用红外通信原理的设计与实现 红外通信协议 含电路图

用红外通信原理的设计与实现红外通信协议含电路图

1 引言

在电子消费领域当中,红外产品的使用较为普遍,它多用于简单的近距离控制,如家电,玩具,各种抄表系统。本文以Freescale 8位高性能、低功耗单片机MC9S08GT60为载体,详细介绍红外通信的硬件和软件设计过程及通信协议的使用。

HCS08系列的MCU是Freescale半导体公司最新推出的8位单片机,具有多种低功耗模式,更高的工作频率,并集成了片上调试器,而且资源丰富,因此采用了该系列的MC9S08GT60作为载体详细讨论了一个简单实用的红外通信开发系统。

红外通信过程主要由红外发射和红外接收两个过程,首先将数字信号送给红外发射电路,经该电路的调制转变成红外光信号在空中传输,然后红外接收电路收到该红外光信号,经过该电路的解调,将此红外光信号还原成可被单片机处理的信号,由单片机内部处理得到原来的数据编码。

2 红外通信协议

协议的目的是给收发双方一个约定,使其能够进行同步,并正确的收发数据。本设计使用了类同步协议。当红外接收器未收到信号时,不产生定时操作,否则,首先接收起始位‘0’,并触发中断,启动定时器接收数据,然后判断是否为起始位,如果是,则继续接收数据,否则将定时器复位,重新检测起始位,在接收第二个停止位时,会触发一次中断来检测第一次接收的停止位是否正确,如果不正确,则复位定时器,重新接收,否则已经正确接收该数据段。

3 红外通信的原理分析

红外通信在空中传输的是载波信号,当有载波通过时,接收端输出数字信号‘0’,反之,输出数字信号‘1’。因此在发射电路发送的功能指令码,一般采用多位二进制串行码。本文中,红外通信数据采用脉冲编码,就是将每位数据信号用一个脉冲来表示,脉宽为526 μs,两个这样的脉冲周期表示‘1’,一个这样的脉冲周期表示‘0’。这样的脉冲信号都调制在频率为38 kHz的载波上再发送出去,调制后在空中传输的信号就是具有一定时间间隔的载波信号,其占空比由数据编码决定。在红外接收端,数据处理的过程正好相反,在接收红外光信号之后,会经过整形、放大、滤波、调制等一系列处理,然后在其输出端输出一系列的单片机能够处理的数据信号。

4 红外通信硬件设计原理

4.1 发送电路的硬件设计

HCS08GT60单片机内部有两个TPM模块,每个模块有两个通道,可以用任意一个通道的PWM功能,输出38 kHz的载波信号,本文编程设计根据实验条件的要求采用了TPM1通道1中心脉宽输出功能产生

38 kHz红外载波信号。而PTA7口作为普通的输入输出口,产生一定脉宽的方波信号,作为数据编码信号输入。硬件原理图如图1所示。

原理图中,电气节点CODE跟PTA7口相连,产生数据编码;电气节点CLK跟TPM1通道1相连,产生38 kHz红外载波信号。三极管基极串接的电阻和R5起到限流保护的作用,三极管本身则具有信号放大的功能,另外两个三极管级联将编码调制在38 kHz的载波上通过红外发射器发射出去。当编码为‘1’时,Q1,Q2截止,红外发射器上无电流通过,发射低电平信号,当编码为‘0’时,Q1,Q2导通,此时载波信号通过Q2放大在发射器上体现出38 kHz的载波信号。因此在PTA7端口输入不同的数据编码,通过该发送电路,在发射器上会出现具有一定间隔的38 kHz载波信号,经发射器将该载波信号转化成光信号发射出去。载波脉冲调制信号的时序图如图2所示。

4.2 接收电路的硬件设计

红外接收电路中使用了HS0038A接收器,HS0038A的内部逻辑框图如图3所示。

由此可看出该接收器内部实现了红外接收、放大、滤波及解调功能,当收到红外载波光信号时,红外接收器输出低电平,反之红外接收器输出高电平,从而可以将时断时续的红外光信号调制成连续的方波信号,经单片机内部处理可以将其转换成原来的数据。

硬件原理图如图4所示。

由于HS0038A内置滤波并且采用环氧塑封,可以作为红外滤波器,因此电路中不需要另外增加滤波器,并且HS0038A具备较强的抗干扰能力。

红外接收器输出引脚RevData连接在TPM2通道0,使用了TPM的输入捕捉功能,在上升沿时发生输入捕捉,比较两次捕捉发生时通道寄存器TPM2C0V的值,可以得到一个周期脉冲的宽度,根据发射数据的时序图,就可知道不同的脉冲宽度对应的数据是什么,由此就可将原数据还原出来。

5 红外通信的软件设计

5.1 38 kHz红外载波设计

MC9S08GT60使用了外部4 MHz的晶振频率,通过配置ICG1=0x78,ICG2=0x30,将总线频率控制为20 MHz。MC9S08GF60内部有定时/脉冲输出模块,将TPM1的状态控制寄存器的位CPWMS置1,则TPM1工作在中心脉宽输出模式;将TPM1通道0的状态控制寄存器的ELS0B:ELS0A设置为10,控制发生输出比较时将脉冲信号置高或置低。为使TPM1C1输出38 kHz频率的载波信号,就要对20 M Hz的总线频率进行526分频,即526个20 MHz的方波周期产生一个38 kHz的方波周期,因为是中心脉宽输出模式,输出脉冲宽度是通道值寄存器TPM1C1V中值的2倍,输出脉冲周期是通道预置寄存器T PM1M0D中值的2倍,因此令TPM1C1V=131,TPM1M0D=263,启动定时器后,定时器1的计数器TP

M1CNTL在自增1计数时,当该值跟通道值寄存器TPM1C1V中值匹配时,将脉冲输出信号拉低,定时器1的计数器TPMlCNTL在计数值开始进行自减1操作时,当下降到跟通道寄存器TPMlClV时,将脉冲输出信号拉高。中心脉宽输出的时序图如图5所示。从此通道输出的方波频率通过示波器查看为37.9 kHz 或38 kHz。

5.2 数据编码的设计

MC9S08GT60单片机有36个端口,大部分端口都具有双重功能,本文使用端口PTA7,配置该端口的方向寄存器PTADD_PTADD7为1,即PTA7为输出,根据脉冲编码的规则,进行不同的延时操作,使该端口输出一定宽度的数据脉冲,通过示波器查看该端口,可看到稳定的脉冲序列。

5.3 接收端信号的输入捕捉设计

将TPM2的状态控制寄存器的位CPWMS置0,则TPM2可以工作在输入捕捉模式、输出比较模式、边沿脉冲输出模式;为使TPM2通道0工作在输入捕捉方式,需要进一步设置TPM2通道0状态控制寄存器,将TPM2C0SC的模式选择位MS0B:MS0A设置为00,选择了输入捕捉方式,此外,要设置捕捉发生在什么条件下,那么需要设置TPM2COSC中的极性选择位ELS0B:ELS0A,使其为01,目的是在该引脚出现上升沿时发生捕捉。在发生捕捉时,通道值寄存器会将定时寄存器的值进行锁存,因此比较两次输入捕捉时,通道值寄存器的内容,根据编码规则,可知道该值对应的编码是‘1’或‘0’。此外通道值寄存器是16位的,如果希望通过串口调试窗口查看比较结果,因为串口接收数据缓冲寄存器是8位的,那么可以将其分解为两个8位的数据通过串口发送。

以下是输入捕捉的中断子程序:

程序功能描述:将捕捉的数据发往串口查看,这样不管用什么发射器,都可以通过观察串口数据得到识别码,完成不同的功能。

6 结语

红外通信一般用在低数据速率,并且短距离的场合中,因此需要低功耗的运行要求。而Freescale的这款单片机工作电压可达到1.8 V,在单片机空闲方式下,通过设置SOPT和SPMSC两个寄存器来设计不同的停止低功耗模式,或者执行一条WAIT指令,使单片机进入等待的低功耗模式,这里就不再详细讲述其实现过程。MC9S08GT60单片机与其他低电压、低功耗的单片机不同之处在于,它并非是以牺牲性能为代价来换取1.8 V的低电压。因此本文使用该单片机讨论了发送和接收红外电路的设计过程及通信协议的运用,该系统的设计切实可行,对红外控制开发者有一定的帮助。

红外通信收发系统的设计和实现实验报告

红外通信收发系统的设计和实现实验报告学院:信息与通信工程学院 姓名: 班级: 学号:

红外通信收发系统的设计和实现实验报告 1、课题名称 红外通信收发系统的设计与实现 2、摘要 红外通信系统的设计是光通信系统的一个重要分支,红外数据传输,使用传输介质――红外线。红外线是波长在750nm~1mm之间的电磁波,是人眼看不到的光线。红外数据传输一般采用红外波段内的近红外线,波长在0.75~25um之间。本实protel软件辅助设计,分析并设计了红外通信系统的发射电路与接收电路,实现了红外信号的无线传输功能和音乐信号的收发功能。 3、关键词 红外线、收发系统、音乐芯片 3、设计任务要求; 1、基本要求: (1)设计一个正弦波振荡器,f≥1kHz,Uopp≥3v; (2)所设计的正弦波振荡器的输出信号作为红外光通信收发系统发送端的输入信号,在接收端可收到无明显失真的输入信号; (3)要求接收端LM386增益设计G=200; (4)设计该电路的电源电路(不要求实际搭建),用软件绘制完整的电路原理图(PROTEL)及印制电路板图(PCB) 2、提高要求: 利用音乐芯片产生乐曲,调制LED后发出,接收端接收信号利用喇叭将发送的乐曲无失真的播放出来。 3、探究环节: 探索其它红外光通信收发系统的应用实例,数字调制的解决的方案,给出应用方案。 4、设计思路、总体结构框图;

1、设计思路 系统主要由信号产生电路,红外光发射系统,红外光接收系统三个模块完成基本实验要求,其中信号产生电路分别由信号发生器和音乐芯片代替,电信号经过发生系统转化为红外光信号,经接收系统接受后,光信号转化为电信号,再通过喇叭将其转化为语音信号,实现红外光通信的全过程。 首先主要用信号发生器发出电信号,微弱的电信号经过一个分压式共射电路适当放大,并通过LED红外发送管转化为光信号发送。 信号经接收管接收后,通过运放电路得到较高的输出功率,驱动喇叭发出声音。利用放大器LM386,调节电位器改变其增益,驱动喇叭得到所需功率。再将音乐芯片替代信号发生器重复上述过程即可驱动喇叭发出音乐芯片的声音(此实验为三声门铃声) 2.总体框架图 1、信号的产生 实验中使用了音乐芯片KD-9300或者LX-9300来完成。信号产生也可以使用RC振荡器构成,但信号的幅度不宜过大。 2、红外光发送模块的设计 设计原则主要是考虑红外发送管的工作电流,电流过小,传输距离短,电流过大容易毁坏发光管。(要注意芯片的接法以及发送电路的连接。) 3、红外光接收模块的设计 1)高通滤波器:红外接收的二极管都是光敏二极管,这样普通光对其都成一定程度的影响,为了获得更好的效果,还要在信号输出端加入高通滤波器,消除恒定的外接低频信号的干扰,这样接收效果和灵敏度将显著提高。 2)功率放大器:利用音频功率专用放大器LM386,可以得到50~200的增益,确保驱动喇叭。 所以设计框图如下 光通信收发系统原理图

(通信企业管理)红外通信收发系统的设计与实现

【最新卓越萱理方案您可自由编辑】 (通信企业管理)红外通信收发系统的设计与实现

红外通信收发系统的设计和实现 摘要,Abstractl 壹、引言1 二、设计目的:2 三、设计任务要求2 四、系统设计思路2 五、模块电路设计2 1、语音信号的设计方案2 2、红外光发送模块的设计方案3 3、红外光接收模块的设计方案3 4、高通滤波器4 5、功率放大器4 六、数据测量和功能实现4 七、问题分析4 八、总结4 九、所用元件及测试仪表清单5 摘要: 本文阐述了红外通信的基本工作原理,完成了红外收发器具体的硬件电路设计, 且且详细说明了发射和接收的工作原理,同时指出于设计过程中应该注意的壹些问题。通过实际搭建电路,音乐芯片9300A产生的乐曲,通过调制LED后发出, 于壹定的距离范围之内,接收端能够接收到乐曲信号,利用喇叭能够将乐曲信号无失真的播放出来。从而

完成了整个红外通信系统的收发 关键词:红外通信,调制 Desig nan dlmpleme ntatio nofin fraredcom mun icatio ntran sceiversyste m Abstract: In thispaper,describedthebasicwork in gpri ncipleofi nfraredcom muni cati on, completedthedesignofinfraredtransceiver ' sidiographichardwarecircuit,a n ddetaileddescriptio no fthework in gpri ncipleoftra nsmitti ngan drecei vin g,a lsopo in tedoutthatduri ngthedesig nprocessshouldpayatte nti on tosomepro blems.Throughtheactualcircuitstructures,music9300Achipge neratedmusi c,throughmodulatedLEDa ndemittedthemusicsig nal,i nacerta in dista ncera n ge,thereceiverca nreceivemusicsig nal,a ndthemusicsig nalca nbebroadcastw ithoutdistort ion withtheuseofloudspeaker.Therebycomplet in gthetra nsmitt ingan dreceivi ngofe ntirei nfraredcom mun icatio nsystem. Keywords:i nfraredcom mun icati onm odulatio n 壹、弓I言 随着科技的进步,无线电通信技术得到了前所未有的发展,而红外无线数据通信相对于无线电数据通信具有低功耗、低价格、低电磁干扰、高保密性等优点, 目前发展迅猛,尤其于近距离无线数据通信中得到了广泛的应用?尤其是随着编码调制技术的发展,红外无线数据通信的数据速率越来越高,成为许多移动设备、室内办公设备以及手持设备无线数据通信的壹个重要途径。 二、设计目的: 1、掌握简单的红外光通信系统的组成及设计原理;

红外通信电路

红外通信基本原理 红外通信是利用950nm近红外波段红外线作为传递信息媒体,即通信信道。发送端采用脉时调制(PPM)方式,将二进制数字信号调制成某一频率脉冲序列,并驱动红外发射管以光脉冲形式发送出去;接收端将接收到光脉转换成电信号,再经过放大、滤波等处理后送给解调电路进行解调,还原为二进制数字信号后输出。 简而言之,红外通信实质就是对二进制数字信号进行调制与解调,以便利用红外信道进行传输;红外通信接口就是针对红外信道调制解调器。 https://www.360docs.net/doc/ce266297.html,提示请看下 图: 2 红外通信接口硬件电路设计 单片机本身并不具备红外通信接口,但可以利用单片机串行接口与片外红外发射和接收电路,组成一个应用于单片机系统红外串行通信接口,如图1所示。 2.1 红外发送器

红外发送器电路包括脉冲振荡器、驱动管T1和T2、红外发射管D1和D2等部分。其中脉冲振荡器由NE555定时器、电阻(R1、R2)和电容(C1、C2)组成,用以产生38kHz脉冲序列作为载波信号;红外发射管D1和D2选用Vishay公司生产TSAL6238,用来向外发射950nm红外光束。 2.2 硬件电路 接口电路如图4所示,J1为红外发射/接收电路的发射信号和接收信号接口,可以用1 0Pi ns排线直接和SPCE061A的10B高8位相连,通过SPCE061A的IOB8输出38kHz的调制波,IOB8输出TimerA PW M脉宽调制输出。载波图如图3所示。 红外信号的调制主要有两种,一种是脉宽调制(PWM),一种是通过脉冲串的时间间隔实现信号调制的脉时调制(PPM),本文采用的方法是PPM。 61板是这个系统的控制核心,红外发射管选用的是由Visay公司生产的TSAL6238,用来发射940nm的红外光束,发射电路主要由电阻电容三极管和红外发射管组成,串行码的发送主要由TimerA定时器,IOB8编程为第二功能是由TimerA控制输出占空比可调的脉宽调制信号APWM0,产生38kHz的载波信号,如图5是38kHz的调制波。串行数据由单片机的串行输出端TXD送出并驱动三极管,利用两个红外发射管将38kHz的载波信号以光脉冲的形式向外发送。串行码为1时,打开输出,为0时,关闭APWM0输出(输出低电平)。用TimerB控制脉冲宽度。 红外发送器工作原理为:串行数据由单片机串行输出端TXD送出并驱动T1管,数位“0”使T1管导通,通过T2管调制成38kHz载波信号,并利用两个红外发射管D1和D2以光脉冲形式向外发送。数位“1”使T1管截止,红外发射管D1和D2不发射红外光。若传送波特率设为1200bps,则每个数位“0”对应32个载波脉冲调制信号时序,如图2所示。 https://www.360docs.net/doc/ce266297.html,提示请看下 图:

单片机的红外通信系统设计

科研训练 题目:单片机的红外通信系统设计指导教师: 学生姓名: 班级学号: 评语和成绩:

摘要: 本文索要介绍的内容就是如何利用单片机,结合红外线器件设计构建出一套简易的红外通信系统,以实现在中短距离内的红外无线通信的功能。与一般红外遥控器不同的是本文通过单片机的编、解码程序来实现红外信号的发收,从而实现红外遥控通信功能。此通信系统经过一定的拓展,完全可以实现通信和各种红外遥控器的功能。 关键字:单片机;红外通信;发射;接收;遥控;接口 Abstract: This paper introduced the content of that how to use for SCM, combined with the infrared device design to construct a simple infrared communication system, in order to realize the infrared wireless communication in short distance within the function. Unlike the general infrared remote control is based on single chip encoding, decoding process to achieve the infrared signal sending and receiving, so as to realize the infrared remote control function. This communication system after a certain development, can achieve communication and various kinds of infrared remote control function. Keywords: single chip; infrared communication; emission; reception; remote control; interface

红外无线通信装置(非常详细的原理)

西南科技大学 自动化专业方向设计报告 设计名称:红外光通信装置 姓名:杨 * * 学号: 2 0 1 0 5 7 8 9 班级:自动 1 0 0 4 班 指导教师:武丽 起止日期: 2013年10月15日--11月9日 西南科技大学信息工程学院制

方向设计任务书 学生班级:自动1004 学生姓名:杨* * 学号:20105789 设计名称:红外光通信装置 起止日期:2013年10月15日---11月9日指导教师:武丽 方向设计学生日志

红外光通信装置 摘要:基于2013年电子设计大赛红外光通信装置题目的要求,设计了具有实际运用价值的红 外光无线扩音装置。该装置由音频放大滤波电路,SPWM音频信号比较调制器,红外载波信号发生器,红外接收器,功率放大电路,LC低通滤波等模块构成。由模拟电路搭建的红外光通信信道传送经过处理的连续的音频信号,并由后级电路还原传送出来的音频信号,让喇叭发出原始音频信号。该系统能够完整的将频率范围为300Hz-8KHz的音频信号通过红外光传送4m以 外并接收还原。 关键词:红外光通信;音频传送;SPWM载波 Design of Infrared Communication Device Abstract:The infrared communication device is based on the National Undergraduate Electronic Design Contest of 2013 , but it has more practical application value . This appliance contains an amplifier , SPWM modulator audio signal comparator , an infrared carrier signal generator , IR receiver , Power amplifier circuit , LC low-pass filter . The analog circuit structures of the infrared light transmitted through the communication channel continuous audio signal processed by the post-stage circuit to restore the audio signal sent out , so that the original audio signal horn . The system can be a complete frequency range of 300Hz-8KHz audio signals transmitted by infrared light and receive reduction up to 4m , temperature detection and transmission display . Keyword: Infrared light transmission ; Audio transmission ; SPWM 0 引言 现在市面上使用较为广泛的无线技术有红外光无线以及无线电技术。无线电技术是通过无线电波传播声音或其他信号的技术,无线电波是在自由空间(包括空气和真空)传播的射频频段的电磁波,频率为300MHz-300GHz的电磁波称为微波,也称为“超高频电磁波”。其特点是:只能进行可视范围内的通信;大气对微波信号的吸收与散射影响较大;主要用于几公里范围内,不适合铺设有线传输介质的情况,而且只能用于点到点的通信,速率也不高,一般为几百Kbps。红外是一种无线通讯方式,可以进行无线数据的传输。自1974年发明以来,得到很普遍的应用,如红外线鼠标,红外线打印机,红外线键盘等等。

红外热成像摄像机原理分析以及应用

红外热成像摄像机原理分析以及应用 随着技术的进步,监控系统已经在各个领域得到了广泛的应用。目前的视频监控系统主要采用可见光摄像机和人工监视、录像相结合的方式进行日常的安全防护,但由于可见光摄像机在恶劣天气或照度较低的条件下,很难滤除干扰得到有用的视频图像,因此使得整个安防系统在夜间或恶劣天气条件下的防范能力大打折扣。 同时,由于现在的视频监控系统仍然依托于人工监视,安保人员需要对监控画面进行24小时不间断的监视、人为对视频图像进行分析报警,否则系统就起不到实时报警的功能,而更多的只是事发后取证的作用。从整体上来说,目前的视频监控系统还处于在半天时、半天候和半自动状态。 在伊拉克战争中,美军平均每个士兵拥有1.7台红外热像仪产品 一项统计数据表明,世界上47%的暴力犯罪案件发生在晚6点到早6点之间。原因很简单,在夜幕的笼罩下,犯罪分子容易隐蔽,犯罪场面也不容易被看见——黑暗掩盖了犯罪行为。即使安装了一般的视频监控系统,也有可能让犯罪分子逃之夭夭。因此,如何提高在“夜黑风高”的案件高发时间段的自动报警防范能力,成为安防系统当成亟待解决的难题之一。 在这种情况下,红外热成像技术以其作用距离远、穿透能力强、能识别隐蔽目标等优势被引入安防领域,成为监控领域的一份子。 热成像摄像机的监控原理 在自然界中一切温度高于绝对零度(-273.16摄氏度)的物体都不断地辐射着红外线,这种现象称为热辐射。红外线是一种人眼不可见的光波,无论白天黑夜,物体都会辐射红外线,但红外线不论强弱,人们都看不到。 热成像摄像机(又叫热像仪)就是利用红外探测器、光学成像物镜接收被测目标的红外辐射信号,经过红外光学系统红外探测器的光敏源上利用电子扫描电路对被测物的红外热像进行扫描转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热图像。利用这种原理制成的仪器为热成像摄像机。它通过探测微小的温度差别,将温度差异转换成实时的视频图像,显示在监视器上。与其他需要少量光线产生影像的夜视系统不同,其完全不需要任何光,这使它成为人们在全黑环境、黑暗的夜晚监控的完美工具。

红外物理特性及应用参考资料

红外物理特性及应用

红外通信特性实验 波长范围在0.75~1000微米的电磁波称为红外波,对红外频谱的研究历来是基础研究的重要组成部分。对热辐射的深入研究导致普朗克量子理论的创立。对原子与分子的红外光谱研究,帮助我们洞察它们的电子,振动,旋转的能级结构,并成为材料分析的重要工具。对红外材料的性质,如吸收、发射、反射率、折射率、电光系数等参数的研究,为它们在各个领域的应用研究奠定了基础。 现代红外技术的成熟已经打开了一系列应用的大门。例如红外通信,红外污染监测,红外跟踪,红外报警,红外治疗,红外控制,利用红外成像原理的各种空间监视传感器,机载传感器,房屋安全系统,夜视仪等。 光纤通信早已成为固定通信网的主要传输技术,目前正积极研究将光通信用于微波通信一直占据的宽带无线通信领域。无论光纤通信还是无线光通信,用的都是红外光。这是因为,光纤通信中,由石英材料构成的光纤在0.8~1.7微米的波段范围内有几个抵损耗区,而无线大气通信中,考虑到大气对光波的吸收,散射损耗及避开太阳光散射形成的背景辐射,一般在0.81~0.86,1.55~1.6微米两个波段范围内选择通信波长。因此,一般所称的光通信实际就是红外通信。 【实验原理】 1、红外通信 在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。红外波长比微波短得多,用红外波作载波,其潜在的通信容量是微波通信无法比拟的,红外通信就是用红外波作载波的通信方式。 红外传输的介质可以是光纤或空间,本实验采用空间传输。 2、红外材料 光在光学介质中传播时,由于材料的吸收,散射,会使光波在传播过程中逐渐衰减,对于确定的介质,光的衰减dI 与材料的衰减系数α ,光强I ,传播距离dx 成正比: dI Idx α=- (1) 对上式积分,可得: L o I I e α-= (2) 上式中L 为材料的厚度。 材料的衰减系数是由材料本身的结构及性质决定的,不同的波长衰减系数不同。普通的光学材料由于在红外波段衰减较大,通常并不适用于红外波段。常用的红外光学材料包括:石英晶体及石英玻璃,它在0.14~4.5微米的波长范围内都有较高的透射率。半导体材料及它们的化合物如锗,硅,金刚石,氮化硅,碳化硅,砷化镓,磷化镓。氟化物晶体如氟化钙,氟化镁。氧化物陶瓷如蓝宝石单晶(Al 2O 3),尖晶石(MgAl 2O 4),氮氧化铝,氧化镁,氧化钇,氧化锆。还有硫化锌,硒化锌,以及一些硫化物玻璃,锗硫系玻璃等。 光波在不同折射率的介质表面会反射,入射角为零或入射角很小时反射率:

基于单片机的主从红外通信系统设计

基于单片机的主从红外通信系统设计 1、引言 红外通信是目前比较常用的一种无线数据传输手段,其具有无污染、信息传输稳定、信息安全性高以及安装使用方便等优点,并且可以在很多场合应用,如家电产品,工业控制、娱乐设施等领域。红外通信是利用950nm近红外波段的红外线作为传递信息的载体,通过红外光在空中的传播来传递信息,由红外发射器和接收器实现。发射端将二进制数字信号调制成某一频率的脉冲序列,经电光转换电路,驱动红外发射管以光脉冲的形式发送到空中。接收端将接收到的光脉冲转换成电信号,再经解调和译码后恢复出原二进制数字信号。本文设计了一种基于单片机PIC18F248的主从式红外通信系统,主要设计了红外接口电路以及主机和从机通信软件流程。 2、系统硬件电路设计 在主从式红外通信系统中,主机及从机的红外发射电路相同,红外线的载波频率都为38KHz,在同一时间内,可以是主机发射,从机接收;或者从机发射,主机接收。 2.1 红外发射电路设计 红外发射器电路主要由单片机,驱动管Q1和Q2、红外发射管D1等组成,电路如下: 红外发射器工作原理为:单片机通过I/O端口控制整个发射过程。其中,红外载波信号采用频率为38KHz的方波,由PIC18F248的*模块的PWM功能实现,并由*1端口传输到三极管T2的基极。待发送到数据由单片机的TX端口以串行方式送出并驱动三极管Q1,当TX为“0”时使Q1管导通,通过Q2管采用脉宽调制(PWM)方式调制成38KHz的载波信号,并由红外发射管D1以光脉冲的形式向外发送。当TX为“1”时使Q1管截止,Q2管也截止,连接Q1和Q2的两个上拉电阻R1和R3把三极管的基极拉成高电平,分别保证两个三极管可靠截止,红外发射管D1不发射红外光。因此通过待发送数据的“0”或“1”就可控制调制后两个脉冲串之间的时间间隔,即调制PWM的占空比。比如若传送数据的波特率为1200bps,则每个数位“0”就对应32个载波脉冲调制信号。红外发射管D1采用TSAL6200红外发射二极管,其实现将电信号转变成一定频率的红外光信号,它发射一种时断时续的高频红外脉冲信号,由于脉冲串时间长度是恒定的,根据脉冲串之间的间隔大小就可以确定传输的数据是“0”还是“1”。

基于红外的数据通信模块的设计与实现

技术创新 中文核心期刊《微计算机信息》(嵌入式与SOC)2008年第24卷第6-2期 360元/年邮局订阅号:82-946 《现场总线技术应用200例》 电子设计 基于红外的数据通信模块的设计与实现 DesignandRealizationofDataCommunicationModuleBasedonRnfrared (军械工程学院) 陈海胡建旺祝爱民 CHENHaiHUJian-wangZHUAi-min 摘要:红外通讯采用点对点的数据传输协议,是目前国际上普遍采用的无线传输技术。文章概述了红外通信的基本原理和IrDA标准的规范和协议,完成了红外收发器具体的硬件电路设计,并且详细说明了发射和接收的工作原理,最后给出了红外通信的程序流程图,并指出在设计过程中应该注意的一些问题。关键词:红外通信;单片机;IrDA;无线通讯;调制解调中图分类号:TP219文献标识码:A Abstract:Thecommunicationtechniqueofinfraredisapointtopointprotocoltodeliverthedata,it’susedwidelyintheworldatpresent.TheessentialprincipleofinfraredcommunicationandthecriterionandtheprotocolofIrDAaresummarizedinthisarticle;thehardwarecircuitdesignoftheinfraredtransceiverisaccomplished,theworkprincipleofsendingandrecivingisexplainedinde-tail,theprogrammeflowchartofinfraredcommunicationisintrouduced,andsomequestionsarepointedinthedesigning. Keywords:infraredcommunication;singlechip;InfraredDataAssociation;wirelesscommnication;modulationanddemodulation 文章编号:1008-0570(2008)06-2-0288-02 1引言 红外通讯采用点对点的数据传输协议,是目前国际上普遍采用的无线传输技术。它采用红外波段内的近红外线,波长在 0.75um至25um之间,通讯距离一般在0到1米之间,它的频率 高于微波而低于可见光。由于这种通信方式具有可靠性高、保密性好、设计成本低、连接方便、简单易用、结构紧凑等特点,在电子产品中具有广阔的发展潜力。目前,已被广泛应用于遥控遥测、智能仪表、计算机终端、电话机、移动电话、寻呼机、电子商务、数字照相机、工业设备和医疗设备等领域。 2红外通信原理及标准 红外通信是利用950nm近红外波段的红外线为传递信息的载体,即通信信道。发送端用脉时调制(PPM)方式,将二进制数字信号调制成某一频率的脉冲序列,并利用该脉冲序列驱动红外线发射管以光脉冲的形式向外发射红外光,而接收端将接收到的光脉冲信号转换成电信号,在经过放大、滤波等处理后送给解调电路进行解调,还原成二进制数字电信号后输出。简而言之,红外通信的实质就是对二进制数字信号进行调制与解调,以便利用红外信道进行传输,而红外通信接口就是针对红外信道的调制解调器。 IRDA标准包括三个基本规范和协议:物理层规范(PhysicalLayerLinkSpecification),连接建立协议(LinkAccessProtocol:Ir- LAP)和连接管理协议(LinkManagementProtocol:IrLMP)。 物理层规范制定了红外通讯硬件设计上的目标和要求,IrLAP和IrLMP为两个软件层,负责对连接进行设置、管理和维护。 3硬件设计 红外收发器由发射和接收两部分组成,如图1所示图1红外收发电路原理图 3.1发射部分 480kHZ陶瓷振子与74LS04组成的振荡器,经74LS290十二分频后形成40kHZ载波(占空比约1/3)。STB为发送选通端(低电平有效)用于控制收发器状态。当该信号为高电平时,禁止发送红外信号;若STB为低电平时,反向后的异步串行数据调制40kHZ载波,然后推动达林顿管,使红外二极管发送信号。异步通信时,由于数据发送端(TXD)在信号状态时为“1”,所以也可将STB端直接接地,仅由TXD来控制信号发送。红外发射二极管采用HG505中功率发射管,峰值发射波长为930nm,辐射功率为51mV。 3.2接收部分 采用专用线性放大集成电路CXA20106。它采用8脚单列直插式塑料封装,内部包括自动偏置控制电路、前置放大、限幅 放大、带通滤波、峰值检波、积分比较和施密特整形输出电路等。它具有自动偏压控制电路(ABLC),以均衡放大强弱不同的信号,再配合少量外接元件,能完成对红外信号遥控接收与处理的全部功能。红外信号经光敏二极管进行光电转换后,在IC内部经过两级放大、带通滤波、峰值检波和积分整形后,由第六脚输出串行数据信号。红外接收二极管家电采用PH302,其光敏范围 750~1000nm,受光面积9mm2,实际应用中采用4片并联方式增大接收面积。接收部分由于放大倍数高,必须全金属屏蔽以免拾 陈海:硕士 基金资助:总装科研项目(编号不公开) 288- -

红外热成像仪的介绍及工作原理

1.红外热成像技术 红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。红外成像是以设备的热状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。由于设备的热像图是设备运行状态下热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征。因此采用红外成像技术可以通过对设备热像图的分析来诊断设备的状态及其隐患缺陷。 2.什么是红外热像图 一般我们人眼能够感受到的可见光波长为:0.38—0.78微米。通常我们将比0.78微米长的电磁波,称为红外线。自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。 同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。 3.红外热像仪的原理 热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,热图像的上面的不同颜色代表被测物体的不同温度。红外热像仪的非接触式测温方式,能够在不影响轧辊工作的同时测量其实时温度,并随时采取降温措施。

红外热像仪的原理 4.红外热成像的特点 自然界所有温度在绝对零度(-273℃)以上的物体,都会发出红外线,红外线(或称热辐射)是自然界中存在最为广泛的辐射。大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的红外线却是透明的。因此,这两个波段被称为红外线的“大气窗口”。我们利用这两个窗口,可以在完全无光的夜晚,或是在烟云密布的恶劣环境,能够清晰地观察到前方的情况。 5.在线式红外热像仪 采用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热像仪。

红外控制的RS_485通信系统设计说明

目录 第1章引言 (3) 1.1RS-485通信技术的发展 (3) 1.2设计任务与方案 (3) 1.2.1设计任务 (3) 1.2.2系统总体设计方案 (4) 第2章系统硬件设计 (4) 2.1硬件系统的结构 (4) 2.2系统部件功能描述 (5) 2.2.1AT89C51单片机 (5) 2.2.2单片机最小应用系统 (7) 2.2.3红外接收 (10) 2.2.4MAX485接口电路 (11) 2.3RS-485串口标准 (13) 第3章系统的软件设计 (14) 3.1MCS-51汇编语言简介 (14) 3.2串行通信原理 (15) 3.2.1数据通信的基本概念 (15) 3.2.2串行通信的过程 (15) 3.2.3串行通信协议 (16) 3.3串行通信程序设计 (17) 3.3.1串行口的结构和功能 (17) 3.3.2选择串行口工作方式 (17) 3.3.3串行口波特率的设置 (18) 3.3.4初始化串口 (19) 3.3.5程序的编制 (19) 3.4红外通信原理 (20) 3.4.1红外发送原理 (20) 3.4.2红外解码原理 (21) 3.5红外解码程序设计 (22) 3.5.1延时子程序 (22) 3.5.2解码子程序 (22) 3.6RS-485程序设计流程图 (24) 3.6.1数据接收部分 (25) 3.6.2命令执行部分 (25) 3.6.3数据发送部分 (26) 第4章系统的调试 (28)

4.1WAVE6000软件简介 (28) 4.2程序调试 (28) 4.3系统硬件的调试 (30) 总结 (31) 致 (32) 参考文献 (32) 附录一 (33) 附录二 (34)

红外通讯原理及实现详解

红外通讯原理及实现详解 红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。 1红外通信原理介绍 红外通讯通过使用红外光进行通信,发送设备将电信号转成光信号,接收设备则再将光信号还原成电信号,红外收发系统的框图如图所示: 图 1 红外收发系统 目前基于红外通讯的通讯协议有上百种,这些协议大同小异,下面以飞利蒲的RC5协议为例来进行介绍。同别的红外协议一样,飞利蒲的RC5协议也是由下列几部分组成: 1 .1键码 之所以定义键码就是为了规范设计,至少保证飞利蒲公司内部的红外通信设备之间可以互通,不会出现混乱的情况,当然大家也可以自个定义,这有点像TCP/IP中的应用层,你可以自个定义一个协议,也可以用标准定义好的协议。键码是基于数字信号二进制的0/1而言的。比如0x12,换成二进制就是0b0001 0010。飞利蒲定义的键码如下所示。 1)地址设备对照表(下表中的不同地址用于给不同类型的设备使用) RC5 Address Device RC5 Address Device $00 - 0 TV1 |$10 - 16 Pre-amp $01 - 1 TV2 |$11 - 17 Tuner $02 - 2 Teletext |$12 - 18 Recorder1 $03 - 3 Video |$13 - 19 Pre-amp

$04 - 4 LV1 |$14 - 20 CD Player $05 - 5 VCR1 |$15 - 21 Phono $06 - 6 VCR2 |$16 - 22 SatA $07 - 7 Experimental |$17 - 23 Recorder2 $08 - 8 Sat1 |$18 - 24 $09 - 9 Camera |$19 - 25 $0A - 10 Sat2 |$1A - 26 CDR $0B - 11 |$1B - 27 $0C - 12 CDV |$1C - 28 $0D - 13 Camcorder |$1D - 29 Lighting $0E - 14 |$1E - 30 Lighting $0F - 15 |$1F - 31 Phone 2)命令功能对照表(下表中定应义了常用的遥控的命令) RC5 Command | TV Command | VCR Command ------------------------------------------------------ $00 - 0 | 1 | 1 $01 - 1 | 2 | 2 $02 - 2 | 2 | 2 $03 - 3 | 3 | 3 $04 - 4 | 4 | 4 $05 - 5 | 5 | 5 $06 - 6 | 6 | 6 $07 - 7 | 7 | 7 $08 - 8 | 8 | 8 $09 - 9 | 9 | 9 $0C - 12 | Standby Standby | $10 - 16 | Volume + | $11 - 17 | Volume - | $12 - 18 | Brightness + | $13 - 19 | Brightness - | $32 - 50 | | Fast Rewind $34 - 52 | | Fast Forward $35 - 53 | | Play $36 - 54 | | Stop $37 - 55 | | Recording ---------------------------------------------------------1 .2编码

红外基本原理介绍

自然界中的一切物体,只要它的温度高于绝对温度(-273℃)就存在分子和原子无规则的运动,其表面就不断地辐射红外线。红外线是一种电磁波,它的波长范围为0.78 ~ 1000um,不为人眼所见。红外成像设备就是探测这种物体表面辐射的不为人眼所见的红外线的设备。它反映物体表面的红外辐射场,即温度场。 注意:红外成像设备只能反映物体表面的温度场。 对于电力设备,红外检测与故障诊断的基本原理就是通过探测被诊断设备表面的红外辐射信号,从而获得设备的热状态特征,并根据这种热状态及适当的判据,作出设备有无故障及故障属性、出现位置和严重程度的诊断判别。 为了深入理解电力设备故障的红外诊断原理,更好的检测设备故障,下面将初步讨论一下电力设备热状态与其产生的红外辐射信号之间的关系和规律、影响因素和DL500E的工作原理。 一.红外辐射的发射及其规律 (一)黑体的红外辐射规律 所谓黑体,简单讲就是在任何情况下对一切波长的入射辐射吸收率都等于1的物体,也就是说全吸收。显然,因为自然界中实际存在的任何物体对不同波长的入射辐射都有一定的反射(吸收率不等于1),所以,黑体只是人们抽象出来的一种理想化的物体模型。但黑体热辐射的基本规律是红外研究及应用的基础,它揭示了黑体发射的红外热辐射随温度及波长变化的定量关系。 下面,我着重介绍其中的三个基本定律。 1.辐射的光谱分布规律-普朗克辐射定律 一个绝对温度为T(K)的黑体,单位表面积在波长λ附近单位波长间隔内向整个半球空间发射的辐射功率(简称为光谱辐射度)Mλb (T)与波长λ、温度T满足下列关系: Mλb (T)=C1λ-5[EXP(C2/λT)-1]-1 式中C1-第一辐射常数,C1=2πhc2=3.7415×108w·m-2·um4 C2-第二辐射常数,C2=hc/k=1.43879×104um·k 普朗克辐射定律是所有定量计算红外辐射的基础,介绍起来比较抽象,这里就不仔细讲了。2.辐射功率随温度的变化规律-斯蒂芬-玻耳兹曼定律 斯蒂芬-玻耳兹曼定律描述的是黑体单位表面积向整个半球空间发射的所有波长的总辐射功率Mb(T)(简称为全辐射度)随其温度的变化规律。因此,该定律为普朗克辐射定律对波长积分得到: Mb(T)=∫0∞Mλb(T)dλ=σT4 式中σ=π4C1/(15C24)=5.6697×10-8w/(m2·k4),称为斯蒂芬-玻耳兹曼常数。 斯蒂芬-玻耳兹曼定律表明,凡是温度高于开氏零度的物体都会自发地向外发射红外热辐射,而且,黑体单位表面积发射的总辐射功率与开氏温度的四次方成正比。而且,只要当温度有较小变化时,就将会引起物体发射的辐射功率很大变化。 那么,我们可以想象一下,如果能探测到黑体的单位表面积发射的总辐射功率,不是就能确定黑体的温度了吗?因此,斯蒂芬-玻耳兹曼定律是所有红外测温的基础。

基于51单片机控制红外通信

红外通信原理 红外遥控有发送和接收两个组成部分。发送端采用单片机将待发送的二进制信号编码调制为一系列的脉冲串信号,通过红外发射管发射红外信号。红外接收完成对红外信号的接收、放大、检波、整形,并解调出遥控编码脉冲。为了减少干扰,采用的是价格便宜性能可靠的一体化红外接收头(HS0038,它接收红外信号频率为38kHz,周期约26μs) 接收红外信号,它同时对信号进行放大、检波、整形得到TTL 电平的编码信号,再送给单片机,经单片机解码并执行去控制相关对象。具体实现过程如下: (在这里特别强调:编码与解码是一对逆过程,不仅在原理上是一对逆过程,在码的发收过程也是互反的,即以前发射端原始信号是高电平,那接收头输出的就是低电平,反之亦然。因此为了保证解码过程简单方便,在编码时应该直接换算成其反码。)

1.红外发射部分: 下图为红外发射部分的电路拟图: 编码过程: (1) 二进制信号的调制 二进制信号的调制由单片机来完成,它把编码后的二进制信号调制成频率为38kHz的间断脉冲串(用定时器来完成),相当于用二进制信号的编码乘以频率为38kHz的脉冲信号得到的间断脉冲串,即是调制后用于红外发射二极管发送的信号。 (2)PPM编码

这种遥控编码具有以下特征: ○1遥控编码脉冲由前导码、16 位地址码(8位地址码、8 位地址码的反码)和16 位操作码(8 位操作码、8 位操作码的反码)组成。前导码:是一个遥控码的起始部分,由一个9ms的高电平( 起始码) 和一个4. 5ms的低电平( 结果码)组成,作为接受数据的准备脉冲。16位地址码:能区别不同的红外遥控设备,防止不同机种遥控码互相干扰。 16 位操作码:用来执行不同的操作。 ○2采用脉宽调制的串行码,以脉宽为0.56ms、间隔0.56ms、周期为1.12ms的组合表示二进制的“0”;以脉宽为1.68ms、间隔0.56ms、周期为2.24ms的组合表示二进制的“1”。 (3)发送程序 #include

热成像技术原理及其应用

热成像技术原理及其应用(参考) 第一章导言 1 热成像系统技术基础 热成像系统能把物体发射的红外辐射(红外光)转变成可见光,从而将人类的视觉由可见光扩大到不可见红外光。人的眼睛不能响应0.4~0.7μm以外的光,要使人眼在夜间看东西象白天一样,使红外转换为可见景物的视觉判读成为可能,需目标相对背景有显著的发射率、温差和与大气窗口相一致的红外辐射传输通道;还需要一种光电器件能响应物体发射出的红外光子。 人眼是接受可见光辐射的最好敏感元件:眼睛的光谱响应范围0.4~0.7μm,正好符合太阳光源的输出峰值,这个波段集中了38%的太阳辐射能量,且地球上的物体具有良好的反射度;眼睛是一种理想的可见光波段量子噪声限探测器(量子能级的低噪声);人眼对非可见红外光有很好的滤波功能。 自然可见图像主要是由反射和反射度差产生。相反热像仪对红外光响应所形成的热图像主要是由发射率差产生。 目前热像仪工作的三个红外辐射传输的窗口是1μm~3μm,3μm~5μm,8μm~14μm。 2 热成像系统技术发展简述 最初的热成像系统是circa温度记录仪(1930);

1952年美国陆军制成第一台自动温度记录仪(采用双轴扫描和测辐射热探测器,照相胶卷记录图像),以后10年主要是民用; 1956年美国空军研制了第一台实时FLIR航扫仪(AN/A-AS-3),后发展改进研制了第一台二维图像的热像仪XA-1(单元扫描); 1960年Perkin-Elmer公司为陆军研制了地面FLIR(锑化铟、双折射棱镜扫描,5°视场、瞬时视场1mrad、帧频0.2); 1960~1974由空军和德克萨斯仪器公司及海军和休斯飞机公司分别制定扫描FLIR研制计划,研制完成60多种FLIR,产品几百件(试用于对北越轰炸); 到90年代初扫描型热像仪发展至顶盛,美国发展了采用64元、120元、180元制冷MTC探测器的热成像通用组件(以色列120元,英国32元和8条SPRITE探测器)同期世界上生产了约10万台热像仪(1代);80-90年代美国的标准组件计划是第一代红外热像仪(扫描型)发展的标志性事件。 九十年代末美国、法国(SOFRADIR)、英国、以色列相继研制并批量生产了非制冷焦平面探测器、制冷焦平面探测器,至此引发了一场热成像技术的革命,进入了2代热成像技术发展阶段。2000年,美国和法国的焦平面红外探测器产业化,这是第二代红外热像仪(凝视型)发展的标志性事件。2015年,低成本非制冷红外探测器产业化。 3 热成像系统工作原理 基本内容 辐射理论和目标识别 目标辐射的大气传输 热像仪指标体系 高效的红外光学系统 探测器及其工作条件(制冷、真空)

相关文档
最新文档