电的高气压运行的特点。整个放电是由许多在空间和时间上随机分布的微放电构成,这些微放电的持续时间很短,一般在10ns量级。介质层对此类放电有两个主要作

用:一是限制微放电中带电粒子的运动,使微放电成为一个个短促的脉冲;二是让微放电均匀稳定地分布在整个面状电极之间,防止火花放电。介质阻挡放电由于电极不直接与放电气体发生接触,从而避免了电极的腐蚀问题。 介质阻挡放电等离子体技术具有以下优点: ①介质阻挡放电产生的低温等离子体中,电子能量高,几乎可以和所有的恶臭气体分 子作用。 ②反应快,不受气速限制。 ③采用防腐蚀材料,电极与废气不直接接触,根本上解决了设备腐蚀问题。 ④只需用电,操作极为简单,无需派专职人员看守,基本不占用人工费。 ⑤设备启动、停止十分迅速,随用随开,不受气温的影响。 ⑥气阻小,工艺成熟。 低温等离子体净化工业废气的工作原理: 等离子体中能量的传递大致如下:

等离子体的原理

等离子体的原理 等离子体通常被视为物质除固态、液态、气态之外存在的第四种形态。如果对气体持续加热,使分子分解为原子并发生电离,就形成了由离子、电子和中性粒子组成的气体,这种状态称为等离子体。等离子体与气体的性质差异很大,等离子体中起主导作用的是长程的库仑力,而且电子的质量很小,可以自由运动,因此等离子体中存在显著的集体过程,如振荡与波动行为。等离子体中存在与电磁辐射无关的声波,称为阿尔文波。 等离子体(Plasma)是一种由自由电子和带电离子为主要成分的物质形态,广泛存在于宇宙中,常被视为是物质的第四态,被称为等离子态,或者“超气态”。等离子体具有很高的电导率,与电磁场存在极强的耦合作用。等离子体是由克鲁克斯在1879年发现的,1928年美国科学家欧文·朗缪尔和汤克斯(Tonks)首次将“等离子体(plasma)”一词引入物理学,用来描述气体放电管里的物质形态。 第四步为曝光工艺,该工艺步骤要求达到的目的是使感光区的胶膜发生光化反应、在显影时发生溶变,介绍了常见的紫外光光刻机及其所进行的接触式、选择性、紫外光曝光工艺方法。第五步为显影工艺,该工艺步骤要求达到的目的是在显影液中、溶除要求去掉的胶膜部分(对负性光刻胶溶除未曝光部分,对正性光刻胶溶除已曝光部分),各类胶的显影在本章第一节已作了介绍。第六步为坚膜工艺,该工艺步骤要求达到的目的是去除在显影过程中进入胶膜中的水分(显影液)、使保留的胶膜与衬底表面牢固的粘附,介绍了两种坚膜工艺方法。 涂胶涂胶就是在SIO2或其他薄膜表面,涂布一层粘附良好,厚度适当,厚薄均匀的光刻胶膜。涂胶前的硅片表面必须清洁干燥,如果硅片搁置较久或光刻返工,则应重新进行清洗并烘干后再涂胶。生产中,最好在氧化或蒸发后立即涂胶,此时硅片表面清洁干燥,光刻 胶的粘附性较好。 涂胶一般采用旋转法,其原理是利用转动时产生的离心力,将滴在硅片的多余胶液甩去,在光刻胶表面张力和旋转离心力共同作用下,扩展成厚度均匀的胶膜。胶膜厚度可通过转速和胶的浓度来调节。 涂胶的厚度要适当,膜厚均匀,粘附良好。胶膜太薄,则针孔多,抗蚀能力差;胶膜太厚,则分辨率低。在一般情况下,可分辨线宽 约为膜厚的5~8倍。 2.前烘前烘就是在一定的温度下,使胶膜里的溶剂缓慢地挥发出来,使胶膜干燥,并增加其粘附性和耐磨性。 前烘的温度和时间随胶的种类及膜厚的不同而有所差别,一般通过实验来加以确定。

等离子原理说明

低温等离子体技术简介 低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。 低温等离子体的产生途径很多,低温等离子体工业废气处理技术采用的放电形式为双介质阻挡放电(Dielectric Barrier Discharge,简称DBD),该技术性能先进,运行稳定,获得广泛客户的认可。 装置示意图如图3-1所示。 介质阻挡放电是一种获得高气压下低温等离子体的放电方法,这种放电产生于两个电极之间。介质阻挡放电可以在0.1~10 105Pa的气压下进行,具有辉光放电的大空间均匀放电和电晕放电的高气压运行的特点。整个放电是由许多在空间和时间上随机分布的微放电构成,这些微放电的持续时间很短,一般在10ns量级。介质层对此类放电有两个主要作用:一是限制微放电中带电粒子的运动,使微放电成为一个个短促的脉冲;二是让微放电均匀稳定地分布在整个面状电极之间,防止火花放电。介质阻挡放电由于电极不直接与放电气体发生接触,从而避免了电极的腐蚀问题。 介质阻挡放电等离子体技术具有以下优点: ①介质阻挡放电产生的低温等离子体中,电子能量高,几乎可以和所有的恶臭气体 分子作用。 ②反应快,不受气速限制。 ③采用防腐蚀材料,电极与废气不直接接触,根本上解决了设备腐蚀问题。

等离子弧焊原理及操作安全

等离子弧焊原理及操作安全 什么是等离子弧焊?试述等离子弧的产生方法。 借助水冷喷嘴对电弧的拘束作用,获得高能量浓度的等离子弧进行焊接的方法称为等离子弧焊。 等离子弧是自由电弧压缩而成,它是通过以下三种压缩作用获得的,机械压缩效应示意图见图22。 1.机械压缩将电弧强制通过具有小孔径喷嘴的孔道,使电弧受到压缩。 2.热压缩当等离子气体(Ar、N气)以一定的速度和流量经喷嘴时,靠近电弧一侧的气体通过弧柱,吸收大量热量而电离,成为等离子弧的一个组成部分。但是靠近喷嘴内壁的气体,由于受到喷嘴强烈的冷却作用,形成一个冷气套,迫使弧柱截面进一步缩小称为热压缩。 3.磁压缩弧柱电流是一束平行的同向电流线,必然产生往内的收缩力。当电弧受到机械压缩和热压缩之后,截面缩小,因而电流密度增大,由此产生的电磁收缩力必然增大,形成磁压缩。 试述等离子弧的类型。 按电源连接方式的不同,等离子弧有非转移型、转移型和联合型三种形式见图23。

⑴非转移型等离子弧钨极接电源负端,焊件接电源正端,等离子弧体产生在钨极与喷嘴之间,在等离子气体压送下,弧柱从喷嘴中喷出,形成等离子焰。 ⑵转移型等离子弧钨极接电流负端,焊件接电流正端,等离子弧产生的钨极和焊件之间。因为转移弧能把更多的热量传递给焊件,所以金属焊接、切割几乎都是采用转移型等离子弧。 ⑶联合型等离子弧工作时非转移弧和转移弧同时并存,故称为联合型等离子弧。非转移弧起稳定电弧和补充加热的作用,转移弧直接加热焊件,使之熔化进行焊接。主要用于微束等离子弧焊和粉末堆焊。 56 试述转移型等离子弧的产生方法。 为建立转移型等离子弧,应将钨极接电源负极,喷嘴和焊件同时接正极,转移型弧示意图见图24。首先接通钨极与喷嘴之间的电路,引燃钨极与喷嘴之间的电弧,接着迅速接通钨极和焊件之间的电路,使电弧转移到钨极和焊件之间直接燃 烧,同时切断钨极和喷嘴之间的电路,转移型等离子弧就正式建立。

等离子发生器的工作原理及构造

等离子发生器的工作原理及构造 一.工作原理: 1.电弧的物理本质——气体放电 电弧是在阴、阳两电极和它们之间的气体空间组成。电弧的带电粒子主要依靠气体空间的气体的电离和阴极电子发射两个物理过程所产生的。同时伴随着气体分子的离解、激励、扩散、复合等过程。 2.电离、电离度 ●电离:给气体以足够的能量。当气体粒子(分子和原子)的平均动能大于其电离能时,束缚在原子轨道上运动的电子就会脱离其轨道成为自由电子,失去电子的原子带有正电荷成正电离子。这种中性气体分子或原子分离成正离子和电子的现象称为电离。 气体电离因外加能量的种类不同可分为热电离,电场电离,光电离三种。 外界能量传递给气体粒子的途径,从本质上讲只有两种:碰撞传递和光辐射传递。 ●激励:当中性气体粒子受到外来能量还不足以使电子完全脱离原子或 分子,但可以使电子从低能级转移到高能级,使中性粒子的稳定状态被破坏,这种状态称为激励。

●电离度α: α ηe—— ηi——粒子密度,通常ηe=ηi (公式中无此项) * 在热力学平衡条件下,电离度α仅与气体种类、粒子密度和温度有 关。 3.电子发射: 电弧中起导电作用的带电粒子除依靠电离过程产生外,还要从电极表 面发射电子。使一个电子由金属表面飞逸出来所需最低外加能量称为逸出 功。不同金属材料有不同的逸出功。所有金属的氧化物的逸出功都比原金 属小。 按外加能量的形式不同,电子发射机构有热发射、电场发射、光发射、 粒子碰撞发射四种。 4.等离子体---物质的第四态。 所谓等离子体是气体电离度α达到一定程度的气体,这种等离子体具 有下列特性: A. 导电性: 因为等离子体中存在自由电子、正、负离子,所以有很强的 导电性. B. 电准中性:在等离子的空间内,带正电荷和带负电荷的粒子数量相等, 符号相反,故等离子体呈电中性. C. 与磁场的可作用性:等离子体是带电粒子组成的导电体,所以可用磁 场控制等离子体的位置、形状和运动.

(完整word版)ICP等离子发射光谱仪中等离子体焰的形成过程及原理.

ICP 等离子发射光谱仪中等离子体焰的形成过程及原理 ICP 英文翻译过来是电感耦合等离子体,顾名思义,在炬管的切向方向引入高速氩气,氩气在炬管的外层形成高速旋流,通过类似真空检漏仪的装置产生的高频电火花使氩气电离出少量电子,形成一个沿炬管切线方向的电流。因为炬管放置在高频线圈内,通过高频发生器产生的高频振荡通过炬管线圈耦合到已被电离出少量电子的氩气上,使氩气中的这部分电子加速运动,撞击其他电子产生电离 , 形成雪崩效应,最终靠高频发生器连续提供能量,即可形成一个稳定的等离子体火焰。 电感耦合高频等离子(ICP光源 等离子体是一种由自由电子、离子、中性原子与分子所组成的在总体上呈中性的气体,利用电感耦合高频等离子体(ICP 作为原子发射光谱的激发光源始于本世纪60年代。 ICP 装置由高频发生器和感应圈、炬管和供气系统、试样引入系统三部分组成。高频发生器的作用是产生高频磁场以供给等离子体能量。应用最广泛的是利用石英晶体压电效应产生高频振荡的他激式高频发生器,其频率和功率输出稳定性高。频率多为 27-50 MHz,最大输出功率通常是 2-4kW 。 感应线圈一般以圆铜管或方铜管绕成的 2-5匝水冷线圈。 等离子炬管由三层同心石英管组成。外管通冷却气 Ar 的目的是使等离子体离开外层石英管内壁,以避免它烧毁石英管。采用切向进气,其目的是利用离心作用在炬管中心产生低气压通道,以利于进样。中层石英管出口做成喇叭形,通入 Ar 气维持等离子体的作用,有时也可以不通 Ar 气。内层石英管内径约为 1-2mm ,载气载带试样气溶胶由内管注入等离子体内。试样气溶胶由气动雾化器或超声雾化器产生。用 Ar 做工作气的优点是, Ar 为单原子惰性气体,不与试样组分形成难解离的稳定化合物,也不会象分子那样因解离而消耗能量,有良好的激发性能,本身的光谱简单。 当有高频电流通过线圈时,产生轴向磁场,这时若用高频点火装置产生火花,形成的载流子(离子与电子在电磁场作用下,与原子碰撞并使之电离,形成更多的载流子,

等离子原理介绍

交流等离子原理介绍 什么是等离子 通常情况下人们认为物质只有三种状态(固态、液态、气态),其实不然,在一定条件下,物质还有第四种状态——等离子体态。等离子体状态不同于其它物质状态,它突出的一点是由带电粒子组成的电离状态。 根据物质的构成理论,物质的原子、分子或分子团相互以不同的力或键力相结合,构成不同的聚集态。固体是以粒子间结合力强的键构成晶格的,而当其粒子的平均动能大于粒子在晶格中的结合能时,则晶格解体,固体转变为液体。液体的粒子间由结合力较弱的键联系,如果外界进一步供给能量,使这较弱的键破坏,则液体转变为粒子间没有作用键的气体.如果再对气体供给足够的能量,气体就电离成电子和离子,而成为等离子体。 交流等离子拉弧原理 交流等离子技术的拉弧原理如上图所示,其工作过程描述如下:压缩空气切向高速进入电弧室,发生强烈的旋转,形成中心压力低、外围压力高的动力场;当前后电极间的电压和及其频率增大到一定程度的时候,两个电极间的空间距离被击穿,首先在两个电极间距最小的位置建立起电弧,然后此电弧在压力差的作用下移动到电弧室的中心位置,如图中管弧(阴影部分)所示。此时流经电弧的压缩空气在此电弧的作用下发生电离子,形成等离子体,以明亮的火焰射流形式从前电极喷出。

交流等离子和直流等离子的比较 交流等离子 直流等离子 原因分析 电极寿命 前电极>500h 后电极>300h 阴极<50h 交流等离子的电极寿命比直流等离子的电极寿命要长很多,这主要是因为: 1、交流等离子采用的是“管弧”原理,即前、后电极采用圆管形状,电弧的弧根位于 圆管的内壁处,也就是说弧根与电极是一个“面”接触,所以其电弧弧根与电极的 接触面积是比较大的;而直流等离子采用的“点弧”原理,电弧的弧根位于阴极头 上,也就是说其阴极与电弧是一个“点”接触,所以其弧根接触面积较小;因此, 在电流强度相同的条件下,接触面大的电弧发出的热量相对分散,不会造成电极温 度过高,而接触面小的电弧发热量相对集中,容易造成局部温度过高,烧损电极。 2、电弧的旋转对电极的寿命影响很大,如果电弧不旋转,则其发出的热量集中在弧根 处,容易造成局部超温,烧损电极。所以交流等离子和直流等离子都采取了电弧旋 转技术,但各自的旋转强度是不一样的。交流等离子采用的是压缩空气切向旋转技 术,0.4MPa的压缩空气的电弧以音速切向旋转进入常压的电弧室,其旋转强度非常 强烈;直流等离子采用的是电磁感应原理,即通过一个带电线圈产生一个磁场,电 弧在此磁场的作用下阳极弧根发生旋转(阴极弧根不旋转),此磁场强度与线圈砸 数和电流大小密切相关,但电流受点火功率、阴极电流强度等诸多因素的影响,不

低温等离子原理

根据中华人民共和国环境保护部《挥发性有机物(VOCs)污染防治技术政策》,目前,VOCs 的末端控制技术可以分为两大类:即回收技术和销毁技术,回收技术是通过物理的方法,改变温度、压力或采用选择性吸附剂和选择性渗透膜等方法来富集分离有机污染物的方法,主要包括吸附技术、吸收技术等。回收的挥发性有机物可以直接或经过简单纯化后返回工艺过程再利用。销毁技术是通过化学或生化反应,用热、光、催化剂或微生物等将有机化合物转变成为二氧化碳和水等无毒害无机小分子化合物的方法,主要包括高温焚烧、催化燃烧、生物氧化、低温等离子体破坏和光催化氧化技术等。本项目采用低温等离子体技术处理有机废气VOCs 。 低温等离子放电过程中,电子从电场中获得能量,通过碰撞将能量转化为污染物分子的内能或动能,这些获得能量的分子被激发或发生电离形成活性基团,同时空气中的氧气和水分在高能电子的作用下也可产生大量的新生态氢、活性氧和羟基氧等活性基团,这些活性基团相互碰撞后便引发了一系列复杂的物理、化学反应。从等离子体的活性基团组成可以看出,等离子体内部富含极高化学活性的粒子,如电子、离子、自由基和激发态分子等。废气中的污染物质与这些具有较高能量的活性基团发生反应,最终转化为CO2和H2O等物质,从而达到净化废气的目的。 等离子体化学反应过程大致如下: (1). 电场+电子高能电子 (3). 活性基团+氧气生成物+热 (4).活性基团+活性基团生成物+热 从以上反应过程可以看出,电子先从电场获得能量,通过激发或电离将能量转移到污染物分子中去,那些获得能量的污染物分子被激发,同时有部分分子被

电离,从而成为活性基团。然后这些活性基团与氧气、活性基团与活性基团之间 相互碰撞后生成稳定产物和热。 技术优点: ◇可根据废气的成份、浓度、流量等指标,编制相应的废气治理方案,做到高效、安全、可靠运行。 ◇密集型高压电晕放电产生的低温等离子体中,废气分子始终处于电离状态,很快被电离、氧化分解,具有很强的广谱性。 ◇低温等离子体发射源采用高压、高频、直流电源,运行过程安全可靠,运行费用低廉,只消耗少量电能。 ◇净化设备结构分内胆、壳体式,便于维护保养。并可串并联组合;当处理大流量废气时,可并联分流。当处理难降解废气分子时,可叠加串联。 ◇可根据废气中的腐蚀程度选择内胆材质,内胆以不锈钢304、316L,钛 合金等为主,发射丝为特殊合金具备很好的防腐性与导电性。 另外,高能电子也能被卤素和氧气等电子亲和力较强的物质俘获,成为负离子。这类负离子具有很好的化学活性,在化学反应中起着重要的作用。

等离子废气处理工艺原理介绍

等离子废气处理工艺原理 介质阻挡放电过程中,电子从电场中获得能量,通过碰撞将能量转化为污染物分子的内能或动能,这些获得能量的分子被激发或发生电离形成活性基团,同时空气中的氧气和水分在高能电子的作用下也可产生大量的新生态氢、臭氧和羟基氧等活性基团,这些活性基团相互碰撞后便引发了一系列复杂的物理、化学反应。从等离子体的活性基团组成可以看出,等离子体内部富含极高化学活性的粒子,如电子、离子、自由基和激发态分子等。废气中的污染物质与这些具有较高能量的活性基团发生反应,最终转化为CO2和H2O等物质,从而达到净化废气的目的。 等离子废气处理技术特点 低温等离子废气处理技术应用于恶臭气体治理,具有处理效果好,运行费用低廉、无二次污染、运行稳定、操作管理简便、即开即用等优点。 1、介质阻挡放电产生电子能量高,低温等离子体密度大,达到常用等离子技术(电晕放电)的1500倍,几乎可以和所有的恶臭气体分子作用。 2、技术反应速度快,气体通过反应区的速度达到3-15米/秒,即达到很好的处理效果。 3、气体通过部分,全部采用陶瓷、石英、不锈钢等防腐蚀材料,电极与废气不直接接触,根本上解决了低温等离子废气处理技术设备腐蚀问题。 4、等离子废气处理设备主机为成套工业废气处理装置,前面配有专用塔,能有效去除废气中的粉尘和水分,操作简单。 5、自动化程度高,设备启动、停止十分迅速,随用随开,对于部分化工生产的不连续性,可以在生产时开启,不生产的间隙停止运行,大量的节约能源。 6、运行成本较低,比常用的蓄热式燃烧炉RTO节约运行费用5-8倍,每立方米气量运行费用仅为0.3~0.9分钱。 7、应用范围广阔,基本不受气温和污染物成分的影响,对恶臭异味的臭气浓度有良好的分解作用,恶臭异味的去除率达80-98%,处理后的气体臭气浓度达到国家标准。 8、重要特点:以非甲烷总烃为例,用色谱法检测,非甲烷总烃去除率也许只有45%,但恶臭异味的去除率达90%。这是因为非甲烷总烃经过处理后,部分分子变成小分子,用色谱法检测时,依然表现为非甲烷总烃。恶臭异味的去除率高,表明实际已经分解了90%以上的污染物质,因为分解后的物质也有部分有异味。 9、等离子废气处理技术处理工业废气技术不是水洗技术,是通过高能量等离子体对污染物的直接击穿和直接轰击,使分子链断裂,并非污染物的转移。

等离子的发展史及原理

海宝━━世界一流的等离子切割技术领路人 等离子切割的历史 新技术发展领域的里程碑 Hypertherm,Incorporated Etna Road ·P.O.Box5010 Hanover,NH 03755 U.S.A. Telephone:603-643-3441

等离子切割技术的重要日程表 1950年TIG焊接(钨极惰性气体保护焊) 1957年传统等离子切割,使用“干式”弧压缩技术。1962年双气流等离子弧,在喷嘴周围引入辅助的气体保护。1963年空气等离子切割。 1965年水屏蔽等离子切割,用水代替保护气。 1968年水射流等离子切割,用水增加电弧压缩。 1972年水消音器和水台,在等离子切割过程中降低噪声、烟尘和有毒烟雾。 1977年水下切割,进一步减少噪声和污染。 1980年低电流空气等离子切割,使等离子弧切割成为一种新行业。 1983年氧气等离子切割,提高了切割碳钢的切割速度和切割质量。 1985年氧喷射等离子切割,用氮气作等离子气,而且在喷嘴下游注入氧气。 1989年深水等离子切割,允许在水下10-15米进行切割。 1900年1900年更长寿命氧气易损件。 高密度等离子切割,切割质量和切割速度可以同激光相比美。 Hypertherm, Inc

(原文第2页)等离子——物质的第四态 等离子的一般描述是:它是物质的第四态。我们一般认为物质的三种形态是固态、液态、和气态,对于众所周知的物质━━水来说,这三种形态是冰、水和水蒸汽。这三种形态之间的重要差异与能级有关。如果我们以加热的形式给冰增加更多的能量,冰就会融化,结果就产生了水━━一种液体。如果我们给水增加更多的能量,它就会汽化成水蒸汽的形式,给水蒸汽再增加足够的能量,水蒸汽中的水分子就会分解成氢原子和氧原子。 通过给气体增加更多的能量,我们发现气体在温度和导电性方面的性能有了本质的改变。这个过程我们称为电离,在气体原子中的自由电子和正离子分解了。当出现这种现象时,由于自由电子具有运载电流的能力,现在已经成为等离子的这种气体因而具有了导电性。适用于金属导电的许多原理也适用于等离子。例如:如果金属的载流截面变小,电阻就会生高,这就需要更高的电压迫使相同数量的电子通过这个截面,金属的温度就会生高。这种规律也同样适用与等离子气体,即截面面积越小,等离子的温度越高。在等离子弧发展的历史回顾当中,我们将沿着带有气体流的等离子弧的发展历程进行介绍,这实质也就是“等离子切割过程”。 (原文第3页)等离子弧工艺的发展 在1941年,美国国际工业,特别是飞机制造业正在寻找焊接轻金属的最佳方法。在这项探索的努力过程中,诞生了一种新的焊接工艺─—使用电弧来熔化金属,并用一种惰性气体保护在电弧周围,而用熔融金属的熔池来取替空气,以防止熔融金属为周围环境内的空气氧化。这种新工艺“TIG”(钨极惰性气体保护焊)对于具有非常特殊要求的高质量焊接来说似乎是最佳的解决办法。由于这种焊接工艺成为氩气和氮气这类气体的重要用户,对这种新应用最感兴趣的工业界最终成为这类工业气体的制造商。这些工业气体公司,特别是联合碳化物公司的林德分部积极致力于“TIG”工艺的研究工作并且取得了成功,“TIG”工艺又叫做“氩弧”或“氦弧”。今天,这种工艺也叫“GTAW”(气体钨极电弧焊)。 到1950年,“TIG”已牢固地确立了其作为对特殊材料进行高质量焊接的新焊接方法的地位。随着TIG工艺的进一步发展,联合碳化物公司焊接研究所的科学家和工程师们发现,当他们缩小使惰性气体从TIG割炬的电极(负极)向工件(正极)喷射的气体喷嘴时,这种开放的TIG电弧的性能可以极大地改变。缩小的喷嘴口压缩了电弧和气体,这样就提高了电弧的速度和温度。电弧的温度和电压明显地升高了,由于其高速,电离的和未电离的气体的冲力就除去了熔池。代替焊接,等离子喷射流切开了金属。 (原文第4页)在图3中,在200安培时在氩气中的两种喷射气体正在喷射。等离子喷射流仅仅是被3/16英寸(4.8mm)直径的喷嘴口适度地压缩了,但是却以双倍的电压运行,而且产生了比相应的TIG电弧热得多的等离子弧。如果相同的电流穿过开口更小的喷嘴,温度和电压就升高了。同时,从喷嘴出来的气体的更高动能排斥掉熔化金属,从而产生了一个切口。等离子切割弧明显地要比图2所示的TIG电弧温度更高。因为在等离子割炬喷嘴里的高速气流在电弧和喷嘴壁之间形成了一个未电离气体的冷却层,这样就允许更高程度的电弧压缩,因而就可能产生更高的温度。使等离子气体形成涡流可以进一步提高这个冷却层的厚度。涡流运动迫使更多、更冷的未电离气体沿径向向外喷出,并且形成更厚的冷却层。大多数等离子切割割炬使切割气体形成涡流以获得最大的电弧压缩和喷嘴保护。 转移型和非转移型 等离子喷射流既能以转移型电弧运行,即电流在等离子割炬电极(负极)和工件(正极)之间流动,也能以非转移型电弧运行,即电流在电极和割炬喷嘴之间流动。两种运行方式在图4中有图例说明。

等离子切割机工作原理

等离子切割机工作原理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第九章空气等离子切割机 第一节空气等离子切割机工作原理 一、等离子弧的产生与特点 通常把电弧密度为自然条件下的电弧密度(未经压缩)的电弧称为自由弧;自由弧的导电气体设有完全电离,电弧的温度在6000℃到8000℃之间。而在气压、电压和磁场的作用下,柱状的自由弧(柱截面积正比于功率)可以压缩成等离子弧,等离子弧的导电截面小能量集中。弧柱中气体几乎可全部达到离子状态。电弧温度可高达15000℃-30000℃。能使金属等物体迅速熔化。 二、等离子切割的原理与应用 切割,一般指的是金属的切割。等离子弧切割是利用极细而高温的等离子弧,使局部金属迅速熔化,再用气流把熔化的金属吹走的切割方法。等离子弧切割由于切割效率高、损耗低、适用范围广等优点已广泛应用于各类工程建设、制造等行业。 三、等离子弧切割电源与氩弧焊电源技术参数比较

五、等离子切割与气体切割比较 第二节等离子切割的起弧方式 一、接触起弧与转移起弧 等离子弧切割一般有两种起弧方式: 1、接触式:即把与极针绝缘的喷嘴贴在工件(联接切割电源正端)上,然后把 高频高压电流加到联接电源负端的电极针(钨针),使极针喷出电弧, 电弧在电压、气压、磁场作用下形成等离子弧,通过大电流维持等离子 弧稳定燃烧,然后稍抬高喷嘴(避免炽热的工件损坏喷嘴),开始切 割。其过程简图如图 这种切割方式多适用于小电流(小功率的切割机)。 图 2、转移弧式(维弧式):即把电源正端通过一定的电阻和继电器开关联接到喷 嘴上,使得极针与喷嘴间形成电弧(由于有电阻限流,电弧较小),然后 把喷嘴靠近直接联接电源正端的工件上,极针与工件间便形成能量更大的 电弧,电弧被压缩后形成等离子弧,而喷嘴与电源正端的联接被断开,开 始切割。 图为其过程简图 图 转移弧式切割方式可以避免电弧在气压的作用下偏离喷嘴中心而损坏喷嘴。此种方式适用于大功率切割机。 二、转移起弧控制电路原理 转移弧式切割方式要求先在极针上喷嘴间产生小电弧,然后靠近工件产生等离

等离子切割工作原理

等离子弧切割是利用高温等离子电弧的热量使工件切口处的金属部局熔化(和蒸发),并借高速等离子的动量排除熔融金属以形成切口的一种加工方法。 等离子切割配合不同的工作气体可以切割各种氧气切割难以切割的金属,尤其是对于有色金属(不锈钢、铝、铜、钛、镍)切割效果更佳;其主要优点在于切割厚度不大的金属的时候,等离子切割速度快,尤其在切割普通碳素钢薄板时,速度可达氧切割法的5~6倍、切割面光洁、热变形小、几乎没有热影响区! 等离子切割发展到现在,可采用的工作气体(工作气体是等离子弧的导电介质,又是携热体,同时还要排除切口中的熔融金属)对等离子弧的切割特性以及切割质量、速度都有明显的影响。常用的等离子弧工作气体有氩、氢、氮、氧、空气、水蒸气以及某些混合气体。 等离子切割机广泛运用于汽车、机车、压力容器、化工机械、核工业、通用机械、工程机械、钢结构等各行各等离子弧切割规范各种等离子弧切割工艺参数,直接影响切割过程的稳定性、切割质量和效果。主要切割规范简述如下: 1.空载电压和弧柱电压 等离子切割电源,必须具有足够高的空载电压,才能容易引弧和使等离子弧稳定燃烧。空载电压一般为120-600V,而弧柱电压一般为空载电压的一半。提高弧柱电压,能明显地增加等离子弧的功率,因而能提高切割速度和切割更大厚度的金属板材。弧柱电压往往通过调节气体流量和加大电极内缩量未达到,但弧柱电压不能超过空载电压的65%,否则会使等离子弧不稳定。 2.切割电流 增加切割电流同样能提高等离子弧的功率,但它受到最大允许电流的限制,否则会使等离子弧柱变粗、割缝宽度增加、电极寿命下降。 3.气体流量 增加气本流量既能提高弧柱电压,又能增强对弧柱的压缩作用而使等离子弧能量更加集中、喷射力更强,因而可提高切割速度和质量。但气体流量过大,反而会使弧柱变短,损失热量增加,使切割能力减弱,直至使切割过程不能正常进行。 4.电极内缩量 所谓内缩量是指电极到割嘴端面的距离,合适的距离可以使电弧在割嘴内得到良好的压缩,获得能量集中、温度高的等离子弧而进行有效的切割。距离过大或过小,会使电极严重烧损、割嘴烧坏和切割能力下降。内缩量一般取8-11mm。

等离子体化学的基本原理和应用

等离子体化学的基本原理及应用 等离子体化学是20世纪六十年代发展起来的一门新兴交叉科学。经过40多年的研究发展,已经广泛地引用于化工、冶金、机械、纺织、电子、能源、半导体,医药等不同领域。本文对等离子体化学在材料、电子、光学、医药、化学合成、环境保护几个方面的一些应用进行综述。[1-2] 1理论概述[3] 对常温常压条件下的气体通过高温加速电子加速离子给物质以能量,物质被解离成阴、阳离子的状态,由于整个体系阴、阳离子总电荷相等,故称为等离子体。而从通常的能量排布:气体>液体>固体的角度来说,等离子的能量比气体更高,能表现出一般气体所不具有的特性,所以也被称为物质的第四态。 当气体电离生成电子正离子一般在段时间内发生结合,回到中性分子状态,这个过程产生的电子、离子的一部分能量以电磁波等不同形式消耗,在分子离解时常生成自由基,生成的电子结合中性原子,分子形成负离子。因此,整个等离子体是电子正负离子激发态原子,原子以及自由基的混合状态。因为各种化学反应都是在高激发态下进行的,与经典的化学反应完全不同。这样使等离子体的原子或分子的本性通常都发生改变,即使是较稳定的惰性气体也会变得具有很强的化学活泼性。 在放电气体中发生的反应称为等离子体化学反应,用电子温度Te和离子温度Ti作为参数。若Te ≈Ti称为平衡等离子体或高温等离子体。若Te >>Ti称为非平衡等离子体或低温等离子体。这两种不同的情况在不同的领域都有广泛的运用。 2设备与装置[3-4] 可以将等离子的产生理解为:一定的真空度,外加电场/磁场,通电条件下射频放电产生的特殊物质。各国学者一直努力研制一种能得到均匀稳定的等离子的设备。可以通过(1)解光放电、(2)电晕放电、(3)寂静放电、(4)RF放电、(5)微波放电这5种放电方式(基本特征见图1)来得到等离子体,但为了保证反应产物不分解,一般采用辉光放电形式。这类仪器通过外加电场可以有效地把能量直接传递给反应体系中的气体分子,反应腔里将发生气体放电,产生非平衡等离子体,这种能量传递方法不仅经济有效,而且产生的等离子体具有能量高密度大的特点,所以应用较为广泛。根据反应器的结构不同分为内部电极方式的反应器、外部电极方式的反应器、直流放电反映器、采用商业频率的反映器、微波放电反映器(见图2)。而大多数工业活动需在常压或加压(高气体浓度)条件下进行,尤其化学工业、环境工程和材料工业等还不具备在低气压条件下进行化学反应的工艺条件。

相关文档
最新文档