实验2 图像的灰度变换

实验2  图像的灰度变换
实验2  图像的灰度变换

GDOU-B-11-112广东海洋大学学生实验报告书(学生用表)

实验名称图像的基本操作课程名称数字图像处理课程号

学院(系) 信息学院专业电子信息工程班级电子1103班

学生姓名杜嘉星学号201011611308 实验地点实验日期

实验2 图像的灰度变换

一、实验目的:

学会用MATLAB软件对图像进行运算和灰度变换。

二、实验内容:

用+、-、*、/、imabsdiff、imadd、imcomplment、imdivide、imlincomb、immultiply、imsubtract和imadjust等函数生成各类灰度变换图像。

三、实验报告要求:写出每步处理的命令,并提交原图像和处理后的图像。

四、实验相关知识

1、代数运算

两幅图像之间进行点对点的加、减、乘、除运算后得到输出图像。我们可以分别使用MATLAB的基本算术符+、-、*、/来执行图像的算术操作,但是在此

之前必须将图像转换为适合进行基本操作的双精度类型(命令函数为double())。

为了更方便对图像进行操作,图像处理工具箱中也包含了一个能够实现所有非稀

疏数值数据的算术操作的函数集合。如下所示:

imabsdiff:计算两幅图像的绝对差值

imadd:两个图像的加法

imcomplement:一个图像的补

imdivide:两个图像的除法

imlincomb:计算两幅图像的线性组合

immultiply:两个图像的乘法

imsubtract:两个图像的减法

使用图像处理工具箱中的图像代数运算函数无需再进行数据类型间的转换,这些函数能够接受uint8和uint16数据,并返回相同格式的图像结果。

代数运算的结果很容易超出数据类型允许的范围。图像的代数运算函数使用

以下截取规则使运算结果符合数据范围的要求:超出数据范围的整型数据将被截取为数据范围的极值,分数结果将被四舍五入。

2、灰度变换

点运算也称为灰度变换,是一种通过对图像中的每个像素值进行运算,从而改善图像显示效果的操作。

对于特定变换函数f的灰度变换,用户可以利用MATLAB强大的矩阵运算能力,对图像数据矩阵调用各种MATLAB计算函数进行处理。需要注意的是由于MATLAB不支持uint8类型数据的矩阵运算,所以首先要将图像数据转换为双精度类型,计算完成后再将其转换为uint8类型(命令为uint8( ))。

而在MATLAB图像处理工具箱中也提供了一个灰度变换函数imadjust,其语法格式为:J=imadjust(I, [low_in high_in], [low_out high_out], gamma)。[low_in high_in]是原图像中要变换的灰度范围,[low_out high_out]是指定变换后的灰度范围,两者的默认值均为[0 1]。gamma的取值决定了输入图像到输出图像的灰度映射方式,即决定是增强低灰度还是增强高灰度。gamma大于1、等于1和小于1的映射方式如下图所示。

五、实验步骤:

1、仔细阅读imabsdiff、imadd、imcomplment、imdivide、imlincomb、immultiply

和imsubtract的帮助文件(help imabsdiff),并练习相关函数的使用。

2、加法运算:将rice.tif和cameraman.tif相加并显示相加结果。若图像每个

像素加上一个常数则亮度会增加,将rice.tif每个像素加上100,显示出

结果图像。

3、减法运算:将上一步中亮度增加的rice图像减去原rice.tif图像,显示出

结果,并想想为什么会有这样的结果。

4、乘、除法运算:一个图像乘以一个大于1的数会使图像变亮,乘以一个

小于1的数会使图像变暗,使用immultiply对图像进行乘法运算,乘以

一个常数或是乘以另一个图像。两幅图像的除法操作可以给出相应像素

值的变化比率,使用imdivide函数进行两幅图像的除法。

5、实现下图(a)和(b)所示的灰度变换(图中t1、t2、s1、s2自己设置合适的

数值)。

6、阅读imadjust的帮助文件,使用函数imadjust进行灰度变换。设置不同

的[low_in high_in]、[low_out high_out]和gamma值,实现多种灰度变换。

六丶实验程序代码及图片

Imadd两个图片相加:

clear all;

close all;

clc;

f=imread('D:\image\avril.jpg’);

g=imread('D:\image\lavigne.jpg');

k=imadd(f,g);

imshow(k,[]);

Imsubtract两个图片相减:clear all;

close all;

clc;

f=imread('D:\image\avril.jpg');

g=imread('D:\image\lavigne.jpg'); k=imsubtract(f,g);

imshow(k,[])

immultiply两个图片相乘:clear all;

close all;

clc;

f=imread('D:\image\avril.jpg');

g=imread('D:\image\lavigne.jpg'); k=immultiply(f,g);

imshow(k,[])

Imdivide两个图片相除:

clear all;

close all;

clc;

f=imread('D:\image\avril.jpg');

g=imread('D:\image\lavigne.jpg'); k=imdivide(f,g);

imshow(k,[])

矩形灰度转换:

close all;

t1=10;

t2=120;

s1=40;

s2=100;

subplot(1,2,1)

avril=imread('D:\image\avril.jpg'); avril=rgb2gray(avril);

[m,n]=size(rice);

whos f;

imshow(avril);

title('图像avril')

subplot(1,2,2)

for i=1:m

for j=1:n

f=rice(i,j);

g(i,j)=0;

if(f>=0)&&(f<=s1);

g(i,j)=t1;

elseif(f>=s1)&&(f<=s2)

g(i,j)=t2;

elseif(f>=s2)&&(f<=255)

g(i,j)=t1;

end

end

end

g=im2double(g);

imshow(im2uint8(mat2gray(g)));

title('矩形灰度变换后的图')

多种灰度变换:

f=imread('D:\image\avril.jpg');

A=rgb2gray(f);

B=imadjust(A,[0.10 0.50],[0.20 0.80],0.5); %灰度调整subplot(2,2,1)

imshow(A);

subplot(2,2,2)

imshow(B);

f=imread('D:\image\avril.jpg');

A=rgb2gray(f);

B=imadjust(A,[0.10 0.50],[0.20 0.80],120);%灰度调整subplot(2,2,1)

imshow(A);

subplot(2,2,2)

imshow(B);

f=imread('D:\image\avril.jpg');

A=rgb2gray(f);

B=imadjust(A,[0.60 0.80],[0.10 0.90],0.5);%灰度调整subplot(2,2,1)

imshow(A);

subplot(2,2,2)

imshow(B);

七丶实验结果分析:

这次实验主演是让我们学会用MATLAB软件对图像进行运算和灰度变换。学会用Imabsdiff,imadd,Imcomplement,imdivide,Imlincomb,Immultiply,Imsubtract等函数对图像进行相加,相减,相乘,相除等操作。经过这次实验我了解了很多,特别是对图片的运算,最后对图片的锯齿灰度转换并不太了解,以后会继续努力,加强对matlab的运用。

成绩指导教师日期

第页,共页

图像灰度变换实验报告

图像灰度变换报告 一.实验目的 1.学会使用Matlab ; 2.学会用Matlab 软件对图像进行灰度变换,观察采用各种不同灰度变换发法对最终图像效果的影响; 二.实验内容 1.熟悉Matlab 中的一些常用处理函数 读取图像:img=imread('filename'); //支持TIF,JPEG,GIF,BMP,PNG 等文件格式。 显示图像:imshow(img,G); //G 表示显示该图像的灰度级数,如省略则默认为256。 保存图片:imwrite(img,'filename'); //不支持GIF 格式,其他与imread 相同。 亮度变换:imadjust(img,[low_in,high_in],[low_out,high_out]); //将low_in 至high_in 之间的值映射到low_out 至high_out 之 间,low_in 以下及high_in 以上归零。 绘制直方图:imhist(img); 直方图均衡化:histeq(img,newlevel); //newlevel 表示输出图像指定的灰度级数。 2.获取实验用图像:rice.jpg. 使用imread 函数将图像读入Matlab 。 3 .产生灰度变换函数T1,使得: 0.3r r < 0.35 s = 0.105 + 2.6333(r – 0.35) 0.35 ≤ r ≤ 0.65 1 + 0.3(r – 1) r > 0.65 用T1对原图像rice.jpg 进行处理,使用imwrite 函数保存处理后的新图像。 4.产生灰度变换函数T2,使得: s = 5.用T2imwrite 保存处理后的新图像。 6.分别用 s = r 0.6; s = r 0.4; s = r 0.3 对kids.tiff 图像进行处理。为简便起见,使用Matlab 中的imadjust 函数,最后用imwrite 保存处理后的新图像。 7.对circuit.jpg 图像实施反变换(Negative Transformation )。s =1-r; 使

图形学实验报告

计 算 机 图 形 学 实验指导书 学号:1441901105 姓名:谢卉

实验一:图形的几何变换 实验学时:4学时 实验类型:验证 实验要求:必修 一、实验目的 二维图形的平移、缩放、旋转和投影变换(投影变换可在实验三中实现)等是最基本的图形变换,被广泛用于计算机图形学的各种应用程序中,本实验通过算法分析以及程序设计实验二维的图形变换,以了解变换实现的方法。如可能也可进行裁剪设计。 二、实验内容 掌握平移、缩放、旋转变换的基本原理,理解线段裁剪的算法原理,并通过程序设计实现上述变换。建议采用VC++实现OpenGL程序设计。 三、实验原理、方法和手段 1.图形的平移 在屏幕上显示一个人或其它物体(如图1所示),用交互操作方式使其在屏幕上沿水平和垂直方向移动Tx和Ty,则有 x’=x+Tx y’=y+Ty 其中:x与y为变换前图形中某一点的坐标,x’和y’为变换后图形中该点的坐标。其交互方式可先定义键值,然后操作功能键使其移动。 2.图形的缩放 在屏幕上显示一个帆船(使它生成在右下方),使其相对于屏幕坐标原点缩小s倍(即x方向和y方向均缩小s倍)。则有: x’=x*s y’=y*s 注意:有时图形缩放并不一定相对于原点,而是事先确定一个参考位置。一般情况下,参考点在图形的左下角或中心。设参考点坐标为xf、yf则有变换公式x’=x*Sx+xf*(1-Sx)=xf+(x-xf)*Sx y’=y*Sy+yf*(1-Sy)=yf+(y-yf)*Sy 式中的x与y为变换前图形中某一点的坐标,x’和y’为变换后图形中该点的坐标。当Sx>1和Sy>1时为放大倍数,Sx<1和Sy<1时为缩小倍数(但Sx和Sy

灰度图像处理及颜色模型转换

灰度图像处理程序代码代码 1.二值图像 function erzhi_Callback(hObject, eventdata, handles) % hObject handle to erzhi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能转换为二值图像','转换失败'); else j=im2bw(x); imshow(j); end 2.图像腐蚀 function fushi_Callback(hObject, eventdata, handles) % hObject handle to fushi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能进行图像腐蚀','失败'); else j=im2bw(x); se=eye(5); bw=bwmorph(j,'erode'); imshow(bw); 3.创建索引图像 function chuanjian_Callback(hObject, eventdata, handles) % hObject handle to chuanjian (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能创建索引图像','创建失败'); else y=grayslice(x,16); axes(handles.axes2); imshow(y,jet(16)); end 4.轮廓图

matlab图像处理图像灰度变换直方图变换

附录1 课程实验报告格式 每个实验项目包括:1)设计思路,2)程序代码,3)实验结果,4)实验中出现的问题及解决方法。 实验一:直方图灰度变换 A:读入灰度图像‘debye1.tif’,采用交互式操作,用improfile绘制一条线段的灰度值。 imread('rice.tif'); imshow('rice.tif'),title('rice.tif'); improfile,title('主对角线上灰度值')

B:读入RGB图像‘flowers.tif’,显示所选线段上红、绿、蓝颜色分量的分布imread('flowers.tif'); imshow('flowers.tif'),title('flowers.tif'); improfile,title('主对角线红绿蓝分量') C:图像灰度变化 f=imread('rice.png'); imhist(f,256); %显示其直方图 g1=imadjust(f,[0 1],[1 0]); %灰度转换,实现明暗转换(负片图像) figure,imshow(g1)%将0.5到0.75的灰度级扩展到范围[0 1] g2=imadjust(f,[0.5 0.75],[0 1]); figure,imshow(g2) 图像灰度变换处理实例: g=imread('me.jpg'); imshow(g),title('原始图片'); h=log(1+double(g)); %对输入图像对数映射变换 h=mat2gray(h); %将矩阵h转换为灰度图片

h=im2uint8(h); %将灰度图转换为8位图 imshow(h),title('转换后的8位图'); 运行后的结果: 实验二:直方图变换 A:直方图显示 I=imread('cameraman.tif'); %读取图像 subplot(1,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(1,2,2),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题运行结果如下:

数字灰度图像的基本运算处理 正文讲解

1前言 介绍一种用可视化数值计算软件MATLAB实现的数字图像处理系统平台,系统使用MATLAB中提供的GUI设计系统可视化的用户界面,下拉式的菜单方便用户选择对图像的处理。用户可以随意选择要处理的图片。但是该系统只支持灰度图片,可实现内容主要包括灰度图像的代数运算、几何运算。基于数字图像处理的一些基本原理,利用MATLAB 设计程序进行对灰度图像的处理。有部分处理运算有很多种方法,我选择了最简单、最明了的方法。 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。二维图像进行均匀采样,就可以得到一幅离散化成M×N样本的数字图像,该数字图像是一个整数阵列,因而用矩阵来描述该数字图像是最直观最简便的了。 随着计算机的发展,图像处理技术在许多领域得到了广泛应用,用于图像处理的软件也很多,如PHOTOSHOP、PAINTSHOP、GIMP、SaperaProcessing、MATLAB等,其中大部分软件都是基于广告策划和图像修饰处理而设计的应用软件,进行图像处理时并不是很方便。而MATLAB(矩阵实验室) 它在矩阵运算上有自己独特的特点,在矩阵运算处理具有很大的优势,因此用MATLAB处理数字图像非常的方便。不仅如此,MATLAB提供了丰富的图形命令和图形函数,而且其面向对象的图形系统具有强大的用户界面(GUI)生成能力。这样,用户就可以充分利用系统提供的 GUI 特性,编写自己需要的图形界面,从而可以高效地进行图像处理。 MATLAB支持五种图像类型,即索引图像、灰度图像、二值图像、RGB图像和多帧图像阵列;支持BMP、GIF、HDF、JPEG、PCX、PNG、TIFF、XWD、CUR、ICO等图像文件格式的读,写和显示。MATLAB对图像的处理功能主要集中在它的图像处理工具箱(Image Processing Toolbox)中。图像处理工具箱是由一系列支持图像处理操作的函数组成,可以对图像进行诸如几何操作、线性滤波和滤波器设计、图像变换、图像分析与图像增强、二值图像操作以及形态学处理等图像处理操作。

实验一Matlab图像处理基础及图像灰度变换

实验一Matlab图像处理基础及图像灰度变换 一、实验目的 了解Matlab平台下的图像编程环境,熟悉Matlab中的DIP (Digital Image Processing)工具箱;掌握Matlab中图像的表示方法,图像类型、数据类型的种类及各自的特点,并知道怎样在它们之间进行转换。掌握Matlab环境下的一些最基本的图像处理操作,如读图像、写图像、查看图像信息和格式、尺寸和灰度的伸缩等等;通过实验掌握图像直方图的描绘方法,加深直方图形状与图像特征间关系间的理解;加深对直方图均衡算法的理解。 二、实验内容 1.从硬盘中读取一幅灰度图像; 2.显示图像信息,查看图像格式、大小、位深等内容; 3.用灰度面积法编写求图像方图的Matlab程序,并画图; 4.把第3步的结果与直接用Matlab工具箱中函数histogram的结果进行比较,以衡量第3步中程序的正确性。 5.对读入的图像进行直方图均衡化,画出处理后的直方图,并比较处理前后图像效果的变化。 三、知识要点 1.Matlab6.5支持的图像图形格式 TIFF, JEPG, GIF, BMP, PNG, XWD (X Window Dump),其中GIF不支持写。 2.与图像处理相关的最基本函数 读:imread; 写:imwrite; 显示:imshow; 信息查看:imfinfo; 3.Matlab6.5支持的数据类 double, unit8, int8, uint16, int16, uint32, int32, single, char (2 bytes per element), logical. 4.Matlab6.5支持的图像类型 Intensity images, binary images, indexed images, RGB image 5.数据类及图像类型间的基本转换函数 数据类转换:B = data_class_name(A);

数字图像的灰度处理简述

数字图像的灰度处理 数字图像处理的目的和意义: 图象处理着重强调的是在图象之间进行的各种变换,对图象进行各种加工以改善图象的视觉效果。在图象的灰度处理中,增强操作、直方图及图象间的变换是实现点操作的增强方式,又被称作灰度变换。本文主要介绍了一些数字图像灰度处理的方法,其中图象取反是实现图象灰度值翻转的最直接的方法;灰度切分可实现强化某一灰度值的目的。对直方图进行均衡化修正,可使图象的灰度间距增大或灰度均匀分布、增大反差,使图象的细节变得清晰。 数字图像处理是20世纪60年代初期所形成的一门涉及多领域的交叉学科。所谓数字图像处理,又称为计算机图像处理,就是指用数字计算机及其它有关的数字硬件技术,对图像施加某种应算和处理,从而达到某种预期的目的。在大多数情况下,计算机采用离散的技术来处理来自连续世界的图像。实际上图像是连续的,计算机只能处理离散的数字图像,所以要要对连续图像经过采样和量化以获得离散的数字图像。 数字图像处理中图像增强的目的是改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,扩大图像中不同物体特征之间的差别,满足某些特殊分析的需要。其方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制图像中某些不需要的特征,使图像与视觉响应特性相匹配。而通过改变图像的灰度以期达到一种很好的视觉效果是图像增强的一种手段。灰度变换的目的是为了改善画质,使图像显示效果更加清晰。 图像的点应算是一种既简单又重要的技术,它能让用户改变图像数据占据的灰度范围。一幅输入图像经过点应算后将产生一幅新的输出图像,由输入像素点的灰度值决定相应的输出像素点的灰度值。图像的点应算可以有效的改变图像的直方图分布,以提高图像的分辨率和图像的均衡。点应算可以按照预定的方式改变一幅图像的灰度直方图。除了灰度级的改变是根据某种特定的灰度变换函数进行之外,点应算可以看作是“从像素到像素”的复制操作。如果输入图像为A(x,y),

计算机图形学实验报告 (2)

中南大学信息科学与工程学院 实验报告实验名称 实验地点科技楼四楼 实验日期2014年6月 指导教师 学生班级 学生姓名 学生学号 提交日期2014年6月

实验一Window图形编程基础 一、实验类型:验证型实验 二、实验目的 1、熟练使用实验主要开发平台VC6.0; 2、掌握如何在编译平台下编辑、编译、连接和运行一个简单的Windows图形应用程序; 3、掌握Window图形编程的基本方法; 4、学会使用基本绘图函数和Window GDI对象; 三、实验内容 创建基于MFC的Single Document应用程序(Win32应用程序也可,同学们可根据自己的喜好决定),程序可以实现以下要求: 1、用户可以通过菜单选择绘图颜色; 2、用户点击菜单选择绘图形状时,能在视图中绘制指定形状的图形; 四、实验要求与指导 1、建立名为“颜色”的菜单,该菜单下有四个菜单项:红、绿、蓝、黄。用户通过点击不同的菜单项,可以选择不同的颜色进行绘图。 2、建立名为“绘图”的菜单,该菜单下有三个菜单项:直线、曲线、矩形 其中“曲线”项有级联菜单,包括:圆、椭圆。 3、用户通过点击“绘图”中不同的菜单项,弹出对话框,让用户输入绘图位置,在指定位置进行绘图。

五、实验结果: 六、实验主要代码 1、画直线:CClientDC *m_pDC;再在OnDraw函数里给变量初始化m_pDC=new CClientDC(this); 在OnDraw函数中添加: m_pDC=new CClientDC(this); m_pDC->MoveTo(10,10); m_pDC->LineTo(100,100); m_pDC->SetPixel(100,200,RGB(0,0,0)); m_pDC->TextOut(100,100); 2、画圆: void CMyCG::LineDDA2(int xa, int ya, int xb, int yb, CDC *pDC) { int dx = xb - xa; int dy = yb - ya; int Steps, k; float xIncrement,yIncrement; float x = xa,y= ya; if(abs(dx)>abs(dy))

用matlab实现图像灰度变换课程设计

课程设计报告册 课程名称: MATLAB课程设计 课题名称:灰度变换增强 专业班级: 姓名: Bob Wang 学号: 15164 课程设计主要场所:信息楼220 时间: 指导教师:成绩:

前言 数字图像处理技术是20世界60年代发展起来的一门新兴学科,随着图像处理理论和方法的进一步完善,使得数字图像处理技术在各个领域得到了广泛应用,并显示出广阔的应用前景。MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台。它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。根据它提供的500多个数学和工程函数,工程技术人员和科学工作者可以在它的集成环境中交互或变成以完成各自的计算。MATLAB中集成了功能强大的图像处理工具箱。由于MATLAB语言的语法特征与C语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式,而且这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以MATLAB在图像处理的应用中具有很大的优势。 MATLAB是一种以矩阵运算为基础的交互式程序语言,能够满足科学、工程计算和绘图的要求,与其它计算机语言相比,其特点是简洁和智能化,适应科技专业人员的思维方式和书写习惯,使得编程和调试效率大大提高。我们学习掌握MATLAB,也可以说是在科学工具上与国际接轨。

目录 一、课程设计目的 (2) 二、设计任务及容 (2) 三、课题设计实验条件 (3) 四、涉及知识 (3) 五、具体设计过程及调试 (4) 5.1、图像的读入和显示 5.1.1、打开图像 (4) 5.1.2、显示原图像 (5) 5.1.3、图像灰度处理 (7) 5.1.4、显示灰阶后图像 (8) 5.2、直方图均衡化 5.2.1、生成直方图 (10) 5.2.2、直方图均衡化 (12) 5.3、灰度变换 5.3.1、线性变换 (9) 5.3.2、分段线性变换 (9) 5.3.3、非线性变换.................................... (9) 六、心得体会 (17) 七、参考文献 (18) 八、程序清单 (19)

matlab图像的灰度变换

实验二 图像的灰度变换 一、实验目的 1、 理解数字图像处理中点运算的基本作用; 2、 掌握对比度调整与灰度直方图均衡化的方法。 二、实验原理 1、对比度调整 如果原图像f (x , y )的灰度范围是[m , M ],我们希望对图像的灰度范围进行线性调整,调整后的图像g (x , y )的灰度范围是[n , N ],那么下述变换: []n m y x f m M n N y x g +---=),(),(就可以实现这一要求。 MATLAB 图像处理工具箱中提供的imadjust 函数,可以实现上述的线性变换对比度调整。imadjust 函数的语法格式为: J = imadjust(I,[low_in high_in], [low_out high_out]) J = imadjust(I, [low_in high_in], [low_out high_out])返回原图像I 经过直方图调整后的新图像J ,[low_in high_in]为原图像中要变换的灰度范围,[low_out high_out]指定了变换后的灰度范围,灰度范围可以用 [ ] 空矩阵表示默认范围,默认值为[0, 1]。 不使用imadjust 函数,利用matlab 语言直接编程也很容易实现灰度图像的对比度调整。但运算的过程中应当注意以下问题,由于我们读出的图像数据一般是uint8型,而在MATLAB 的矩阵运算中要求所有的运算变量为double 型(双精度型)。因此读出的图像数据不能直接进行运算,必须将图像数据转换成双精度型数据。 2、直方图均衡化 直方图均衡化的目的是将原始图像的直方图变为均衡分布的形式,即将一已知灰度概率密度分布的图像,经过某种变换变成一幅具有均匀灰度概率密度分布的新图像,从而改善图像的灰度层次。 MATLAB 图像处理工具箱中提供的histeq 函数,可以实现直方图的均衡化。 三、实验内容及要求 1、 用MATLAB 在自建的文件夹中建立example2.m 程序文件。在这个文件的程序中,将girl2.bmp 图像文件读出,显示它的图像及灰度直方图(可以发现其灰度值集中在一段区

图像处理实验报告

实验报告 实验课程名称:数字图像处理 班级:学号:姓名: 注:1、每个实验中各项成绩按照10分制评定,每个实验成绩为两项总和20分。 2、平均成绩取三个实验平均成绩。 2016年 4 月18日

实验一 图像的二维离散傅立叶变换 一、实验目的 掌握图像的二维离散傅立叶变换以及性质 二、实验要求 1) 建立输入图像,在64?64的黑色图像矩阵的中心建立16?16的白色矩形图像点阵, 形成图像文件。对输入图像进行二维傅立叶变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上。 2) 调整输入图像中白色矩形的位置,再进行变换,将原始图像及变换图像(三维、中 心化)都显示于屏幕上,比较变换结果。 3) 调整输入图像中白色矩形的尺寸(40?40,4?4),再进行变换,将原始图像及变 换图像(三维、中心化)都显示于屏幕上,比较变换结果。 三、实验仪器设备及软件 HP D538、MATLAB 四、实验原理 傅里叶变换作为分析数字图像的有利工具,因其可分离性、平移性、周期性和共轭对称性可以定量地方分析数字化系统,并且变换后的图像使得时间域和频域间的联系能够方便直观地解决许多问题。实验通过MATLAB 实验该项技能。 设),(y x f 是在空间域上等间隔采样得到的M ×N 的二维离散信号,x 和y 是离散实变量,u 和v 为离散频率变量,则二维离散傅里叶变换对一般地定义为 ∑∑ -=-=+-= 101 )],( 2ex p[),(1 ),(M x N y N yu M xu j y x f MN v u F π,1,0=u …,M-1;y=0,1,…N-1 ∑∑-=-=+=101 )],( 2ex p[),(),(M x N y N uy M ux j v u F y x f π ,1,0=x …,M-1;y=0,1,…N-1 在图像处理中,有事为了讨论上的方便,取M=N ,这样二维离散傅里叶变换对就定义为 ,]) (2ex p[),(1 ),(101 ∑∑ -=-=+- = N x N y N yu xu j y x f N v u F π 1,0,=v u …,N-1 ,]) (2ex p[ ),(1 ),(101 ∑∑-=-=+= N u N v N vy ux j v u F N y x f π 1,0,=y x ,…,N-1 其中,]/)(2exp[N yv xu j +-π是正变换核,]/)(2exp[N vy ux j +π是反变换核。将二维离散傅里叶变换的频谱的平方定义为),(y x f 的功率谱,记为 ),(),(|),(|),(222v u I v u R v u F v u P +== 功率谱反映了二维离散信号的能量在空间频率域上的分布情况。 五、实验步骤、程序及结果: 1、实验步骤: (1)、编写程序建立输入图像; (2)、对上述图像进行二维傅立叶变换,观察其频谱 (3)、改变输入图像中白框的位置,在进行二维傅里叶变换,观察频谱;

基于MATLAB的彩色图像灰度化处理

目录 第1章绪论............................................................................................................................ - 1 - 第2章设计原理.................................................................................................................... - 2 - 第3章彩色图像的灰度化处理............................................................................................ - 3 - 3.1加权平均法 .. (3) 3.2平均值法 (3) 3.3最大值法 (4) 3.4举例对比 (5) 3.5结果分析 (6) 第4章结论.......................................................................................................................... - 8 - 参考文献....................................................................................................... 错误!未定义书签。附录............................................................................................................................................ - 9 -

北航数字图象处理实验报告

数字图像处理实验报告 实验二图像变换实验 1.实验目的 学会对图像进行傅立叶等变换,在频谱上对图像进行分析,增进对图像频域上的感性认识,并用图像变换进行压缩。 2.实验内容 对Lena或cameraman图像进行傅立叶、离散余弦、哈达玛变换。在频域,对比他们的变换后系数矩阵的频谱情况,进一步,通过逆变换观察不同变换下的图像重建质量情况。 3. 实验要求 实验采用获取的图像,为灰度图像,该图像每象素由8比特表示。具体要求如下: (1)输入图像采用实验1所获取的图像(Lena、Cameraman); (2)对图像进行傅立叶变换、获得变换后的系数矩阵; (3)将傅立叶变换后系数矩阵的频谱用图像输出,观察频谱; (4)通过设定门限,将系数矩阵中95%的(小值)系数置为0,对图像进行反变换,获得逆变换后图像; (5)观察逆变换后图像质量,并比较原始图像与逆变后的峰值信噪比(PSNR)。 (6)对输入图像进行离散余弦、哈达玛变换,重复步骤1-5; (7)比较三种变换的频谱情况、以及逆变换后图像的质量(PSNR)。 4. 实验结果 1. DFT的源程序及结果 J=imread('10021033.bmp'); P=fft2(J); for i=0:size(P,1)-1 for j=1:size(P,2) G(i*size(P,2)+j)=P(i+1,j); end end Q=sort(G); for i=1:size(Q,2) if (i=size(Q,2)*0.95) t=Q(i); end end G(abs(G)

图像处理灰度变换实验

一. 实验名称:空间图像增强(一) 一.实验目的 1.熟悉和掌握利用matlab工具进行数字图像的读、写、显示、像素处理等数字图像处理的基本步骤和流程。 2.熟练掌握各种空间域图像增强的基本原理及方法。 3.熟悉通过灰度变换方式进行图像增强的基本原理、方法和实现。 4.熟悉直方图均衡化的基本原理、方法和实现。 二.实验原理 (一)数字图像的灰度变换 灰度变换是图像增强的一种经典而有效的方法。灰度变换的原理是将图像的每一个像素的灰度值通过一个函数,对应到另一个灰度值上去从而实现灰度的变换。常见的灰度变换有线性灰度变换和非线性灰度变换,其中非线性灰度变换包括对数变换和幂律(伽马)变换等。 1、线性灰度变换 1)当图像成像过程曝光不足或过度,或由于成像设备的非线性和图像记录设备动态范围太窄等因素,都会产生对比度不足的弊病,使图像中的细节分辨不清,图像缺少层次。这时,可将灰度范围进行线性的扩展或压缩,这种处理过程被称为图像的线性灰度变换。对灰度图像进行线性灰度变换能将输入图像的灰度值的动态范围按线性关系公式拉伸扩展至指定范围或整个动态范围。 2)令原图像f(x,y)的灰度范围为[a,b],线性变换后得到图像g(x,y),其灰度范围为[c,d],则线性灰度变换公式可表示为

a y x f b y x f a b y x f c c a y x f a b c d d y x g <≤≤>?????+---=),(),(),(, ,]),([,),( (1) 由(1)式可知,对于介于原图像f (x,y )的最大和最小灰度值之间的灰度值,可通过线性变换公式,一一对应到灰度范围[c,d]之间,其斜率为(d-c)/(b-a);对于小于原图像的最小灰度值或大于原图像的最大灰度值的灰度值,令其分别恒等于变换后的最小和最大灰度值。变换示意图如图1所示。 图1 线性灰度变换示意图 当斜率大于一时,变换后的灰度值范围得到拉伸,图像对比度得到提高;当斜率小于一时,变换后的灰度值范围被压缩,最小与最大灰度值的差变小,图像对比度降低;当斜率等于一时,相当于对图像不做变换。 3)由上述性质可知,线性灰度变换能选择性地加强或降低特定灰度值范围内的对比度,故线性灰度变换同样也可做分段处理:对于有价值的灰度范围,将斜率调整为大于一,用于图像细节;对于不重要的灰度范围,将图像压缩,降低对比度,减轻无用信息的干扰。最常用的分段线性变换的方法是分三段进行线性变换。 在原图像灰度值的最大值和最小值之间设置两个拐点,在拐点处,原图像的灰度值分别为r 1,r 2,该拐点对应的变换后的图像的灰度值分别为s 1,s 2,另外,取原图像灰度的最小值为r 0,最大值为r m ,对应的变换后的灰度值分别为s 0,s m 。

图像灰度变换增强

图像灰度变换增强 摘要:灰度变换是基于点操作的增强方法,它将每一个像素的灰度值按照一定的数学变换公式转换为一个新的灰度值,如增强处理中的对比度增强。对比度增强可以采用线性拉伸和非线性拉伸。线性拉伸可以将原始输入图像中的灰度值不加区别地扩展。如果要求对局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理时,采用分段线性拉伸。非线性拉伸常采用对数扩展和指数扩展。对数扩展拉伸低亮度去,压缩高亮度区;指数扩展拉伸了高亮区,压缩了低亮度区。 关键词:图像增强,灰度变换,线性变换,分段线性变换,非线性变换 一. 概述 影响系统图像清晰程度的因素很多,例如室外光照度不够均匀就会造成图像灰度过于集中;由CCD (摄像头)获得的图像经过A/D (数/模转换,该功能在图像系统中由数字采集卡来实现)转换、线路传送都会产生噪声污染等等。因此图像质量不可避免的降低了,轻者表现为图像不干净,难于看清细节;重者表现为图像模糊不清,连概貌也看不出来。因此,在对图像进行分析之前,必须要对图像质量进行改善,一般情况下改善的方法有两类:图像增强和图像复原。图像增强不考虑图像质量下降的原因,只将图像中感兴趣的特征有选择的突出,而衰减不需要的特征,它的目的主要是提高图像的可懂度。图像复原技术与增强技术不同,它需要了解图像质量下降的原因,首先要建立"降质模型",再利用该模型,恢复原始图像。 根据图像增强处理过程所在的空间不同,图像增强可分为空余增强法和频域增强法两大类。频域增强是在图像的某种变换域内,对图像的变换系数值进行运算,即作某种修正,然后通过逆变换获得增强了的图像。空域增强则是指直接在图像所在的二维空间进行增强处理,既增强构成图像的像素。空域增强法主要有灰度变换增强,直方图增强,图像平滑和图像锐化等。 图像的灰度变换处理是图像增强处理技术中一种非常基础,直接的空间域图像处理法,也是图像数字化软件和图像显示软件的一个重要组成部分。灰度变换是指根据某种目标条件按一定变换关系逐点改变原图像中每一个像素灰度值的方法。目的是为了改善画质,使图像的显示效果更加清晰。 二. 灰度变换处理 灰度变换的过程可表示为:)],([),(y x f T y x g ,它是指将输入图像中每个像素

数字图像处理实验报告

目录 实验一:数字图像的基本处理操作 (4) :实验目的 (4) :实验任务和要求 (4) :实验步骤和结果 (5) :结果分析 (8) 实验二:图像的灰度变换和直方图变换 (9) :实验目的 (9) :实验任务和要求 (9) :实验步骤和结果 (9) :结果分析 (13) 实验三:图像的平滑处理 (14) :实验目的 (14) :实验任务和要求 (14) :实验步骤和结果 (14) :结果分析 (18) 实验四:图像的锐化处理 (19) :实验目的 (19) :实验任务和要求 (19) :实验步骤和结果 (19) :结果分析 (21)

实验一:数字图像的基本处理操作 :实验目的 1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用; 2、实现图像的读取、显示、代数运算和简单变换。 3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。:实验任务和要求 1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分 成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。 2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分 别显示,注上文字标题。 3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换, 显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。 4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里 叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的 对应关系。 :实验步骤和结果 1.对实验任务1的实现代码如下: a=imread('d:\'); i=rgb2gray(a); I=im2bw(a,; subplot(1,3,1);imshow(a);title('原图像'); subplot(1,3,2);imshow(i);title('灰度图像'); subplot(1,3,3);imshow(I);title('二值图像'); subplot(1,3,1);imshow(a);title('原图像'); 结果如图所示:

数字图像处理图像变换实验报告.

实验报告 实验名称:图像处理 姓名:刘强 班级:电信1102 学号:1404110128

实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件 PC机数字图像处理实验教学软件大量样图 二、实验目的 1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的 简单操作; 2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体 步骤; 3、观察图像的灰度直方图,明确直方图的作用和意义; 4、观察图像点运算和几何变换的结果,比较不同参数条件下的变换效果; 5、观察图像正交变换的结果,明确图像的空间频率分布情况。 三、实验原理 1、图像灰度直方图、点运算和几何变换的基本原理及编程实现步骤 图像灰度直方图是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。 图像点运算是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。点运算可以看作是“从象素到象素”的复制操作,而这种复制操作是通过灰度变换函数实现的。如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为: B(x,y)=f[A(x,y)] 其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值和输出灰度值之间的转换关系。一旦灰度变换函数确定,该点运算就完全确定下来了。另外,点运算处理将改变图像的灰度直方图分布。点运算又被称为对比度增强、对比度拉伸或灰度变换。点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸和均衡等。 图像几何变换是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放和图像旋转等,其理论基础主要是一些矩阵运算,详细原理可以参考有关书籍。 实验系统提供了图像灰度直方图、点运算和几何变换相关内容的文字说明,用户在操作过程中可以参考。下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:

数字图像处理考题2012级

数字图像处理: 一、图像工程的内涵(三个层次:图像处理、图像分析和图像理解及其关系)。 图像工程的内涵: 根据抽象程度和研究方法等的不同,可分为三个层次:图像处理、图像分析和图像理解。 图像处理的内容:主要对图象进行各种加工以改善图象的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。基本特征:输入是图像,输出也是图像,即图像之间进行的变换。显然,这是一种比较严格的图像处理定义,因此也呈现出了某种狭义性。 图像分析的内容:主要对图象中感兴趣的目标进行检测(或分割)和测量,以获得它们的客观信息从而建立对图象的描述。基本特征:输入是图像,输出是数据(即对输入图像进行描述的信息)。 图像理解的内容:在中级图像处理的基础上,进一步研究图象中各目标的性质和它们之间相互的联系,并得出对图象内容含义的理解(对象识别)及对原来客观场景的解释(计算机视觉),从而指导和规划行动。基本特征:以客观世界为中心,借助知识、经验等来把握整个客观世界。“输入是数据,输出是理解”。 三者的关系: 图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。 图像分析则进入了中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图像形式的描述。 图像理解主要是高层操作,基本上是对从描述抽象出来的符号进行运算,其处理过程和方法与人类的思维推理有许多类似之处。 图像的低级处理阶段和高一级的处理阶段是相互关联和有一定重叠性的。根据本课程的任务和目标,重点放在图像处理上,并学习图像分析的基本理论和方法。也就是说本课程中提到的图像处理概念是广义的。 二、观察三幅图的等偏爱曲线,分析:空间分辨率和灰度分辨率同时变化对图像质量的影响

图像的傅里叶变换实验报告

计算机科学与技术系 实验报告 专业名称计算机科学与技术 课程名称数字图像处理 项目名称Matlab语言、图像的傅里叶变换 班级 14计科2班 学号 1404011023 姓名卢爱胜 同组人员张佳佳、王世兜、张跃文 实验日期 2016.11.30

一、实验目的与要求: (简述本次实验要求达到的目的,涉及到的相关知识点,实验的具体要求。) 实验目的: 1了解图像变换的意义和手段; 2熟悉傅立叶变换的基本性质; 3熟练掌握FFT 变换方法及应用; 4通过实验了解二维频谱的分布特点; 5通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。 6评价人眼对图像幅频特性和相频特性的敏感度。 实验要求: 应用傅立叶变换进行图像处理 傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。 二、实验内容 (根据本次实验项目的具体任务和要求,完成相关内容,可包括:实验目的、算法原理、实验仪器、设备选型及连线图、算法描述或流程图、源代码、实验运行步骤、关键技术分析、测试数据与实验结果、其他 ) 1.傅立叶(Fourier )变换的定义 对于二维信号,二维Fourier 变换定义为: 2()(,)(,)j ux uy F u v f x y e dxdy π∞∞ -+-∞-∞= ?? 逆变换: 2()(,)(,)j ux uy f x y F u v e dudv π∞∞ +-∞-∞= ?? 二维离散傅立叶变换为: 11 2()00 1(,)(,)i k N N j m n N N i k F m n f i k e N π---+===∑∑ 逆变换:

数字图像处理实验一 图像的灰度变换

数字图像处理实验报告 (一) 班级:测控1002 姓名:刘宇 学号:06102043

实验一图像的灰度变换 1. 实验任务 熟悉MATLAB软件开发环境,掌握读、写图像的基本方法。 理解图像灰度变换在图像增强的作用,掌握图像的灰度线性变换和非线性变换方法。 掌握绘制灰度直方图的方法,掌握灰度直方图的灰度变换及均衡化的方法。2. 实验环境及开发工具 Windws2000/XP MATLAB 7.x 3. 实验原理 灰度变换 灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。在实际应用中,为了突出图像中感兴趣的研究对象,常常要求局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸: 图1.1 不同的分段线性变换 其对应的数学表达式为:

直方图均衡化 灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频度,它是图像最基本的统计特征。依据定义,在离散形式下,用rk 代表离散灰度级,用pr(rk)代表pr(r),并且有下式成立: n n r P k k r = )( 1,,2,1,010-=≤≤l k r k 式中:nk 为图像中出现rk 级灰度的像素数,n 是图像像素总数,而nk/n 即为频数。 直方图均衡化处理是以累积分布函数变换法为基础的直方图修正法。假定变换函数为 ω ωd p r T s r r )()(0 ?== (a) Lena 图像 (b) Lena 图像的直方图 图1.2 Lena 图像及直方图 当灰度级是离散值时,可用频数近似代替概率值,即 1 ,,1,010)(-=≤≤= l k r n n r p k k k r

相关文档
最新文档