经典高考概率分布类型习题归纳

经典高考概率分布类型习题归纳
经典高考概率分布类型习题归纳

欢迎阅读

经典高考概率分布类型题归纳高考真题

一、超几何分布类型 二、二项分布类型

三、超几何分布与二项分布的对比 四、古典概型算法

五、独立事件概率分布之非二项分布(主要在于如何分类) 六、综合算法 高考真题 2010年

22、(本小题满分10分)(相互独立事件)

某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各种产品相互独立。

(1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布列; (2)求生产4件甲产品所获得的利润不少于10万元的概率。

【解析】本题主要考查概率的有关知识,考查运算求解能力。满分10分。 (1)由题设知,X 的可能取值为10,5,2,-3,且 P (X=10)=0.8×0.9=0.72,P (X=5)=0.2×0.9=0.18, P (X=2)=0.8×0.1=0.08,P (X=-3)=0.2×0.1=0.02。 由此得X 的分布列为:

X 10 5 2 -3 P

0.72

0.18

0.08

0.02

(2)设生产的4件甲产品中一等品有n 件,则二等品有4n -件。 由题设知4(4)10n n --≥,解得14

5

n ≥, 又n N ∈,得3n =,或4n =。

所求概率为3

344

0.80.20.80.8192P C =??+= 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192。

(2012年)22.(本小题满分10分)(古典概型)

设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=.

(1)求概率(0)P ξ=;

(2)求ξ的分布列,并求其数学期望()E ξ.

【命题意图】本题主要考查概率分布列、数学期望等基础知识,考查运算求解能力.

【解析】(1)若两条棱相交,则交点必为正方形8个顶点中的一个,过任意一个顶点恰有3条棱,

∴共有23

8C 对相交棱,∴(0)P ξ==232128C C =4

11

.

(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故

(2)P ξ==

2126C =111

, (1)1(0)(2)P P P ξξξ==-=-==4111111-

-=6

11

. ∴随机变量ξ的分布列是

1

P

∴616212111111

E ξ+=?

+?=. (2014?江苏)(古典概型)

盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;

(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1,x 2,x 3,随机变量X 表示x 1,x 2,x 3中的最大数,求X 的概率分布和数学期望E (X ). (2017年)23.(本小题满分10分)

已知一个口袋中有m 个白球,n 个黑球(,*,2m n n ∈N ≥),这些球除颜色外全部相

同.现将口袋中的球随机地逐个取出,并放入如图所示的编号为

1,2,3,

,m n +的抽屉内,其中第k 次取出的球放入编号为k 的抽屉

(1,2,3,

,)k m n =+.

1 2 3

(1)试求编号为2的抽屉内放的是黑球的概率p ;

(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数

学期望,证明:()()(1)

n

E X m n n <

+-.

试题解析:(1)编号为2的抽屉内放的是黑球的概率p 为:1

1C C n m n n m n

n p m n -+-+==+. (2)随机变量X 的概率分布为 X … … P

随机变量X 的期望为1

1

C 111(1)!

()C C (1)!()!n m n

m n

k n n

k n k n

m n

m n k E X k k n k n -++-==++-=?=?--∑∑. 所以1(2)!1

(2)!

()C (1)!()!(1)C (2)!()!

m n

m n

n n k n k n m n

m n

k k E X n k n n n k n ++==++--<

=-----∑∑ 1

1

C (1)C ()(1)n m n n m n

n n m n n -+-+==-+-, 即()()(1)

n

E X m n n <

+-.

【考点】古典概型概率、排列组合、随机变量及其分布、数学期望

【名师点睛】求解离散型随机变量的数学期望的一般步骤为:

(1)“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;

(2)“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率; (3)“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;

(4)“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(,)X

B n p ),则此随机变量的期望可直接利用这种典型分布

的期望公式(()E X np )求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.

一、超几何分布

1.袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球.试求得分X 的分布列.

【提示】 从袋中随机摸4个球的情况为1红3黑,2红2黑,3红1黑,4红四种情况,分别得分为5分,6分,7分,8分,故X 的可能取值为5,6,7,8.

P(X =5)==,P(X =6)==, P(X =7)==,P(X =8)==. 故所求的分布列为

X 5

6

7

8

P

2.PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.

从某自然保护区2013年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示: PM2.5日均值(微克/立方米) [25,35] (35,45] (45,55] (55,65] (65,75] (75,85] 频数

3

1

1

1

1

3

(1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;

(2)从这10天的数据中任取3天数据.记X 表示抽到PM2.5监测数据超标的天数,求X

【解析】(1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A,则P(A)==.

(2)依据条件,X服从超几何分布,其中N=10,M=3,n=3,且随机变量X的可能取值为0,1,2,3.

P(X=k)=(k=0,1,2,3),

所以P(X=0)==,

P(X=1)==,

P(X=2)==,

P(X=3)==,

因此X的分布列为

X 012 3

P

点评:超几何分布的上述模型中,“任取n件”应理解为“不放回地一次取一件,连续取n件”.如果是有放回地抽取,就变成了n重伯努利试验,这时概率分布就是二项分布.所以两个分布的区别就在于是不放回地抽样,还是有放回地抽样.若产品总数N很大时,那么不放回抽样可以近似地看成有放回抽样.

3.盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.

(1)求取出的3个球中至少有一个红球的概率;

(2)求取出的3个球得分之和恰为1分的概率;

(3)设ξ为取出的3个球中白色球的个数,求ξ的分布列.

【解】(1)P=1-=.

(2)记“取出1个红色球,2个白色球”为事件B,“取出2个红色球,1个黑色球”为事件C,则P(B+C)=P(B)+P(C)=+=.

(3)ξ可能的取值为0,1,2,3,ξ服从超几何分布,

且P(ξ=k)=,k=0,1,2,3.

故P(ξ=0)==,

P(ξ=1)==,

P(ξ=2)==,

P(ξ=3)==,

ξ的分布列为

ξ0 1 2 3

P

1.某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在的地区附近有A ,B ,C 三家社区医院,并且他们对社区医院的选择是相互独立的.

(1)求甲、乙两人都选择A 社区医院的概率; (2)求甲、乙两人不选择同一家社区医院的概率;

(3)设4名参加保险人员中选择A 社区医院的人数为X ,求X 的概率分布和数学期望. 2.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是,出现绿灯的概率都是.记这4盏灯中出现红灯的数量为X ,当这排装饰灯闪烁一次时: (1)求X =2时的概率; (2)求X 的数学期望.

解 (1)依题意知:X =2表示4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯,而每盏灯出现红灯的概率都是, 故X =2时的概率P =C 22

=.

(2)法一 X 的所有可能取值为0,1,2,3,4,依题意知 P(X =k)=C

k4-k

(k =0,1,2,3,4).

∴X 的概率分布列为

X 0

1

2

3

4

P

∴数学期望E(X)=0×+1×+2×+3×+4×=.

3.羽毛球A 队与B 队进行对抗比赛,在每局比赛中A 队获胜的概率都是P (01)P ≤≤. (1)若比赛6局,且P =

2

3

, 求A 队至多获胜4局的概率是多少?

(2)若比赛6局,求A 队恰好获胜3局的概率的最大值是多少?

(3)若采用“五局三胜”制,求A 队获胜时的比赛局数ξ的分布列和数学期望. 解析:(1)设“比赛6局,A 队至多获胜4局”为事件A 则[]66()1(5)(6)P A P P =-+=5

5

6

6

662

221()(1)()333C C ---=256473

1729729

-

=

[来源:学。科。网Z 。X 。X 。K]

∴A 队至多获胜4局的概率是

473

729

(2)设“若比赛6局,A 队恰好获胜3局”为事件B,则333

6()(1)P B C p p =-

当P=0或P=1时,显然有P(B)=0

当0

6()(1)P B C p p =-=()3201p p -????≤203

2

12p p ??+-???? ??????

?=20615216??= ??? 当且仅当11,2p p p =-=即时取等号.故A 队恰好获胜3局的概率的最大值是5

16

(3)若采用“五局三胜”制,A 队获胜时的比赛局数ξ=3,4,5

3(3)P p ξ==;)1(3)1()4(3323p p p p C P -=-==ξ;232324(5)(1)6(1)P C p p p p ξ==-=-

所以ξ的分布列为:

3 4 5

三、超几何分布与二项分布的对比

(二项分布)有一批产品,其中有12件正品和4件次品,从中有放回地依次任取3件,若X 表示取到次品的次数,则P (X=2)= 变式辨析:

1. (超几何分布)有一批产品,其中有12件正品和4件次品,从中任取3件,若X 表示取到次品的件数,则P (X )=

2.有一批产品,其中有12件正品和4件次品,从中有放回地依次取件,第k 次取到次品的概率,则P (X )=

3.有一批产品,其中有12件正品和4件次品,从中不放回地依次取件,第k 次取到次品的概率,则P (X )=

4.有一批产品,其中有12件正品和4件次品,从中不放回地依次取k (6,5,4=k )件,恰好取到3件次品时停止,概率P (X )= 三、古典概型算法

1.甲、乙两人参加普法知识竞赛,共设有10个不同的题目,其中选择题6个,判断题4个. (1)若甲、乙二人依次各抽一题,计算:

①甲抽到判断题,乙抽到选择题的概率是多少?

②甲、乙二人中至少有一人抽到选择题的概率是多少?

(2)若甲从中随机抽取5个题目,其中判断题的个数为X ,求X 的概率分布和数学期望. 2.某校要进行特色学校评估验收,有甲、乙、丙、丁、戊五位评估员将随机去,,A B C 三个不同的班级进行随班听课,要求每个班级至少有一位评估员. (1)求甲、乙同时去A 班听课的概率;

(2)设随机变量ξ为这五名评估员去C 班听课的人数,求ξ的分布列和数学期望. (分配问题,典型例题,选与排)

解:(1)五名评估员随机去三个班级听课,要么一个班级有三个、其余两个班级各一个;

要么两个班级各两个、另一个班级一个.故总共的听课可能性有332253533150C A C C +=种,

其中甲乙同时去A 班听课的可能性有121

2132223=+C C A C 种……………………2分

所以所求概率为122

15025

p =

=

……………………4分 (2)ξ可取值为1,2,3,

()15

6

150221

325=??==C C P ξ,

()15

2

15031235===C C P ξ……………………8分

从而ξ分布列为: ∴

7625

1231515153

E ξ=?

+?+?= ……………………10分 3.一个均匀的正四面体的四个面分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体底面上的数字分别为21,x x ,记2

22

1)2()2(-+-=x x X . (1)分别求出X 取得最大值和最小值的概率;

(2)求X 的概率分布及方差.

解:ξ的取值为0,1,2,4,5,8,

P (ξ=0)=,

P (ξ=1)=4××=,

P (ξ=2)=4××=,

P (ξ=4)=2××=,

P (ξ=5)=4××=,

P (ξ=8)=,

1 2 3

P

∴ξ的分布列为?

∴ξ的数学期望Eξ=0×+1×+2×+4×+5×+8×=3。

4.某市公租房的房源位于A,B,C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:

(1)恰有2人申请A片区房源的概率;

(2)申请的房源所在片区的个数X的概率分布与期望.

5.设S是不等式x2-x-6≤0的解集,整数m,n∈S.

(1)记“使得m+n=0成立的有序数组(m,n)”为事件A,试列举A包含的基本事件;

(2)设ξ=m2,求ξ的概率分布表及其数学期望E(ξ).

解(1)由x2-x-6≤0,得-2≤x≤3,

即S={x|-2≤x≤3}.

由于m,n∈Z,m,n∈S且m+n=0,所以A包含的基本事件为(-2,2),(2,-2),(-1,1),(1,-1),(0,0).

(2)由于m的所有不同取值为-2,-1,0,1,2,3,

所以ξ=m2的所有不同取值为0,1,4,9,

且有P(ξ=0)=,

P(ξ=1)==,

P(ξ=4)==,

P(ξ=9)=.

故ξ的概率分布表为

ξ0 1 4 9

P

所以E(ξ)=0×+1×+4×+9×=.

6.在高中“自选模块”考试中,某考场的每位同学都选了一道数学题,第一小组选《数学史

与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况.

(1)求选出的4人均为选《矩阵变换和坐标系与参数方程》的概率;

(2)设X为选出的4个人中选《数学史与不等式选讲》的人数,求X的分布列和数学期

望.

(主要是选)

解(1)设“从第一小组选出的2人均选《矩阵变换和坐标系与参数方程》”为事件A,“从第二小组选出的2人均选《矩阵变换和坐标系与参数方程》”为事件B.

由于事件A、B相互独立,

所以P(A)==,P(B)==,

所以选出的4人均选《矩阵变换和坐标系与参数方程》的概率为P(A·B)=P(A)·P(B)

=×=.

(2)X 可能的取值为0,1,2,3,则 P(X =0)=,P(X =1)=·+·=, P(X =3)=·=.

P(X =2)=1-P(X =0)-P(X =1)-P(X =3)=. 故X 的分布列为

X 0

1

2

3

P

所以X 的数学期望E(X)=0×+1×+2×+3×=1(人).

7.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球. (I )求取出的4个球均为黑色球的概率; (II )求取出的4个球中恰有1个红球的概率;

(III )设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.

8.袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程n 次后,袋中白球的个数记为n X . (1)求随机变量2X 的概率分布及数学期望()2E X ; (2)求随机变量n X 的数学期望)(n x E 关于n 的表达式.

五、独立事件概率分布之非二项分布(主要在于如何分类)

1.开锁次数的数学期望和方差有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差.

分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般.

解:ξ的可能取值为1,2,3,…,n .

n

k n k n k n n n n n n n k n k n n n n k P 1

11212312111)211()211()111()11()(=

+-?+-+---?--?-=+-?+----?--?-== ξ;所以ξ的分布列为:

1 2 … k … n

… …

2

1

1131211+=

?++?+?+?=n n n n n n E ξ; 2.射击练习中耗用子弹数的分布列、期望及方差

某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹后才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ 的分布列,并求出ξ 的期

望ξ E

与方差ξ D (保留两位小数). 分析:根据随机变量不同的取值确定对应的概率,在利用期望和方差的定义求解. 解:该组练习耗用的子弹数ξ 为随机变量,ξ 可以取值为1,2,3,4,5.

ξ =1,表示一发即中,故概率为 ξ =2,表示第一发未中,第二发命中,故 ξ =3,表示第一、二发未中,第三发命中,故 ξ =4,表示第一、二、三发未中,第四发命中,故 ξ =5,表示第五发命中,故

因此,ξ 的分布列为

1 2 3 4 5 P

0.8

0.16

0.032

0.0064

0.0016

3.(三项分布)在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A 处的命中率q 1为0.25,在B 处的命中率为q 2,该同学选择先在A 处投一球,以后都在B 处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为

(1)求q 2的值;

(2)求随机变量ξ的数学期望E ξ;

(3)试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.

解:(1)设该同学在A 处投中为事件A ,在B 处投中为事件B ,则事件A ,B 相互独立,且P (A )=0.25,()0.75P A =,P (B )=q 2,2()1P B q =-.

根据分布列知:ξ=0时22()()()()0.75(1)P ABB P A P B P B q ==-=0.03,所以

210.2q -=,q 2=0.8.

(2)当ξ=2时,P 1=)()()(B B A P B B A P B B A B B A P +=+

)()()()()()(B P B P A P B P B P A P +==0.75q 2(21q -)×2=1.5q 2(21q -)=0.24.

当ξ=3时,P 2=22()()()()0.25(1)P ABB P A P B P B q ==-=0.01, 当ξ=4时,P 3=22()()()()0.75P ABB P A P B P B q ===0.48, 当ξ=5时,P 4=()()()P ABB AB P ABB P AB +=+

222()()()()()0.25(1)0.25P A P B P B P A P B q q q =+=-+=0.24.

所以随机变量ξ的分布列为:

随机变量ξ的数学期望00.0320.2430.0140.4850.24 3.63E ξ=?+?+?+?+?=. (3)该同学选择都在B 处投篮得分超过3分的概率为()P BBB BBB BB ++

()()()P BBB P BBB P BB =++222222(1)0.896q q q =-+=;

该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72. 由此看来该同学选择都在B 处投篮得分超过3分的概率大. 4.

5.(三项分布)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值. (Ⅰ)求ξ的分布列及数学期望;

(Ⅱ)记“函数2

()31f x x x ξ=-+在区间[2,)+∞上单调递增”为事件A ,求事件A 的概率. 分析:(2)这是二次函数在闭区间上的单调性问题,需考查对称轴相对闭区间的关系,就本题而言,只需3

22

ξ≤即可.

解:(1)分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点”

为事件123,,A A A .由已知123,,A A A 相互独立,

123()0.4,()0.5,()0.6P A P A P A ===.客人游览的景点数的可能取值为0,1,2,3.

相应的,客人没有游览的景点数的可能取值为3,2,1,0,所以ξ的可能取值为1,3.

123123(3)()()P P A A A P A A A ξ==+

所以ξ的分布列为 (Ⅱ)解法一:因为

2239

()()1,24

f x x ξξ=-+-所以函数

23

()31[,)2

f x x x ξξ=-++∞在区间上单调递增,要使()[2,)f x +∞在上单调递增,

当且仅当342,.23ξξ≤≤即从而4

()()(1)0.76.3

P A P P ξξ=≤===

解法二:ξ的可能取值为1,3.

当1ξ=时,函数2

()31[2,)f x x x =-++∞在区间上单调递增, 当3ξ=时,函数2

()91[2,)f x x x =-++∞在区间上不单调递增. 所以()(1)0.76.P A P ξ===

6.甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.

(1)求乙至多击中目标2次的概率;

(2)记甲击中目标的次数为Z ,求Z 的分布列、数学期望和标准差.

解 (1)甲、乙两人射击命中的次数服从二项分布,故乙至多击中目标2次的概率为1-C 3

=.

(2)P(Z =0)=C 3

=; P(Z =1)=C 3

=; P(Z =2)=C 3=; P(Z =3)=C 3=. Z 的分布列如下表:

Z 0 1 2 3

P

E(Z)=0×+1×+2×+3×=, D(Z)=2

×+2

×+2

×+2

×=,∴=.

7.(三项分布)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过

两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4.经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75. (1)求第一次烧制后恰有一件产品合格的概率;

(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望与方差. 解 分别记甲、乙、丙经第一次烧制后合格为事件A 1、A 2、A 3.

(1)设E 表示第一次烧制后恰好有一件合格,则

1 3

P(E)=P(A 123)+P(1A 23)+P(12A 3)

=0.5×0.4×0.6+0.5×0.6×0.6+0.5×0.4×0.4=0.38.

(2)因为每件工艺品经过两次烧制后合格的概率均为p =0.3,所以ξ~B(3,0.3). 故E(ξ)=np =3×0.3=0.9,

V(ξ)=np(1-p)=3×0.3×0.7=0.63.

8.某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一年内领到驾照的概率.

解:ξ的取值分别为1,2,3,4. 1=ξ,表明李明第一次参加驾照考试就通过了,故P (1=ξ)=0.6.

2=ξ,表明李明在第一次考试未通过,第二次通过了,故

ξ=3,表明李明在第一、二次考试未通过,第三次通过了,故 ξ=4,表明李明第一、二、三次考试都未通过,故 ∴李明实际参加考试次数ξ的分布列为

ξ 1 2 3 4 P

0.6

0.28

0.096

0.024

∴ξ的期望E ξ=1×0.6+2×0.28+3×0.096+4×0.024=1.544.

李明在一年内领到驾照的概率为1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.9976. 9.某先生居住在城镇的A 处,准备开车到单位B 处上班,若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率,如图.(例如:A

→C→D算作两个路段:路段AC 发生堵车事件的概率为

10

1

,路段CD 发生堵车事件的概率为

15

1

).

(1) 请你为其选择一条由A到B的路线,使得 途中发生堵车事件的概率最小;

(2) 若记ξ路线A→C→F→B中遇到堵

次数为随机变量ξ,求ξ的数学期望Eξ. 解:(1)记路段MN 发生堵车事件为MN.

因为各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,

所以路线A→C→D →B中遇到堵车的概率P 1为

1-P(AC ?CD ?DB )=1-P(AC )?P(CD )?P(DB )

=1-[1-P(AC)][1-P(CD)][1-P(DB)]=1-?109151465?=10

3;

同理:路线A→C→F→B中遇到堵车的概率P 2为

1-P(AC ?CF ?FB )=800239(小于103);

路线A→E→F→B中遇到堵车的概率P 3为 1-P(AE ?EF ?FB )=30091(大于10

3) 显然要使得由A到B的路线途中发生堵车事件的概率最小,只可能在以上三条路线中选择.

因此选择路线A→C→F→B,可使得途中发生堵车事件的概率最小. (2)路线A→C→F→B中遇到堵车次数ξ可取值为0,1,2,3.

P(ξ=0)=P(AC ?CF ?FB )=800

561,

P(ξ=1)=P(AC ?CF ?FB )+P(AC ?CF?FB )+P(AC ?CF ?FB)

10120171211+1092031211+1092017121=2400

637

P(ξ=2)=P(AC ?CF?FB )+P(AC?CF ?FB)+P(AC ?CF?FB)

1012031211+1012017121+109203121=2400

77

P(ξ=3)=P(AC ?CF ?FB )=101203121=2400

3

∴Eξ=0×800561+1×2400637+2×240077+3×24003=3

1

答:路线A→C→F→B中遇到堵车次数的数学期望为3

1

10.分类题型中的难题

11(2017四市联考)甲乙丙分别从A,B,C,D 四道题中独立地选择两道,其中甲必选B 题 (1)求甲选做D 题,且乙丙不选做D 题的概率;

(2)设随机变量X 表示D 题被甲、乙、丙选做次数,求X 的概率分布与数学期望。 (1)设“甲选做D 题,且乙、丙都不选做D 题”为事件E .

甲选做D 题的概率为11

13C 1C 3=,乙,丙不选做D 题的概率都是2324C 1C 2

=.

则1111()32212

P E =??

=.

答:甲选做D 题,且乙、丙都不选做D 题的概率为

1

12

.…………………3分 (2)X 的所有可能取值为0,1,2,3.…………………………………………4分

1112

(0)(1)32212P X ==-??=,

212

111115

(1)()(1)C (1)()3232212P X ==?+-?-?=, 12

222

111114(2)C (1)()(1)C (1)3223212P X ==?-?+-?-=, 222

111

(3)C (1)3212

P X ==?-=.……………………………………………8分

所以X的概率分布为

X的数学期望

15114

()0123

6123123

E X=?+?+?+?=.…………………10分

12.箱子中有4个形状、大小完全相同的小球,其中红色小球2个、黑色和白色

小球各1个,

现从中有放回的连续摸4次,每次摸出1个球.

(1)求4次中恰好有1次红球和1次黑球的概率;

(2)求4次摸出球的颜色种数ξ的分布列与数学期望.

解:(1)记事件A“摸出1个球,是红色小球”,事件B“摸出1个球,是黑色小球”,事件C“摸出1个球,是白色小球”,则A,B,C相互独立,且P(A)=,P(B)=,P(C)=.

记事件D“有放回的连续摸4次,恰好有1次红球和1次黑球”,

则P(D)=A×××()2=.

答:恰好有有1次红球和1次黑球的概率是.

(2)随机变量ξ的可能值为1,2,3.记A i“摸出i个红色小球”,B i“摸出i 个黑色小球”,C i“摸出i个白色小球”.

P(ξ=1)=P(A4+B4+C4)=P(A4)+P(B4)+P(C4)=()4+()4+()4=;

P(A1·B3+A2·B2+A3·B1)=C()()3+C()2()2+C()3()=++=,

P(A1·C3+A2·C2+A3·C1)=C()()3+C()2()2+C()3()=++=,

P(B1·C3+B2·C2+B3·C1)=C()()3+C()2()2+C()3()=++=,

P(ξ=2)=P(A1·B3+A2·B2+A3·B1)+P(A1·C3+A2·C2+A3·C1)+P(B1·C3+B2·C2+B3·C1)=++=;

P(ξ=3)=P(A2·B1·C1+A1·B2·C1+A1·B1·C2)=A()2()2+A()2()()+A()2()()=++=.

故随机变量ξ的分布列为:

ξ 1 2 3

P

所以数学期望E(ξ)=1×+2×+3×=.

.

六.拓展

1.某车站每天8∶00~9∶00,9∶00~10∶00都恰有一辆客车到站,8∶00~9∶00到站的客车

A 可能在8∶10,8∶30,8∶50到站,其概率依次为

111

,,623;9∶00~10∶00到站的客车B 可能在9∶10,9∶30,9∶50到站,其概率依次为111

,,326

.

(1) 旅客甲8∶00到站,设他的候车时间为ξ,求ξ的分布列和E ξ; (2) 旅客乙8∶20到站,设他的候车时间为η,求η的分布列和E η. (1)旅客8∶00到站,他的候车时间ξ的分布列为:

111100

1030506233

E ξ∴=?+?+?=

(分钟) (2)旅客乙8∶20到站,他的候车时间η的分布列为:

11111

103050709023181236

E η∴=?+?+?+?+?

235

9

=(分钟) 2.A 、B 两个投资项目的利润率分别为随

机变量X 1和X 2,根据市场分析,X 1和X 2的分布列分别为

X 1 5% 10% P 0.8 0.2 X 2 2% 8% 12% P

0.2

0.5

0.3

(1)在A ,B 两个项目上各投资100万元,Y 1和Y 2分别表示投资项目A 和B 所获得的利润,求方差V(Y 1)、V(Y 2);

(2)将x(0≤x ≤100)万元投资A 项目,100-x 万元投资B 项目,f(x)表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f(x)的最小值,并指出x 为何值时,f(x)取到最小值.

解 (1)由题设可知Y 1和Y 2的分布列分别为

Y 1 5 10 P 0.8 0.2 Y 2 2 8 12 P

0.2

0.5

0.3

E(Y 1)=5×0.8+10×0.2=6,

V(Y 1)=(5-6)2

×0.8+(10-6)2

×0.2=4; E(Y 2)=2×0.2+8×0.5+12×0.3=8,

V(Y 2)=(2-8)2

×0.2+(8-8)2

×0.5+(12-8)2

×0.3=12.

10 30 50 70 50

(2)f(x)=V +V =2

V(Y 1)+2

V(Y 2) =[x 2

+3(100-x)2

] =(4x 2

-600x +3×1002

),

当x ==75时,f(x)=3为最小值.

3.据气象预报,某地区下个月有小洪水的概率为0.25,有大洪水的概率为0.01。设工地上有台大型设备,为保护设备有以下三种方案。

方案1:运走设备,此时需花费3800元。

方案2:建一保护围墙,需花费2000元。但围墙无法防止大洪水,当大洪水来临,设备受损,损失费为60000元。

方案3:不采取措施,希望不发生洪水。此时大洪水来临损失60000元,小洪水来临损失10000元。

试比较哪一种方案好。 解:比较三者费用的期望值即可 A 方案:费用为3800

B 方案:设B ξ为费用,则列出分布列如下:

0 2000 6000 P

0.74

0.25 0.01

所以112062050001.010621.0200074.004

==+=??+?+?=B E ξ C 方案:设C ξ为费用,则列出分布列如下:

10000 60000 P

0.74

0.25

0.01

所以310001.010625.01074.004

4=??+?+?=c E ξ

故:方案A 的费用>方案C 的费用>方案B 的费用所以采用方案B 。 六、综合算法

1.2015年期末考试题

长时间用手机上网严重影响学生的健康,如果学生平均每周手机上网的时长超过5小时,则称为“过度用网”,某校为了解A,B 两班学生手机上网的情况,分别从这两个班中随机抽取

6名学生样本进行调查,由样本数据统计得到A,B 两班学生“过度用网”的概率分别为21

,31

(1)从A 班的样本数据中抽取2个数据,求恰有1个数据为“过度用网”的概率 (2)从A 班,B 班的样本中随机抽取2名学生的数据,记“过度用网”的学生人数为ξ,写出其分布列和数学期望ξE 。

2.国家公务员考试,某单位已录用公务员5人,已安排到A,B,C 三个科室工作,但甲必须安排在A 科室,其余4人可以随机安排.

(1)求每个科室安排至少1人至多2人的概率;

(2)设安排在A科室的人数为随机变量X,求X的概率分布及数学期望和方差.

概率经典测试题及答案

概率经典测试题及答案 一、选择题 1.下列说法正确的是 () A.要调查现在人们在数学化时代的生活方式,宜采用普查方式 B.一组数据3,4,4,6,8,5的中位数是4 C.必然事件的概率是100%,随机事件的概率大于0而小于1 D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定 【答案】C 【解析】 【分析】 直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案. 【详解】 A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误; B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误; C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确; D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误; 故选:C. 【点睛】 此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键. 2.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是() A.2 3 B. 1 2 C. 1 3 D. 1 4 【答案】C 【解析】 【分析】 【详解】 用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团, 于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种, 所以,所求概率为31 93 ,故选C.

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

统计学统计学概率与概率分布练习题

第5章 概率与概率分布 练习题 5.1 写出下列随机事件的基本空间: (1) 抛三枚硬币。 (2) 把两个不同颜色的球分别放入两个格子。 (3) 把两个相同颜色的球分别放入两个格子。 (4) 灯泡的寿命(单位:h )。 (5) 某产品的不合格率(%)。 5.2 假定某布袋中装有红、黄、蓝、绿、黑等5个不同颜色的玻璃球,一次从中取出3个球, 请写出这个随机试验的基本空间。 5.3 试定义下列事件的互补事件: (1) A ={先后投掷两枚硬币,都为反面}。 (2) A ={连续射击两次,都没有命中目标}。 (3) A ={抽查三个产品,至少有一个次品}。 5.4 向两个相邻的军火库发射一枚导弹,如果命中第一个和第二个军火库的概率分别是、, 而且只要命中其中任何一个军火库都会引起另一个军火库的爆炸。试求炸毁这两个军火库的概率有多大。 5.5 已知某产品的合格率是98%,现有一个检查系统,它能以的概率正确的判断出合格品, 而对不合格品进行检查时,有的可能性判断错误(错判为合格品),该检查系统产生错判的概率是多少 5.6 有一男女比例为51:49的人群,已知男人中5%是色盲,女人中%是色盲,现随机抽中 了一个色盲者,求这个人恰好是男性的概率。 根据这些数值,分别计算: (1) 有2到5个(包括2个与5个在内)空调器出现重要缺陷的可能性。 (2) 只有不到2个空调器出现重要缺陷的可能性。 (3) 有超过5个空调器出现重要缺陷的可能性。 5.8 设X 是参数为4=n 和5.0=p 的二项随机变量。求以下概率: (1))2(

5.9 一条食品生产线每8小时一班中出现故障的次数服从平均值为的泊松分布。求: (1) 晚班期间恰好发生两次事故的概率。 (2) 下午班期间发生少于两次事故的概率。 (3) 连续三班无故障的概率。 5.10 假定X 服从12=N ,7=n ,5=M 的超几何分布。求: (1))3(=X P 。(2))2(≤X P 。(3))3(>X P 。 5.11 求标准正态分布的概率: (1))2.10(≤≤Z P 。 (2))49.10(≤≤Z P 。 (3))048.0(≤≤-Z P 。 (4))037.1(≤≤-Z P 。 (5))33.1(>Z P 。 5.12 由30辆汽车构成的一个随机样本,测得每百公里的耗油量数据(单位:L )如下: 试判断该种汽车的耗油量是否近似服从正态分布 5.13 设X 是一个参数为n 和p 的二项随机变量,对于下面的四组取值,说明正态分布是否 为二项分布的良好近似 (1)30.0,23==p n 。(2)01.0,3==p n 。 (3)97.0,100==p n 。(4)45.0,15==p n 。

统计概率经典例题(含(答案)和解析)

统计与概率经典例题(含答案及解析) 1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表: ⑴表中a和b所表示的数分别为:a= .,b= .; ⑵请在图中补全频数分布直方图; ⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名? 2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统 计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图: (1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整; (2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小 型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的 2家企业恰好都是餐饮企业的概率. 3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜 色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下 颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.

根据以上信息解答下列问题: (1)求实验总次数,并补全条形统计图; (2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度? (3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%. 类别科普类教辅类文艺类其他册数(本)128 80 m 48 (1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数; (2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本? 5.(10分)将如图所示的版面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上(“A”看做是“1”)。 (1)从中随机抽出一张牌,牌面数字是偶数的概率是;(3分) (2)从中随机抽出两张牌,两张牌面数字的和是5的概率是;(3分)(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树形图的方法求组成的

概率论与数理统计复习题带答案

;第一章 一、填空题 1.若事件A?B且P(A)=, P(B) = , 则 P(A-B)=()。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为,乙击 中敌机的概率为.求敌机被击中的概率为()。 3.设A、B、C为三个事件,则事件A,B,C中不少于二个发生可 表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三台机器不发生故障 的概率依次为,,,则这三台机器中至少有一台发生故障的概率为()。 5.某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二 次的概率为()。 6.设A、B、C为三个事件,则事件A,B与C都不发生可表示为 (ABC)。 7.设A、B、C为三个事件,则事件A,B,C中不多于一个发生可 表示为(AB AC BC); 8.若事件A与事件B相互独立,且P(A)=, P(B) = , 则 P(A|B)= ();

9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为,乙击中敌机的概率为.求敌机被击中的概率为( ); 10. 若事件A 与事件B 互不相容,且P (A )=, P(B) = , 则 P(B A -)= ( ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的 概率依次为,,,则这三台机器中最多有一台发生故障的概率为( )。 12. 若事件 A ? B 且P (A )=, P(B) = , 则 P(B A )=( ); 13. 若事件 A 与事件 B 互不相容,且P (A )=, P(B) = , 则 P(B A )= ( ) 14. A、B为两互斥事件,则A B =( S ) 15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为 ( ABC ABC ABC ++ ) 16. 若()0.4P A =,()0.2P B =,()P AB =则(|)P AB A B =( ) 17. A、B为两互斥事件,则AB =( S ) 18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概 率为( 1 10000 )。 二、选择填空题

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

概率习题答案3

第三章多维随机变量及其分布 3.1 二维随机变量及其分布 习题1 设(X,Y)的分布律为 X\Y 1 2 3 1 1/6 1/9 1/18 2 1/3a1/9 求a. 分析: dsfsd1f6d54654646 解答: 由分布律性质∑i?jPij=1, 可知 1/6+1/9+1/18+1/3+a+1/9=1, 解得 a=2/9. 习题2(1) 2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示: (1)P{aa,Y≤b}. 解答: P{X>a,Y≤b}=F(+∞,b)-F(a,b). 习题3(1) 3.设二维离散型随机变量的联合分布如下表: 试求: (1)P{12

P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3} =P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3} =14+0+0=14. 习题3(2) 3.设二维离散型随机变量的联合分布如下表: 试求: (2)P{1≤X≤2,3≤Y≤4}; 解答: P{1≤X≤2,3≤Y≤4} =P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4} =0+116+0+14=516. 习题3(3) 3.设二维离散型随机变量的联合分布如下表: 试求: (3)F(2,3). 解答: F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3) =14+0+0+116+14+0=916. 习题4 设X,Y为随机变量,且 P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47, 求P{max{X,Y}≥0}. 解答: P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0} =47+47-37=57. 习题5 (X,Y)只取下列数值中的值: (0,0),(-1,1),(-1,13),(2,0) 且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布. 解答: (1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件: {X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1} 均为不可能事件,其概率必为零. 因而得到下表:

概率经典例题及解析、近年高考题50道带答案【精选】

【经典例题】 【例1】(2012湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是 A .1- 2π B . 12 - 1π C . 2π D . 1π 【答案】A 【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2= π2 ( 12 )2- 12 × 12 × 12 = π-28 .在扇形OAD 中 S 12 为扇形面积减去三角形OAC 面积和 S 22 , S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-24 ,扇形OAB 面积S= π4 ,选A . 【例2】(2013湖北)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后, 从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( ) A. 126125 B. 65 C. 168125 D. 75 【答案】B 【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0× 27 125+1×54125+2×36125+3×8125=6 5 ,选B. 【例3】(2012四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A. 14 B. 12 C. 34 D. 78 【答案】C 【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意? ????0≤x≤4, 0≤y≤4,满足条件的关系式 为-2≤x-y≤2.

大学概率统计复习题(答案)

第一章 1.设P (A )=31,P (A ∪B )=21 ,且A 与B 互不相容,则P (B )=____6 1_______. 2. 设P (A )=31,P (A ∪B )=21 ,且A 与B 相互独立,则P (B )=______4 1_____. 3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A )=___0.5_____. 4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________1/3________. 5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________. 6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______. 7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________ 0.6________. 8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同 颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____. 9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=___0.21_____. 10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间生产的概率. 35 18

高中概率知识点、高考考点、易错点归纳

概率知识要点 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例 ()= A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ??或A B)。 不可能事件记作?。 (2)相等。若B A A B ??且,则称事件A 与事件B 相等,记作A=B 。 (3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。 (4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。 (5)事件A 与事件B 互斥:A B 为不可能事件,即=A B ? ,即事件A 与事件B 在任何一次试验中并不会同时发生。 (6)事件A 与事件B 互为对立事件:A B 为不可能事件,A B 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1P A ≤≤.(2)必然事件的概率为1.()1P E =.(3)不可能事件的概率为0. ()0P F =. (4)事件A 与事件B 互斥时,P(A B)=P(A)+P(B)——概率的加法公式。 (5)若事件B 与事件A 互为对立事件,,则A B 为必然事件,()1P A B = . 古典概型 1、基本事件: 基本事件的特点:(1)任何两个事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本时间的和。 2、古典概型:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等。 具有这两个特点的概率模型称为古典概型。 3、公式:()= A P A 包含的基本事件的个数 基本事件的总数

概率经典例题与解析、近年高考题50道带答案

【经典例题】 【例1】(2012)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 随机取一点,则此点取自阴影部分的概率是 A .1- 2π B . 12 - 1π C . 2π D . 1π 【答案】A 【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2 即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2= π2 ( 1 2 )2- 12 × 12 × 12 = π-28 .在扇形OAD 中 S 12 为 扇形面积减去三角形OAC 面积和 S 22 , S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-24 ,扇形OAB 面积S= π4 ,选 A . 【例2】(2013)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( ) A. 126125 B. 65 C. 168125 D. 75 【答案】B 【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0× 27 125+1×54125+2×36125+3×8125=6 5 ,选B. 【例3】(2012)节日前夕,小在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的 4秒任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A. 14 B. 12 C. 34 D. 78 【答案】C 【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意? ??0≤x ≤4, 0≤y ≤4,满足条件的关系 式为-2≤x -y ≤2. 根据几何概型可知,事件全体的测度(面积)为16平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,

概率论基础复习题及答案

《概率论基础》本科 填空题(含答案) 1. 设随机变量ξ的密度函数为p(x), 则 p(x) ≥0; ?∞ ∞ -dx x p )(= 1 ;Eξ=?∞ ∞ -dx x xp )(。 考查第三章 2. 设A,B,C 为三个事件,则A,B,C 至少有一个发生可表示为:C B A ;A,C 发生而B 不发生可表示 C B A ;A,B,C 恰有一个发生可表示为:C B A C B A C B A ++。 考查第一章 3. 设随机变量)1,0(~N ξ,其概率密度函数为)(0x ?,分布函数为)(0x Φ,则)0(0?等于π 21,)0(0Φ等 于 0.5 。 考查第三章 4. 设随机变量ξ具有分布P{ξ=k}=5 1 ,k=1,2,3,4,5,则Eξ= 3 ,Dξ= 2 。 考查第五章 5. 已知随机变量X ,Y 的相关系数为XY r ,若U=aX+b,V=cY+d, 其中ac>0. 则U ,V 的相关系数等于 XY r 。 考查第五章 6. 设),(~2 σμN X ,用车贝晓夫不等式估计:≥<-)|(|σμk X P 211k - 考查第五章 7. 设随机变量ξ的概率函数为P{ξ=i x }=i p ,...,2,1=i 则 i p ≥ 0 ;∑∞ =1 i i p = 1 ;Eξ= ∑∞ =1 i i i p x 。 考查第一章 8. 设A,B,C 为三个事件,则A,B,C 都发生可表示为:ABC ;A 发生而B,C 不发生可表示为:C B A ;A,B,C 恰有一个发生可表示为:C B A C B A C B A ++。 考查第一章 9. )4,5(~N X ,)()(c X P c X P <=>,则=c 5 。 考查第三章

人教版高中数学【必修三】[知识点整理及重点题型梳理]_随机事件的概率_提高

人教版高中数学必修三 知识点梳理 重点题型(常考知识点)巩固练习 随机事件的概率 【学习目标】 1.了解必然事件,不可能事件,随机事件的概念; 2.正确理解事件A 出现的频率的意义; 3.正确理解概率的概念和意义,明确事件A 发生的频率f n (A)与事件A 发生的概率P(A)的区别与联系. 【要点梳理】 要点一、随机事件的概念 在一定的条件下所出现的某种结果叫做事件. (1)必然事件:在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件; 确定事件:必然事件与不可能事件统称为相对于条件S 的确定事件,简称确定事件. (3)随机事件:在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随机事件. 要点诠释: 1.随机事件是指在一定条件下出现的某种结果,随着条件的改变其结果也会不同,因此强调同一事件必须在相同的条件下进行研究; 2.随机事件可以重复地进行大量实验,每次的实验结果不一定相同,但随着实验的重复进行,其结果呈现规律性. 要点二、随机事件的频率与概率 1.频率与频数 在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n 为事件A 出现的频率。 2.概率 事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率 n m 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P(A). 由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0. 要点诠释: (1)概率从数量上反映了随机事件发生的可能性的大小. 求事件A 的概率的前提是:大量重复的试验,试验的次数越多,获得的数据越多,这时用 A n n 来表示()P A 越精确。 (2)任一事件A 的概率范围为0()1P A ≤≤,可用来验证简单的概率运算错误,即若运算结果概率不在[01],范围内,则运算结果一定是错误的.

随机变量及其分布练习题

随机变量及其分布练习 题 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第二章随机变量及其分布练习题 1.甲、乙两人各进行一次射击,甲击中目标的概率是,乙击中目标的概率是,则两人都击中目标的概率是( ) A. B. C. D. 2.设随机变量1 ~62X B ?? ??? ,,则(3)P X =等于( ) A. 516 B. 316 C.5 8 D. 716 3.设随机变量X 的概率分布列为 X 1 2 3 P 则E (X +2)B . 4.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑台数的均值为( ) A.ab B.a b + C.1ab - D.1a b -- 5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是,,,则三人中至少有一人达标的概率为( ) A . B . 6.设随机变量~()X B n p ,,则2 2 ()()DX EX 等于( ) A.2p B.2(1)p - C.np D.2(1)p p - 7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出 2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是( ).

8.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=(). 9.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于(). p B.1-p C.1--p 10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ

概率论复习题答案

一、单项选择题 1 已知随机变量X 在(1,5)之间服从均匀分布,则其在此区间的概率密度为( C ) A. B. C. D 4 2 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<1)之间服从均匀分布,则其在此区间的概率密度为( B ) A. 0 B. 2 C. D 1 3 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<2)之间服从均匀分布,则其不在此区间的概率密度为( A ) A. 0 B. 2 C. 1 D 4 4 已知P(A)= ,则)(A A P ? 的值为( D ) (A) (B) (C) 0 (D) 1 5 已知P(A)= ,则)(A A P 的值为( C ) (A) 1 (B) (C) 0 (D) Φ 6.,,A B C 是任意事件,在下列各式中,成立的是( C ) A. A B =A ?B B. A ?B =AB C. A ?BC=(A ?B)(A ?C) D. (A ?B)(A ? B )=AB 7 设随机变量X~N(3,16), 则P{X+1>5}为( B ) A. Φ B. 1 - Φ C. Φ(4 ) D. Φ(-4) 8 设随机变量X~N(3,16), Y~N(2,1) ,且X 、Y 相互独立,则P{X+3Y<10}为( A ) A. Φ B. 1 - Φ C. Φ(0 ) D. Φ(1) 9. 已知随机变量X 在区间(0,2)的密度函数为, 则其在此区间的分布函数为( C ) A. 2x B. C. 2x D. x 10 已知随机变量X 在区间(1,3)的密度函数为, 则x>3区间的分布函数为( B ) A. 2x B. 1 C. 2x D. 0 11. 设离散型随机变量X 的分布律为 P{X=n}=! n e n λλ, n=0,1,2…… 则称随机变量X 服从( B ) A. 参数为λ的指数分布 B. 参数为λ的泊松分布 C. 参数为λ的二项式分布 D. 其它分布 12. 设f (x )为连续型随机变量X 的密度函数,则f (x )值的范围必须( B )。 (A) 0≤ f (x ) ≤1; (B) 0≤ f (x ); (C )f (x ) ≤1; (D) 没有限制

高考概率知识点及例题(供参考)

概率知识要点 3.1.随机事件的概率 3.1.1 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例()=A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 3.1.2 概率的意义 1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。 2、游戏的公平性:抽签的公平性。 3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。 ——极大似然法、小概率事件 4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨

的机会是70%”。 5、试验与发现:孟德尔的豌豆试验。 6、遗传机理中的统计规律。 3.1.3 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作( 或A B)。 ?? B A 不可能事件记作?。 (2)相等。若B A A B 且,则称事件A与事件B相等,记作A=B。 ?? (3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发生或事件B发生。 (4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发生且事件B发生。 (5)事件A与事件B互斥:A B为不可能事件,即= A B?,即事件A与事件B在任何一次试验中并不会同时发生。 (6)事件A与事件B互为对立事件:A B为不可能事件,A B为必然事件,即事件A与事件B在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1 ≤≤. P A (2)必然事件的概率为1.()1 P E=. (3)不可能事件的概率为0. ()0 P F=. (4)事件A与事件B互斥时,P(A B)=P(A)+P(B)——概率的加法公式。(5)若事件B与事件A互为对立事件,,则A B为必然事件,()1 P A B=. 3.2 古典概型

【免费下载】概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X 、Y 分别表示甲乙命中的次数,求(X,Y )联合分布律。2.袋中有两只白球,两只红球,从中任取两只以X 、Y 表示其中黑球、白球的数目,求(X,Y )联合分布律。3.设,且P{}=1,求()的X 1=(?1011/41/21/4) X 2=(011/21/2)X 1X 2=0X 1,X 2联合分布律,并指出是否独立。 X 1,X 24.设随机变量X 的分布律为Y=,求(X,Y )联合分布律。X 2X Y 01

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 5.设(X,Y )的概率分布为 且事件{X=0}与{X+Y=1}独立求a ,b 。6. 设某班车起点上车人数X 服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 (1)C 的值 (2), (3)P{X+Y ≤1}并判别X 与Y 是否独立。f z (x)f Y (y)9.设f(x,y)= 为(X,Y )的密度函数,求{10 |y |1/2|Y>0}(2) f Y|X (y|x ), f X|Y (x|y )10. 设f(x,y)= 为(X,Y )的密度函数,求 {12x 2y 0 1x ≤y ≤x,x ≥1 其它 f X|Y (x|y )11. 设f(x,y)= 为(X,Y )的密度函数,求的联合分布 {4xy 0 0≤x ≤1,0≤y ≤1 其它 (X,Y )

高中数学概率知识点及例题自己整理

1.事件的关系: ⑴事件B 包含事件A :事件A 发生,事件B 一定发生,记作B A ?; ⑵事件A 与事件B 相等:若A B B A ??,,则事件A 与B 相等,记作A=B ; ⑶并(和)事件:某事件发生,当且仅当事件A 发生或B 发生,记作B A ?(或B A +); ⑷并(积)事件:某事件发生,当且仅当事件A 发生且B 发生,记作B A ?(或AB ) ; ⑸事件A 与事件B 互斥:若B A ?为不可能事件(φ=?B A ),则事件A 与互斥; ⑹对立事件:B A ?为不可能事件,B A ?为必然事件,则A 与B 互为对立事件。 2.概率公式: ⑴互斥事件(有一个发生)概率公式:P(A+B)=P(A)+P(B); ⑵古典概型:基本事件的总数 包含的基本事件的个数A A P =)(; ⑶几何概型:等)区域长度(面积或体积试验的全部结果构成的积等)的区域长度(面积或体构成事件A A P = )( ; 3. 随机变量的分布列 ⑴随机变量的分布列: ①随机变量分布列的性质:p i ≥0,i=1,2,...; p 1+p 2+ (1) 1 1 2 2 n n 方差:DX =???+-+???+-+-n n p EX x p EX x p EX x 2222121)()()( ; 注:DX a b aX D b aEX b aX E 2 )(;)(=++=+; ③两点分布: X 0 1 期望:EX =p ;方差:DX =p(1-p). P 1-p p ① 超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 },,min{,,1,0,)(n M m m k C C C k X P n N k n M N k M ====-- 其中,N M N n ≤≤,。 称分布列 X 0 1 … m P n N n M N M C C C 00-- n N n M N M C C C 11-- … n N m n M N m M C C C -- 为超几何分布列, 称X 服从超几何分布。 ⑤二项分布(独立重复试验): 若X ~B (n,p ),则EX =np, DX =np (1- p );注:k n k k n p p C k X P --==)1()( 。

相关文档
最新文档