代谢组学方法与应用(许国旺)张强

代谢组学方法与应用(许国旺)张强
代谢组学方法与应用(许国旺)张强

代谢组学方法与应用(许国旺)张强

第1章绪论

随着人类基因组测序工作的完成,基因功能的研究逐渐成为热点,随之出现了一系列的“组学”研究,包括研究转录过程的转录组学(transcriptomics)、研究某个生物体系中所有蛋白质及其功能的蛋白质组学(proteomics)及研究代

(图1-1)。谢产物的变化及代谢途径的代谢组学(metabolomics或metabonomics)代谢组学是众多组学中的一种,是随着生命科学的发展而发展起来的。与其他组学不同,代谢组学是通过考察生物体系(细胞、组织或生物体)受刺激或扰动后(如将某个特定的基因变异或环境变化后),其代谢产物的变化或其随时间的变化,来研究生物体系的一门科学[1]。所谓代谢组(metabolome)是基因组的下游产物也是最终产物,是一些参与生物体新陈代谢、维持生物体正常功能和生长发育的小分子化合物的集合,主要是相对分子质量小于1000的内源性小分子。代谢组中代谢物的数量因生物物种不同而差异较大,据估计,植物王国中代谢物的数量在200000种以上,单个植物的代谢物数量在5000~25000,甚至简单的拟南芥(Arabidopsisthaliana)也产生约5000种代谢产物,远远多于微生物中的代谢产物(约1500种)和动物中的代谢产物(约2500种)[2]。实际上,在人体和动物中,由于还有共存的微生物代谢、食物及其代谢物本身的再降解,到目前为止,还不能估计出到底有多少种代谢产物,浓度分布范围有7~9个数量级。因此对代谢组学的研究,无论从分析平台、数据处理及其生物解释等方面均面临诸多挑战。本章对代谢组学发展的历史、国内外现状、研究方法、典型应用领域及研究热点等给予了介绍。

1.1代谢组学简介

1.1.1代谢组学发展的时代背景

生命科学是研究生命现象、生命活动的本质、特征和发生、发展规律,以及各种生物之间和生物与环境之间相互关系的科学。自从1953年Watson和Crick 建立了DNA双螺旋结构模型后,生命科学研究的面貌便焕然一新。在此基础上发展的分子生物学使得生命的基本问题,如遗传、发育、疾病和进化等,都能从分子机制上得到诠释。生物学研究进入了对生命现象进行定量描述的阶段。分子生物学的飞速发展极大地推动了人们从分子组成水平对生物系统进行深人

的了解。基因组计划向人们展示了包括大肠杆菌、酵母、线虫、果蝇、小鼠等模式生物以及人类的所有遗传信息的组成,生命的奥秘就存在于这些序列中。技术上的突破使得基因组数据的获得已经不再是生命科学的难点。人类基因组计划的基本完成标志着后基因组时代的到来,在这一时期,基因组功能分析成为生命科学的主要任务,核心思想是以整体和联系的观点来看待生物体内的物质群,研究遗传信息如何由基因经转录向功能蛋白质传递,基因功能如何由其表达产物蛋白质以及代谢产物来体现。继基因组(genome)后、转录组(transcriptome)、蛋白质组(proteome)等相继出现,并相应形成“omics”学说,如转录组学(transcriptom-ics)、蛋白质组学(proteomics)等。但是基因与功能的关系是非常复杂的,还不能用转录组、蛋白质组来表达生物体的全部功能。生物体内存在着十分完备和精细的调控系统以及复杂的新陈代谢网络,它们共同承担着生命活动所需的物质与能量的产生与调节。在这一复杂体系中,既有直接参与物质与能量代谢的糖类、脂肪及其中间代谢物,也有对新陈代谢起重要调节作用的物质。这些物质在体内形成相互关联的代谢网络,基因突变、饮食、环境因素等都会引起这一网络中某个或某些代谢途径的变化,这类物质的变化可以反映机体的状态。起调节作用的代谢物,从生理功能上来说包括神经递质、激素和细胞信号转导分子等,从化学组成上来说包括多肽、氨基酸及其衍生物、胺类物质、脂类物质和金属离子等,这些调节物质绝大部分都是小分子物质,在植物与微生物中还存在着大量的次生代谢产物。这些分子广泛分布于体内,对多种生理活动都具有普遍和多样的调节作用,仅微量存在就能够发挥很强的生物效应。不同活性的分子或协同、或拮抗、或修饰而相互影响,在生物学效应以及信号转导和基因表达调控上形成复杂的网络,承担着维持机体稳态的重要使命,是神经内分泌和免疫网络调节的物质基础和自稳态调节的最重要成分。转录组、蛋白质组的研究很难涵盖这些非常活跃而且非常重要的生命活性物质,然而对这类物质的生理和病理生理学意义如果不能充分认识,就不可能真正阐明生命功能活动的本质。传统研究方法是以生理学和药理学实验方法为主,缺乏高通量的研究技术,难以建立生物小分子物质复杂体系的研究模式。在这种情况下,代谢组(metabolome)和代谢组学(metabolomics或metabonomics)应运而生了,并成为系统生物学的一个重要突破口[3],代谢处于

生命活动调控的末端,因此代谢组学比基因组学、蛋白质组学更接近表型。

从广义的代谢组学的意义上来说,代谢组学的历史是相当长的,很早以前人们就已经对生物样品中的某些靶标化合物进行分析以了解生命机体的状态。目前代谢组学所采用的一些技术平台,如NMR和色谱技术以及质谱技术也有比较长的应用历史。严格意义上的代谢组学(对限定条件下的特定生物样品中所有代谢组分的定性和定量)从提出到现在只有短短数年的时间。现在一般认为代谢组学源于代谢轮廓(metabolicprofiling)分析,在代谢轮廓分析中体现了代谢组学的“尽可能多地分析生物样本中的代谢产物”这一理念的萌芽。在这里,我们对从代谢轮廓分析发展到代谢组学这一过程[4](图1-2)做一简单的介绍。

早在20世纪70年代初,Baylor医学院就发表了有关代谢轮廓分析方面的论文,在他们的工作中采用了GC-MS的方法对多种类固醇、有机酸以及尿中药物的代谢物进行了分析,并将这种多组分分析的方法称为代谢轮廓分析,开创了对复杂样品进行代谢轮廓分析的先河。此后代谢轮廓分析广泛应用于血、尿等生物样本中代谢物的定性与定量分析,以对疾病进行筛选和诊断。在临床上使用GC-MS的方法来诊断疾病的方法一直沿用到今天。紧接着,人们把重点主要放在分析的自动化上,并将GC的方法用于其他类型化合物的分析。进入20世纪80年代,人们开始使用高效液相色谱和核磁共振的技术来进行代谢轮廓的分析,如1982年,荷兰应用科学研究所(TNO)的vanderGreef[5]在国际上首先采用质谱对尿中代谢指纹进行研究。1983年,Sadler、Buckingham和Nicholson 发表了第一个有关全血和血浆的1H-NMR谱[6]。在1986年,色谱杂志Journal of Chromatography发表了一期有关代谢轮廊(metabolic profiling)分析的专辑。进入90年代,代谢轮廓分析技术一直平稳发展,每年都有10~15篇的论文发表,不过这一时期人们的目标更多地集中于某些特定的标靶化合物上。在90年代初,Sauter等人用基于GC-MS代谢轮廓分析的方法研究了不同除草剂对大麦的影响,这种用代谢轮廓分析来研究各种因素对生物功能的影响的研究思路随即被人们认可。1997年,Steven Oliver研究小组提出了通过对代谢产物的数量和定性来评估酵母基因的遗传功能及其冗余度,并率先提出了代谢组的概念[7]。1999

年,J.Nicholson等提出metabonomics的概念[8],并在疾病诊断、药物筛选等方面做了大量卓有成效的工作[1,9~11]。接着,德国的Max-Planck-Institut的科学家们开始了植物代谢组学的研究[12],使代谢组学得到了极大的充实。

代谢组学的特点为:

(1)关注内源化合物。

(2)对生物体系中的小分子化合物进行定性定量研究。

(3)上述化合物的上调和下调指示了与疾病、毒性、基因修饰或环境因子的影响。

(4)上述内源性化合物的知识可以被用于疾病诊断和药物筛选。

与转录组学和蛋白质组学比较,代谢组学有以下优点[13]:

(1)基因和蛋白质表达的微小变化会在代谢物上得到放大,从而使检测更容易。(2)代谢组学的研究不需建立全基因组测序及大量表达序列标签(EST)的数据库。

(3)代谢物的种类要远小于基因和蛋白质的数目(每个组织中大约为1〇3数量级,即使在最小的细菌基因组中也有几千个基因)。

(4)研究中采用的技术更通用,这是因为给定的代谢物在每个组织中都是一样的缘故。

代谢组学是近几年才发展的一门新兴的技术,如何对这种技术进行命名曾经有争议,国际上存在metabolomics和metabonomics两个词汇,一般认为,metabolomics是通过考察生物体系受刺激或扰动后(如将某个特定的基因变异或环境变化后)代谢产物的变化或其随时间的变化,来研究生物体系的代谢途径的一种技术。而metabonomics 是生物体对病理生理刺激或基因修饰产生的代谢物质的质和量的动态变化的研究。前者一般以细胞作研究对象,后者则更注重动物的体液和组织。在植物、微生物领域一般用metabolomics,在药物研究和疾病诊断中,一般用metabonomics。现在这两个定义已经模糊化[6],没有特别的区分。

1.1.2代谢组学研究现状

目前,代谢组学正日益成为生命科学研究的重点之一,在世界范围越来越多的科学工作者已加入到代谢组学的研究中。这可以从以下几个方面体现。

1.1.

2.1 有关代谢组学的文献数量增长迅速,学术活动活跃

“Web of knowledge”是检索科学文献最好的网站之一,在该网站以metabolomics or metabonomics 和metabolic profiling 为主题词进行检索,可得图1-3。以metabolomics or metabonomics 检索可得1950 篇,以metabolic profiling 检索可得4581 篇(2008 年 1 月 5 日)。类似地,从“Web of knowledge”使用proteomics 和metabolome 分别检索到总文献9361篇和1000篇(图1-4),发现引用次数分别为112 566和8355,平均每篇引用分别为12. 02和8.35,h指数分别为113和39。从中可知,尽管代谢组学比较年轻,是新兴技术,文献的总量不多,但与蛋白质组学相比,它们具有非常类似的发展趋势。

代谢组学的学术活动也在蓬勃进行,2001年12月在美国举行了题为“Metabolic Profiling: Pathways in Discovery”的专题会议,一年后(2002年11月)在加利福尼亚州召开的系统组学国际会议也特别强调了代谢组学。有关植物代谢组学方面的会议更多,2002年4月、2003年4月、2004年6月及2006年7月分别在荷兰、德国、美国和英国举行了第一届、第二届、第三届和第四届植物代谢组学国际会议,会议就分析技术的发展、代谢数据的生物信息和数据统计分析、标准化及数据库、代谢组学在解决生物技术问题中的作用和发展农作物等方面进行了广泛的探讨。2008年7月,国际植物代谢组学会议将在日本的横滨召开。

为与代谢组学的迅猛发展相适应,国际代谢组学学会(https://www.360docs.net/doc/ce5064906.html,/)应运而生,并创刊了专业杂志Metabolomics (https://www.360docs.net/doc/ce5064906.html,/)。2005年6月在日本召开了第一届代谢组学学会的国际会议(The First International Conference of the Metabolomics Society)。在取得成功的基础上,2006 年和2007 年分别在美国和英国召开了第二届、第三届代谢组学学会的国际会议。这些会议的召开加速了代谢组学的发展。

国内在这一领域也紧跟国际前沿,中国科学院大连化学物理研究所在2001年学科规划时就将代谢组学列为中国科学院知识创新工程(二期)重要方向予以支持。自2003年较全面地介绍代谢组学的综述发表后[14],又陆续有许多综述性的文章发表,内容涉及代谢组学的技术平台以及在医药、疾病、植物学等诸

多方面的应用[15~18]。2003 年9月,中国科学院生物局在上海召开了“植物、微生物的代谢组学、代谢工程”学术研讨会。2004年10月10~11日在上海威斯汀大饭店,中国科学院大连化学物理研究所和美国Waters公司合作举办的代谢组学高层研讨会及技术报告会隆重举行,英国伦敦帝国理工学院的Jeremy Nicholson教授受邀首次访问中国。此次研讨会的成功召开,进一步拉近了中国代谢组学与国际的距离,也标志着中国科学院大连化学物理研究所和美国Waters公司“代谢组学联合实验室”的正式运行。2004年11月,中国科学院启动了知识创新方向性项目“植物、微生物代谢组学的初步研究”。2004年12月18日,天津药物研究院与天津大学共同主办的“代谢物组学与药物研究高层研讨会”在天津大学化工学院举行,就“代谢物组学与重大疾病药物治疗相关基础和应用研究”进行了深入探讨。2005年4月5~6日,Waters公司首届制药技术论坛在上海虹桥宾馆召开,Jeremy Nicholson教授和许国旺研究员等做了关于代谢组学、新药发现和研究等方面的报告,探寻代谢组学脉动对制药业的深层影响及其对中草药开发方向的揭示[19]。在这期间,国内众多科研机构也纷纷加入代谢组学研究的行列。2005年,许国旺受Springer Link邀请,正式成为Metabolomics杂志编委。在“大连化学物理研究所科学论坛(DICP SYMPOSIUM)专项基金”资助下,中国科学院大连化学物理研究所分别在2005年4月和2006年9月组织了“现代分离/分析化学和代谢组学”和“分析生物化学和中医药代谢组学”科学论坛,邀请了数十位来自英国、美国、德国、荷兰、日本、比利时、中国、中国香港、中国澳门等国家和地区的著名专家和学者参加。在国家有关部门和单位的配合下,2006年9月13~14日在中国科学院大连化学物理研究所召开了为期2天的主题为“医学代谢组学”的第284次香山科学会议,国内数家相关研究机构、大专院校和国外多个从事代谢组学研究的团体近50余位专家学者应邀出席。由中国工程院医药卫生学部等主办的2007年“环渤海医药发展前沿论坛”暨“代谢组学与中药研究”调研汇报会于2007年12月21~22日在天津举行,在刘昌孝、张伯礼和杨胜利三位院士的组织下,中药代谢组学研究的部分优势单位(中国科学院大连化学物理研究所、天津药物研究院、上海交通大学、中国药科大学、浙江大学、中国科学院武汉物理与数学研究所、天津中医药大学、沈阳药科大学等)的专家就代谢组学的技术平台、

代谢组学的研究方法和研究流程

代谢组学的研究方法和研究流程分子微生物学112300003林兵 随着人类基因组计划等重大科学项目的实施,基因组学、转录组学及蛋白质组学在研究人类生命科学的过程中发挥了重要的作用,与此同时, 代谢组学(metabolomics)在20世纪90年代中期产生并迅速地发展起来,与基因组学、转录组学、蛋白质组学共同组成系统生物学。基因组学、转录组学、蛋白质组学和代谢组学等各种组学0在生命科学领域中发挥了重要的作用,它们分别从调控生命过程的不同层面进行研究, 使人们能够从分子水平研究生命现象, 探讨生命的本质, 逐步系统地认识生命发展的规律.这些组学手段加上生物信息学, 成为系统生物学的重要组成部分。 代谢组学的出现和发展是必要的, 同时也是必须的。对于基因组学和蛋白质组学在生命科学研究中的缺点和不足, 代谢组学正好可以进行弥补。代谢组学研究的是生命个体对外源性物质(药物或毒物)的刺激、环境变化或遗传修饰所做出的所有代谢应答, 并且检测这种应答的全貌及其动态变化。代谢组学方法为生命科学的发展提供了有力的现代化实验技术手段, 同时也为新药临床前安全性评价与实践提供了新的技术支持与保障. 1 代谢组学的概念及发展 代谢组学最初是由英国帝国理工大学Jeremy N icholson教授提出的,他认为代谢组学是将人体作为一个完整的系统,机体的生理病理过程作为一个动态的系统来研究, 并且将代谢组学定义为生物体对病理生理或基因修饰等刺激产生的代谢物质动态应答的定量测定。2000年,德国马普所的Fiehn等提出了代谢组学的概念,但是与N ichols on提出的代谢组学不同, 他是将代谢组学定位为一个静态的过程,也可以称为/代谢物组学, 即对限定条件下的特定生物样品中所有代谢产物的定性定量分析。同时Fiehn还将代谢组学按照研究目的的不同分为4类: 代谢物靶标分析,代谢轮廓(谱)分析, 代谢组学,代谢指纹分析。现在代谢组学在国内外的研究都在迅速地发展, 科学家们对代谢组学这一概念也进行了完善, 作出了科学的定义: 代谢组学是对一个生物系统的细胞在给定时间和条件下所有小分子代谢物质的定性定量分析,从而定量描述生物内源性代谢物质的整体及其对内因和外因变化应答规律的科学。 与基因组学、转录组学、蛋白质组学相同, 代谢组学的主要研究思想是全局观点。与传统的代谢研究相比, 代谢组学融合了物理学、生物学及分析化学等多学科知识, 利用现代化的先进的仪器联用分析技术对机体在特定的条件下整个代谢产物谱的变化进行检测,并通过特殊的多元统计分析方法研究整体的生物学功能状况。由于代谢组学的研究对象是人体或动物体的所有代谢产物, 而这些代谢产物的产生都是由机体的内源性物质发生反应生成的,因此,代谢产物的变化也就揭示了内源性物质或是基因水平的变化,这使研究对象从微观的基因变为宏观的代谢物,宏观代谢表型的研究使得科学研究的对象范围缩小而且更加直观,易于理解, 这点也是代谢组学研究的优势之一. 代谢组学的优势主要包括:对机体损伤小,所得到的信息量大,相对于基因组学和蛋白质组学检测更加容易。由于代谢组学发展的时间较短, 并且由于代谢组学的分析对象是无偏向性的样品中所有的小分子物质,因此对分析手段的要求比较高, 在数据处理和模式识别上也不成熟,存在一些不足之处。同时生物体代谢物组变化快, 稳定性较难控制,当机体的生理和药理效应超敏时,受试物即使没有相关毒性,也可能引起明显的代谢变化,导致假阳性结果。 代谢组学应用领域大致可以分为以下7个方面:

代谢组学技术及在毒理学研究中的应用

代谢组学技术及在毒理学研究中的应用 摘要:代谢组学是定性和定量分析某一生物或细胞所有低分子量代谢产物,从而监测机体或活细胞中化学变化的一门科学,是系统生物学的重要组成部分。作为系统生物学重要组成部分的“代谢组学”,通过考察机体受毒物刺激后体液或组织中代谢物的整体动态变化轨迹,结合模式识别的多元分析方法,快速筛选毒性相关的分子标志物,进而更系统、更全面的揭示毒物作用于机体的典型特征,为相关毒性作用模型建立、环境或药物中毒性化学物的快速高通量筛选以及相关疾病的预防与治疗提供重要的科学依据。本文将从代谢组学的概况、代谢组学在毒理学中的应用进行综述。 关键词:代谢组学;毒理学;应用 “代谢组学”(metabonomics)是指对机体因环境因素刺激、病理生理扰动或遗传修饰等引起的多种代谢指标动态变化的系统性定量检测新方法,该技术广泛用于植物学、药理学、毒理学、遗传学等学科领域。“代谢组学”最早是在1999年由英国的Jeremy Nicholson提出的,是在利用核磁共振技术检测生物体液组成成分的基础上结合模式识别的分析方法发展而来,主要是通过考察生物体系受环境刺激或病理生理扰动后的代谢产物动态变化,分析代谢产物整体的变化轨迹,以此阐述某种病理(生理)过程中所发生的一系列生物学事件及机制。 毒理学是研究毒物与机体交互作用的一门学科,一方面探讨毒物对机体各种组织细胞、分子、特别是生物大分子作用及损害的机制,阐明毒物分子结构与其毒作用之间的关系;另一方面,也研究毒物的体内过程(吸收、分布、代谢转化、排泄)及机体防御体系对毒物作用的影响。“代谢组学”一经提出,其崭新的研究思路和无损伤的整体研究方法在包括药物开发、毒性评价及预测、营养和食物安全性评价等在内的众多领域得到日益广泛的重视和应用。 1. 代谢组学的概况 1.1代谢组学的定义及发展[1] 代谢组学是以组群指标分析为基础,以高通量检测和数据处理为手段,以信息建模与系统整合为目标的系统生物学的一个分支,是继基因组学、转录组学、

代谢组学方法与应用许国旺张强

第1章绪论 随着人类基因组测序工作的完成,基因功能的研究逐渐成为热点,随之出现了一系列的“组学”研究,包括研究转录过程的转录组学(transcriptomics)、研究某个生物体系中所有蛋白质及其功能的蛋白质组学(proteomics)及研究代谢产物的变化及代谢途径的代谢组学(metabolomics或metabonomics)(图1-1)。 代谢组学是众多组学中的一种,是随着生命科学的发展而发展起来的。与其他组学不同,代谢组学是通过考察生物体系(细胞、组织或生物体)受刺激或扰动后(如将某个特定的基因变异或环境变化后),其代谢产物的变化或其随时间的变化,来研究生物体系的一门科学[1]。所谓代谢组(metabolome)是基因组的下游产物也是最终产物,是一些参与生物体新陈代谢、维持生物体正常功能和生长发育的小分子化合物的集合,主要是相对分子质量小于1000的内源性小分子。代谢组中代谢物的数量因生物物种不同而差异较大,据估计,植物王国中代谢物的数量在200000种以上,单个植物的代谢物数量在5000~25000,甚至简单的拟南芥(Arabidopsisthaliana)也产生约5000种代谢产物,远远多于微生物中的代谢产物(约1500种)和动物中的代谢产物(约2500种)[2]。实际上,在人体和动物中,由于还有共存的微生物代谢、食物及其代谢物本身的再降解,到目前为止,还不能估计出到底有多少种代谢产物,浓度分布范围有7~9个数量级。因此对代谢组学的研究,无论从分析平台、数据处理及其生物解释等方面均面临诸多挑战。本章对代谢组学发展的历史、国内外现状、研究方法、典型应用领域及研究热点等给予了介绍。 1.1代谢组学简介 生命科学是研究生命现象、生命活动的本质、特征和发生、发展规律,以及各种生物之间和生物与环境之间相互关系的科学。自从1953年Watson和Crick建立了DNA 双螺旋结构模型后,生命科学研究的面貌便焕然一新。在此基础上发展的分子生物学使得生命的基本问题,如遗传、发育、疾病和进化等,都能从分子机制上得到诠释。生物学研究进入了对生命现象进行定量描述的阶段。分子生物学的飞速发展极大地推动了人们从分子组成水平对生物系统进行深人的了解。基因组计划向人们展示了包括大肠杆菌、酵母、线虫、果蝇、小鼠等模式生物以及人类的所有遗传信息的组成,生命的奥秘就存在于这些序列中。技术上的突破使得基因组数据的获得已经不再是生命

代谢组学的研究现状及其在方剂量效关系中的应用

代谢组学的研究现状及其在方剂量效关系中的应用 邓海山,段金廒*,尚尔鑫,唐于平 (南京中医药大学江苏省方剂研究重点实验室,江苏南京210046) 摘要:代谢组学能够准确、灵敏地反映生物体系的整体功能状态,同时克服了传统中医依赖医生个人经验进行诊疗的不确定性。方剂剂量的变化对其疗效乃至功用的改变都将在代谢组图谱的不同变化趋势中得到体现,从而能够对方剂的量效关系及其物质基础给出全新的解释,获得深入系统的认识。本文综述了代谢组学在中医药现代研究中的应用进展,并针对目前方剂量效关系研究中,方剂的疗效评价只能定性不能定量,导致量效关系不明的困境,提出以代谢组学技术作为方剂的整体疗效评价方法,通过追踪代谢组在病理发展过程中以及药物干预下的变化,开展方剂量效关系研究的新思路。 关键词:代谢组学;量效关系;整体疗效评价;代谢网络;中药 中图分类号:R285文献标识码:A文章编号:167420440(2009)0320198206 R esearch advances of m etabono m ics and app lica ti on i n the study of dose2effect r el a ti onsh ip of prescr i p tion s DENG H ai2shan,D UAN Jin2ao,S HANG Er2xi n,TANG Yu2ping (J i a ngs u K e y La bora tory for TCM F ormula e Research,Na nji ng Universit y o f Chinese M e d ici ne,Na nji ng210046,Ch i na) Abstr act:M etabono m es reflects t h e syste matic status of the organis m accurate l y,sensiti v ely and i m per2 sona ll y.To eva l u ate the therapeu tic eff ects bymeans ofmetabono m icsw ill overco m e the deficiency of un2 certa i n ty w ith the trad iti o na ld iagnostic methods i n cluding inspection,auscultation and olfaction,i n qu iry, and palpati o n.The i m pact of the variation of prescripti o ns dosage on effic i e ncy w ill be shown clearly through the change tendencies of metabono me spectra.Consequently,a ne w i n si g ht is obta i n ed f or the dose2eff ect re lati o nship and its materia l basis.The a mbiguous dose2eff ect relati o nship of trand itional Chi2 nese med icine(TC M)prescr i p tions has l o ng been controversia.l It is one of the most i m portant reasons that the therapeutic eff ect of th is kind ofm edic i n es cannot be evaluated quantitative ly.Based on the re2 vie w of t h e applicati o n of metabono m ics i n moder n st u dy of TC M,we suggest to carry out the st u dy on dose2eff ect re lationsh i p of prescri p ti o ns,in wh ich the techn i q ues ofmetabono m ics are e mp l o yed to co m2 prehensi v e l y evaluate the t h erapeutic eff ect of prescriptions,and the variation of metabono m es in the course of disease devecop m ent and treat m ent is traced. K ey words:metabono m ics;dose2eff ect relationsh i p;co mprehensive eval u ation of therapeuti c e f fec;t metabolic net w or k;trad ition Chinese med icine 收稿日期:2009202225 基金项目:江苏省自然科学重大基础研究资助项目(No.06KJ A36022,07K J A36024);江苏省方剂研究重点实验室/青年学者培养计划0资助项目(No.LTC MF20071203) 作者简介:邓海山,男,博士,讲师,研究方向:中药现代仪器分析与中药信息学,Te:l025*********,E2m a i:l hs_deng@n j u tc https://www.360docs.net/doc/ce5064906.html, *通讯作者:段金廒,男,教授,博士生导师,Te:l025*********,E2m ai:l d ja@n j utc https://www.360docs.net/doc/ce5064906.html,

代谢组学的数据分析技术

代谢组学的数据分析技术 摘要:代谢组学是效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式,是系统生物学的组成部分。其研究对象大都是相对分子质量1000以内的小分子物质。先进分析检测技术结合模式识别和专家系统等计算分析方法是代谢组学研究的基本方法。文章主要综述了将代谢组学中的图谱、数据信息转换为相应的参数所采用的分析方法。 关键词:代谢组学;数据分析方法 代谢组学是以代谢物分析的整体方法来研究功能蛋白如何产生能量和处理体内物质,评价细胞和体液内源性和外源性代谢物浓度及功能关系的新兴学科,是系统生物学的重要组成部分,其相应的研究能反映基因组、转录组和蛋白组受内外环境影响后相互协调作用的最终结果,更接近反映细胞或生物的表型,因此被越来越广泛地应用。而代谢组学的数据分析包括预处理和统计分析方法,多元统计分析方法主要分为两大类:非监督和监督方法,非监督方法包括主成分分析PCA;聚类分析CA等;监督方法包括显著性分析、偏最小二乘法等,本文就是主要综述代谢组学图谱信息转化为参数信息所采用的数据分析方法。 1预处理 数据的预处理过程包括以下:谱图的处理;生成原始的数据矩阵;数据的归一化以及标准化处理过程。针对实验性质、条件以及样品等因素采用不同的预处理方法。在实际应用过程中,预处理可以通过实验系统自带的软件如XCMS软件。进行,因此一般较容易获得所需的数据形式。 2数据分析方法 2.1 主成分分析PCA是多元统计中最常用的一种方法,它是在最大程度上提取原始信息的同时对数据进行降维处理的过程,其目的是将分散的信息集中到几个综合指标即主成分上,有助于简化分析和多维数据的可视化,进而通过主成分来描述机体代谢变化的情况。PCA 的具体过程是通过一种空间转换,形成新的样本集,按照贡献率的大小进行排序,贡献率最大的称为第一主成分,依次类推。经验指出,当累计贡献率大于85%时所提取的主成分就能代表原始数据的绝大多数信息,可停止提取主成分。在代谢组数据处理中,PCA是最早且广泛使用的多变量模式识别方法之一。,具有不损失样品基本信息、对原始数据进行降维处理的同时避免原始数据的共线性问题等优点,但在实际应用过程中,PCA存在着自身的缺点[1]:离群样本点的存在严重影响其生物标志物的寻找;非保守性的代谢组分扰乱正确的分类以及尺度的差异影响小浓度组分的表现等,其他的问题之前也有讨论[2]。针对PCA 的缺陷采用了不同的改进措施,与此同时,为了简化计算,侯咏佳等[3]。提出了一种主成分分析算法的FPGA实现方案,通过Givens算法和CORD IC算法的矢量旋转,用简单的移位和加法操作来实现协方差矩阵的特征分析,只需计算上三角元素,因此计算复杂度小、迭代收敛速度快。 2.2 聚类分析CA是用多元统计技术进行分类的一种方法。其主要原理是:利用同类样本应彼此相似,相类似的样本在多维空间里的彼此距离应较小,而不同类的样本在多维空间里的

代谢组学在医药领域的应用与进展

代谢组学在医药领域的应用与进展 一、学习指导 1.学习代谢组学的概念及内涵,掌握代谢组学的研究对象与分析方法。 2.熟悉代谢组学数据分析技术手段 3.了解代谢组学优势特点 4.了解代谢组学在医药领域的应用 5.了解代谢组学发展趋势 二、正文 基因组功能解析是后基因组时代生命科学研究的热点之一,由于基因功能的复杂性和生物系统的完整性,必然要从“整体”层面上来理解构成生物体系的各个模块功能。随着新的测量技术、高通量的分析方法、先进的信息科学和系统科学新理论的发展,加上生物学研究的深入和生物信息的大量积累,使得在系统水平上研究由分子生物学发现的组件所构成的生命体系成为可能[1]。系统生物学家们认为,将生命科学上升为“综合”科学的时机已经成熟,生命科学再次回到整合性研究的新高度,逐步由分子生物学时代进入到系统生物学时代[2]。系统生物学不同以往的实验生物学仅关注个别基因和蛋白质,它要研究所有基因、蛋白质,代谢物等组分间的所有相互关系,通过整合各组成成分的信息,以数学方法建立模型描述系统结构[3,4]。 (一)代谢组学的概念及内涵 代谢组学是继基因组学、转录组学和蛋白质组学之后,系统生物学的重要组成部分,也是目前组学领域研究的热点之一。代谢组学术语在国际上有两个英文名,即metabolomics 和metabonomics。Metabolomics是由德国的植物学家Fiehn等通过对植物代谢物研究提出来的,认为代谢组学(metabolomics)是定性和定量分析单个细胞或单一类型细胞的代谢调控和代谢流中所有低分子量代谢产物,从而监测机体或活细胞中化学变化的一门科学[5]。英国Nicholson研究小组从毒理学角度分析大鼠尿液成份时提出了代谢组学(Metabonomics)的概念,认为代谢组学是通过考察生物体系受扰动或刺激后(如某个特定基因变异或环境变化后),其代谢产物的变化或代谢产物随时间的变化来研究生物体系的代谢途径的一种技术[6]。国内的代谢组学研究小组基本用metabonomics一词来表示“代谢组学”。严格地说,代谢组学所研究的对象应该包括生物系统中所有的代谢产物。但由于实际分析手段的局限性,只对各种代谢路径底物和产物的小分子物质(MW<1Kd)进行测定和分析。 (二)代谢组学优势特点 代谢组学作为系统生物学的一个重要组成部分,代谢组可以更好地反映体系表型生物机体是一个动态的、多因素综合调控的复杂体系,在从基因到性状的生物信息传递链中,机体需通过不断调节自身复杂的代谢网络来维持系统内部以及与外界环境的正常动态平衡[7]。

代谢组学在植物研究领域中的应用

Botanical Research 植物学研究, 2016, 5(1), 26-33 Published Online January 2016 in Hans. https://www.360docs.net/doc/ce5064906.html,/journal/br https://www.360docs.net/doc/ce5064906.html,/10.12677/br.2016.51005 Application of Metabolomics in Plant Research Guixiao La1, Xi Hao1, Xiangyang Li1, Mingyi Ou2, Tiegang Yang1* 1Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou Henan 2China Tobacco Guizhou Industrial Co. Ltd., Guiyang Guizhou Received: Dec. 10th, 2015; accepted: Dec. 25th, 2015; published: Dec. 30th, 2015 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/ce5064906.html,/licenses/by/4.0/ Abstract Metabolomics is an emerging omics technology after genomics and proteomics, which can qualify and quantify all small molecular weight metabolites in an organism or cells in a short time. With the technology development of gas chromatography-mass spectrometer (GC-MS), liquid chroma-tography-mass spectrometer (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS), and the improvement of data process method and presented huge advantages, plant metabolomics has been used in multiple research fields such as functional genomics, metabolism pathway, crop improvement... In this paper, we reviewed the recent progress in plant metabolomics and the put-ative problem in this research field. Moreover, the application prospects of the plant metabolom-ics were also forecasted. Keywords Metabolomics, Plant, Advance, Prospect 代谢组学在植物研究领域中的应用 腊贵晓1,郝西1,理向阳1,欧明毅2,杨铁钢1? 1河南省农业科学院经济作物研究所,河南郑州 2贵州中烟工业有限责任公司,贵州贵阳 *通讯作者。

代谢组学技术在烟草研究中的应用进展_王小莉

2016-02,37(1)中国烟草科学 Chinese Tobacco Science 89 代谢组学技术在烟草研究中的应用进展 王小莉,付博,赵铭钦*,贺凡,王鹏泽,刘鹏飞 (河南农业大学烟草学院,国家烟草栽培生理生化研究基地,郑州 450002) 摘要:简述了作为研究植物生理生化和基因功能新方法的代谢组学在烟草研究中的主要技术流程及其应用现状,归纳了不同生态环境和不同组织中烟草代谢物差异及产生原因,总结了生物和非生物胁迫及化学诱导处理等条件下的烟草生理生化变化及相关基因功能。最后提出了目前烟草代谢组学研究所面临的问题,并指出与其他组学整合应用是代谢组学在烟草研究领域的发展趋势。 关键词:烟草;代谢组学;胁迫;化学诱导;基因功能 中图分类号:S572.01 文章编号:1007-5119(2016)01-0089-08 DOI:10.13496/j.issn.1007-5119.2016.01.016 Research of Metabolomics in Tobacco WANG Xiaoli, FU Bo, ZHAO Mingqin*, HE Fan, WANG Pengze, LIU Pengfei (College of Tobacco Science, Henan Agricultural University, National Tobacco Physiology and Biochemistry Research Center, Zhengzhou 450002, China) Abstract: Metabolomics has been considered one of the most effective means of investigating physiological and biochemical processes and gene function of plants. Here we review the main process of metabolomics and its application status in tobacco research, the regulation mechanisms of physiological and biochemical reactions when tobacco responds to different environmental, biotic and abiotic stresses, chemically induced processes and genetic modifications. Finally, issues of critical significance to current tobacco metabolomics research are discussed and it is noted that integration with other omics is the trend of metabolomics research in tobacco. Keywords: tobacco; metabolomics; stress; chemical induction; gene function 代谢组学与基因组学、转录组学和蛋白质组学分别从不同层面研究生物体对环境或基因改变的响应,它们都是系统生物学的重要组成部分。植物代谢组学是21世纪初产生的一门新学科,主要通过研究植物的次生代谢物受环境或基因扰动前后差异来研究植物代谢网络和基因功能[1-2]。与微生物和动物相比,植物的独特性在于它拥有复杂的代谢途径,目前发现的次生代谢产物达20万种以上[3]。代谢物差异是植物对基因或环境改变的最终响应[4],因此,对代谢物进行全面解析,探索相关代谢网络和基因调控机制,是从分子层面深入认识植物生命活动规律的一个重要环节[5-7]。 烟草不仅是重要的经济作物,同时还是一种重要的模式植物,作为生物反应器在研究植物遗传、发育、防御反应和转基因等领域中具有重要意义[8-10]。烟草代谢物非常丰富,目前从烟叶中已鉴定出3000多种[11],且代谢物理化性质和含量差异较大,给烟草化学及代谢规律研究带来挑战。传统的烟草化学主要集中于研究某一类化学成分或某几种重要物质,如萜类[12]、生物碱类[13]、多酚类等[14],这很难全面地系统地阐述烟草代谢网络。随着系统生物学的发展,烟草越来越广泛地被用于基因组学、转录组学、蛋白质组学和代谢组学的研究中,例如采用系统生物学的方法找出 基金项目:中国烟草总公司浓香型特色优质烟叶开发(110201101001 TS-01);上海烟草集团责任有限公司“浓香型特色优质烟叶风格定位研究及样品检测”(szbcw201201150) 作者简介:王小莉(1983-),女,博士研究生,主要从事烟草生理生化研究。E-mail:xiaoliwang325@https://www.360docs.net/doc/ce5064906.html, *通信作者,E-mail:zhaomingqin@https://www.360docs.net/doc/ce5064906.html, 收稿日期:2015-09-09 修回日期:2015-11-19

植物代谢组学的研究方法及其应用

植物代谢组学的研究方法及其应用 ★★★ BlueGuy(金币+3)不错,谢谢! 近年来,随着生命科学研究的发展,尤其是在完成拟南芥(Arabidopsis thaliana) 和水稻(Oryza sativa) 等植物的基因组测序后,植物生物学发生了翻天覆地的变化。人们已经把目光从基因的测序转移到了基因的功能研究。在研究DNA 的基因组学、mRNA 的转录组学及蛋白质的蛋白组学后,接踵而来的是研究代谢物的代谢组学(Hall et al.,2002)。代谢组学的概念来源于代谢组,代谢组是指某一生物或细胞在一特定生理时期内所有的低分子量代谢产物,代谢组学则是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科(Goodacre,2004)。它是以组群指标分析为基础,以高通量检测和数据处理为手段,以信息建模与系统整合为目标的系统生物学的一个分支。 代谢物是细胞调控过程的终产物,它们的种类和数量变化被视为生物系统对基因或环境变化的最终响应(Fiehn,2002)。植物内源代谢物对植物的生长发育有重要作用(Pichersky and Gang,2000)。植物中代谢物超过20万种,有维持植物生命活动和生长发育所必需的初生代谢物;还有利用初生代谢物生成的与植物抗病和抗逆关系密切的次生代谢物,所以对植物代谢物进行分析是十分必要的。 但是,由于植物代谢物在时间和空间都具有高度的动态性(stitt and Fernie,2003)。尤其是次生代谢物种类繁多、结构迥异,且产生和分布通常有种属、器官、组织以及生长发育时期的特异性,难于进行分离分析,所以人们一直在寻找更为强大的检测分析工具。在代谢物分析领域,人们已经提出了目标分析、代谢产物指纹分析、代谢产物轮廓分析和代谢表型分析、代谢组学分析等概念。20世纪90年代初,Sauter 等(1991)首先将代谢组分析引入植物系统诊断,此后关于植物代谢组学的研究逐年增多。随着拟南芥等植物的基因组测序完成以及代谢物分析手段的改进和提高,今后几年进入此研究领域的科学家和研究机构将越来越多。 1研究方法 代谢组学分析流程包括样品制备、代谢物成分分析鉴定和数据分析与解释。由于植物中代谢物的种类繁多,而目前可用的成分检测和数据分析方法又多种多样,所以根据研究对象不同,采用的样品制备、分离鉴定手段及数据分析方法各不相同。 1.1样品制备 植物代谢物样品制备分为组织取样、匀浆、抽提、保存和样品预处理等步骤(Weckwerth and Fiehn,2002)。代谢产物通常用水或有机溶剂(如甲醇和己烷等)分别提取,获得水提取物和有机溶剂提取物,从而把非极性的亲脂相和极性相分开。分析之前,通常先用固相微萃取、固相萃取和亲和色谱等方法进行预处理(邱德有和黄璐琦,2004)。然而植物代谢物千差万别,其中很多物质稍受干扰结构就会发生改变,且对其分析鉴定所采用的设备也不同。目前还没有适合所有代谢物的抽提方法,通常只能根据所要分析的代谢物特性及使用的鉴定手段选择合适的提取方法。而抽提时间、温度、溶剂成分和质量及实验者的技巧等诸多因素也将影响样品制备的水平。

代谢组学分析系统技术指标

代谢组学分析系统 1.工作条件: 1.1 电压:220V(±10%)单相,50Hz(±1)。 1.2 环境温度:19-22o C 1.3 相对湿度:<70% * 2.设备用途和基本组成 2.1 仪器用途:所提供仪器为高分辨率,高灵敏度、高通量的分析系统,配以 专业的数据分析处理软件构成代谢组学专用分析系统,从而快速 寻找标记物。 2.2 仪器组成 2.2.1 仪器由超效液相色谱-四极杆/二级碰撞室/飞行时间质谱组成的系统,和 专用代谢组学分析软件以及代谢物分析软件构成,具有先进的中医药代 谢组学研究分析功能。 * 2.2.2 质谱主机要求配置同一厂家生产的液相色谱仪,具有良好的兼容性。 * 2.2.3 具备准确质量测定功能 准确质量测定的内标必须有独立于实测样品的通道进入离子源,内标不得 干扰实际样品的数据结果,并且质量准度<2ppm。 2.2.4 真空系统 要求完全被保护的多级真空系统,具有自动断电保护功能,采用分子涡轮 泵。离子源和质谱间有隔断阀。便于源清洗和日常维护。 * 2.2.5 碰撞室具有两级碰撞功能。分为以下部分: 捕获富集单元:具有离子传输富集、碰撞室两种功能 传输单元:具有离子传输、碰撞室两种功能 * 2.2.6 检测器 检测器由单个微通道板离子计数检测,可检测正负离子和采集MS和 MS/MS的数据, TDC转换速率>4.0 GHz。 * 2.2.7 数据采集和处理系统 工作站用于仪器控制和采集, 1024MB RAM, 200GB硬盘,DVD-ROM,

刻录光盘驱动器,1.44MB 3.5英寸软驱。 软件基于Windows XP 操作系统的应用软件包括集成化的仪器控制、数据处理等软件,代谢组学分析软件以及代谢物分析软件等。 3 仪器的详细技术指标 3.1 液相色谱仪 * 液相色谱仪必须是能够耐超高压(1000bar)的超高效液相色谱仪(UPLC)。3.1.1 可编程二元梯度泵。 溶剂数量:4 流速范围:0.010 - 2mL/min,步进0.001mL/min, 流速精度:< 0.075% RSD,流速准确度:±1%, 泵耐压:0 - 15000psi(1000bar) 梯度设定范围:0 - 100% *系统延迟体积:< 120uL 3.1.2 二极管阵列检测器 波长范围:190-700nm. *测量范围:0.0001~4.0000AUFS *采样速率:40点/秒 流通池:500nl低扩散 3.1.3 自动进样器系统 样品数量:96孔板、384孔板、24x4ml瓶、48x2ml瓶 进样范围:0.1- 50 μL, “针内针”样品探针。 温度范围:4-40摄氏度 3.1.4 在线脱气系统 真空脱气:六通道在线脱气机 3.1.5 柱加热系统 控温范围:室温+5---65摄氏度 3.1.6 专用色谱柱; * 1.7μ, 2.1 mm x 50 mm Column

代谢组学技术及其应用的研究进展

0.前言 代谢组学是一种研究体内代谢产物的系统生物学方法,它能为疾病状态、药理毒理、基因功能的研究提供大量信息[1],1999年Nicholson[2]将其定义为能定量测定生命系统对病理生理刺激或基因改变所产生的动态多参数代谢反应的一种方法(Metabonomicsisdefinedas‘thequan-titativemeasurementofthedynamicmultiparametricmetabolicresponseoflivingsystemstopathophysiologicalstimuliorgeneticmodification’)。它是继基因组学、蛋白质组学、转录组学后新近发展起来的一门新的组学,并与基因组学、蛋白质组学、转录组学等共同构成系统生物学。代谢组学考查的是生物机体内所有的代谢产物[3],但主要关注的是分子量在1000以内的小分子物质,基因组学和蛋白质组学分别从基因和蛋白质层面探寻生命活动,代谢组学则从代谢物层面上探寻生命活动,基因组学和蛋白质组学告诉你什么可能会发生,而代谢组学则告诉你什么确实发生了[4]。代谢产物能在一个生物体的细胞、细胞器、组织、器官、体液等各个层面上产生[5],从某种意义上说机体内每一项生命活动都要受到代谢产物的调节和影响,因此,代谢组学研究可以了解和探索各项生命活动的整体代谢状况从而帮助人们更好地理解生命活动。目前代谢组学在药学、毒理学、疾病诊断、基因功能等生命科学的各个领域都有广泛应用,并已显示出其强大的优势,它在向各个学科渗透的同时,其自身技术和方法也在不断进步,随着系统生物学的发展,代谢组学正向真正的系统、综合、全面的目标迈进。 1.代谢组学的研究方法 代谢组学研究的基本方法是应用气相色谱质谱联用(GC-MS),液相色谱质谱联用(LC-MS),核磁共振波谱(NMR)等先进的仪器分析技术来检测各种生物样品(包括血液、尿液、脑脊液、肝脏、病变组织等)中代谢物组的信息并结合模式识别和专家系统等分析计算方法对所得代谢组学数据进行处理,最后综合解析这些数据以探讨各种生命活动在代谢物层面上的规律和特征并用于评价药物疗效、检测药物毒性、诊断疾病、分析疾病状态等。代谢组学的技术平台主要包括样品制备、代谢产物检测和分析鉴定以及数据分析与模型建立。 2.代谢组学的应用 2.1代谢组学为药学和毒理学研究中的应用 目前,代谢组学在药物安全性评价、新药开发、毒性标志物的筛选等方面应用广泛。Nicholls[6]运用代谢组学技术对药物引起磷脂质病的机理进行了研究,结果发现大鼠给药后不同时段尿液代谢组图谱发生变化。研究认为代谢组学技术能为药物引起磷脂质病微小生化改变的检测提供强有力的工具。Slim[7]利用代谢组学方法研究了地塞米松对磷酸二酯酶抑制剂诱导的大鼠脉管炎的治疗作用,发现大鼠尿液代谢组图谱与组织病理变化基本一致,研究认为尿液代谢组图谱的变化可反映主要的病理变化,代谢组学技术可非侵害地检测血管变化。 在动物实验和临床试验中利用高通量的技术手段筛选和检测潜在的毒性物质是新药安全性评价的重要环节[8],因为大多数药物通过广泛的生物转化作用可成为毒性明显不同的代谢物[9],当毒物与细胞或组织相互作用时会引起机体关键代谢过程中内源性物质的比例和浓度发生变化,所以只有对这些代谢物的变化信息进行全面的分析研究才能更好地评价药物的安全性,大量研究表明代谢组学技术能快速获得这些信息[10],它可检测生物体在给药后整体的代谢反应过程,能综合考察药物的药效和毒性,能全面分析代谢产物的变化特点和规律,从而系统地评价药物的价值和开发前景。在毒理学研究中,代谢组学技术在研究毒物作用机制、预测药物毒性、鉴定对临床有用的生物标志物等方面发挥着重要作用[11]。Warne[12]利用代谢组学技术研究3-三氟甲基-苯胺的毒 理反应,成功鉴定出了与毒性反应有关的潜在生物标志物。Azmi等[13]利用代谢组学技术研究了1-萘异硫氰酸酯(1-Naphthylisothiocyanate,ANIT)的肝毒性作用,研究认为代谢组学技术能够在器官、亚器官等不同水平上认识不同的毒理学机制。 鉴于代谢组学技术在药学和毒理学研究中的巨大贡献,英国帝国理工学院已与六家医药公司联合成立了名为毒理代谢组学(theConsor-tiumforMetabonomicToxicology,COMET)的研究组织,该组织旨在从方法学上建立一套毒理代谢组学研究体系和通用的标准评价方法,采用1HNMR技术分析尿液和血液代谢组信息以用于候选药物临床前的毒性检测[14]。近来,Clayton[15]又提出了药物代谢组学的概念(pharmaco-metabonomics,whichwedefineas‘thepredictionoftheoutcome(forex-ample,efficacyortoxicity)ofadrugorxenobioticinterventioninanindividualbasedonamathematicalmodelofpre-interventionmetabolitesignatures’)。 2.2代谢组学在疾病研究和诊断中的应用 近年来,代谢组学技术已广泛应用于心血管疾病、糖尿病、癌症等疾病的诊断和研究。在心血管疾病方面,Brindle[16]利用基于1HNMR的代谢组学技术对冠心病人的血清代谢组进行了分析,结果显示疾病组与正常组代谢组图谱存在明显差异,研究认为代谢组学技术不仅能快速、准确的诊断冠心病还能区分疾病的严重程度。Martin[17]运用代谢组学技术研究了不同饮食对动脉粥样硬化形成的影响,结果发现极低密度脂蛋白(VLDL)、胆固醇(cholesterol)、N-乙酰基糖蛋白(N-acetylgly-coproteins)与动脉粥样硬化的形成呈正相关,白蛋白赖氨酰残基(albu-minlysylresidues)、氧化三甲胺(trimethylamine-N-oxide)与之呈负相关,此外,在预测动脉粥样硬化变性方面代谢组学数据可达89%,而常规方法只有60%,研究认为代谢组学技术不仅能区分不同饮食诱导的动脉粥样硬化的生物反应(尤其是多参数代谢反应),还能发现新的与疾病进程呈正相关或负相关的潜在标志物,从而帮助人们更好地认识疾病发病的危险因素。 在糖尿病方面,Hodavance[18]认为代谢组学技术是研究2型糖尿病和胰岛素抵抗的有力工具,它能够识别那些常规方法无法识别的代谢产物。Yang[19]对比分析2型糖尿病人和正常人血清代谢组图谱发现2型糖尿病人的血清脂肪酸代谢谱与正常人存在差异,研究认为利用代谢组学方法检测血清脂肪酸代谢状况可快速诊断2型糖尿病。Yuan等[20]对2型糖尿病人尿液进行代谢组学分析并发现了马来酸(Maleicacid)、氧基乙酸(Oxylaceticacid)、4-氨基苯甲酸(4-Aminobenzoicacid)等与2型糖尿病有关的潜在生物标志物。 在癌症方面,Whitehead[21]认为代谢组学技术不仅能分析水溶性和脂溶性的癌组织提取物还能发现和鉴定在疾病不同阶段的特征性代谢产物,它是研究和诊断癌症的有力工具。Yang等[22]利用代谢组学技术对比分析了肝癌、肝炎、肝硬化患者及正常对照者的尿液代谢组信息,结果显示各组患者尿液代谢组信息存在明显差异,研究认为代谢组学技术不仅能清楚地区分患者和正常人还能诊断出患者是患肝炎、肝硬化还是肝癌,这对降低误诊率意义重大,研究还指出通过代谢组学技术鉴定出的尿液核苷在癌症诊断方面优于传统的肿瘤标志物甲胎蛋白(alpha-fetoprotein,AFP)。 代谢组学不仅在上述影响人类健康的重大疾病中有广泛的应用,目前还应用于泌尿系统疾病[23]、神经系统疾病[24]、高血压[25]、先天性代谢缺陷[26]等疾病的研究和诊断。这些研究均表明代谢组学是疾病研究和诊断的有力工具,它的应用为疾病研究和诊断开辟了新的领域。 2.3代谢组学在其它领域的应用 代谢组学凭借其独特的优势和应用潜力不仅在药学、毒理学、疾病 代谢组学技术及其应用的研究进展 苏州大学体育学院岳秀飞史晓伟 [摘要]代谢组学是一种研究生物体内所有小分子代谢物的系统生物学方法,它利用气相色谱质谱联用(GC-MS),液相色谱质谱 联用(LC-MS),核磁共振波谱(NMR)等先进的仪器分析技术来检测各种生物样品中代谢物组的信息并结合模式识别等分析计算方 法对所得代谢组学数据进行处理,最后综合解析这些数据以用于评价药物疗效、检测药物毒性、诊断疾病、分析疾病状态。代谢组学 自提出以来发展十分迅速,目前已在药学、毒理学、疾病研究和诊断等领域得到广泛应用。本文主要对代谢组学的概念,研究方法及 其应用进行综述,最后就代谢组学的发展趋势作一讨论。 [关键词]代谢组代谢组学核磁共振气相色谱质谱联用液相色谱质谱联用 95 ——

相关文档
最新文档