智能控制方法的应用及发展综述..

智能控制方法的应用及发展综述..
智能控制方法的应用及发展综述..

智能控制方法的应用及发展综述

1 智能控制的产生

1.1智能控制产生的背景

早期的自动控制基本上是解决简单对象的控制问题,人们追求研制完全自动运行不用人参与的自治系统。随着控制对象的日益复杂,系统所处的环境因素、控制性能要求都列入了控制系统设计的考虑范围,已有的自动控制方法与技术受到了某种程度的挑战,尤其在学习控制研究与机器人控制方面,矛盾日渐突出,迫切需要为自动控制学科注入新的活力,智能控制正是在这样的背景下产生。

1.2智能控制的产生及发展

智能控制思想最早是由美国普渡大学的傅京孙教授于60年代中期提出的,他在1965年发表的论文中率先提出把人工智能的启发式推理规则用于学习系统,这篇开创性论文为自动控制迈向智能化揭开了崭新的一页.接着,Mendel于1966年在空间飞行器的学习控制中应用了人工智能技术,并提出了“人工智能控制”的新概念;同年,Leondes和Mendel首次使用了“智能控制(Intelligent Control)”一词,并把记忆、目标分解等技术用于学习控制系统;这些反映了智能控制思想的早期萌芽,常被称为智能控制的孕育期.

70年代关于智能控制的研究是对60年代这一思想雏形的进一步深化,是智能控制的诞生和形成期.1971年,傅京孙发表了重要论文,提出了智能控制就是人工智能与自动控制的交叉的“二元论”思想,列举三种智能控制系统:人作为控制器、人机结合作为控制器、自主机器人;1974年,英国的Mamdani教授首次成功地将模糊逻辑用于蒸汽机控制,开创了模糊控制的新方向;1977年,Saridis的专著出版,并于1979年发表了综述文章、,全面地论述了从反馈控制到最优控制、随机控制及至自适应控制、自组织控制、学习控制,最终向智能控制发展的过程,提出了智能控制是人工智能、运筹学、自动控制相交叉的“三元论”思想及分级递阶的智能控制系统框架.

80年代,智能控制的研究进入了迅速发展时期:1984年,Astrom发表了论文,这是第一篇直接将人工智能的专家系统技术引入到控制系统的代表,明确地提出了建立专家控制的新概念;与此同时,Hopfield提出的Hopfield网络及Rumelhart提出的BP算法为70年代以来一直处于低潮的人工神经网络的研究注入了新的活力,继60年代Kilmer和McClloch 提出KBM模型实现对“阿波罗”登月车的控制之后,人工神经网络再次被引入控制领域,并

迅速得到了广泛的应用,从而开辟了神经网络控制;1985年8月,IEEE在美国纽约召开了第一界智能控制学术讨论会;1987年1月,在美国费城由IEEE控制系统学会与计算机学会联合召开了第一界智能控制国际会议,这标志着智能控制作为一门新学科正式建立起来.

进入90年代,关于智能控制的研究论文、著作、会议、期刊大量涌现,应用对象也更加广泛,从工业过程控制、机器人控制、航空航天器控制到故障诊断、管理决策等均有涉及,并取得了较好的效果.

2智能控制概念及应用

2.1智能控制的定义

智能控制至今为止并没有一个公认的、统一的定义。我们为了探究智能控制的概念和技术,开发智能控制新的性能和性能和方法,比较不同研究者和不同国家的成果,就要求对智能控制有某些共同的理解下面提出的是被广泛接受的关于智能控制的定义。

所谓智能控制,即设计一个控制器(或系统),使之具有学习、抽象、推理、决策等功能,并能根据环境(包括被控对象或被控过程)信息的变化作出适应性反应,从而实现由人来完成的任务。智能控制在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。一个系统如果具有感知环境、不断获得信息以减小不确定性和计划、产生以及执行控制行为的能力,即称为智能控制系统. 智能控制技术是在向人脑学习的过程中不断发展起来的,人脑是一个超级智能控制系统,具有实时推理、决策、学习和记忆等功能,能适应各种复杂的控制环境。

2.2智能控制的应用场合

智能控制是自动控制的最新发展阶段,主要用于解决传统控制技术与方法难以解决的控制问题。主要应用场合有:

(1)具有高度非线性、时变性、不确定性和不完全性等特征,一般无法获得精确数学模型的复杂系统的控制问题;

(2)需要对环境和任务的变化具有快速应变能力并需要运用知识进行控制的复杂系统的控制问题;

(3)采用传统控制方法时,必须遵循一些苛刻的线性化假设,否则难以达到预期控制目标的复杂系统的控制问题;

(4)采用传统控制方法时,控制成本高、可靠性差或控制效果不理想的复杂系统的控制问题。

2.3智能控制的理论基础和方法及其应用

智能控制是以控制理论、计算机科学、人工智能、运筹学等学科为基础,扩展了相关的理论和技术,其应用较多的有专家系统、模糊逻辑、神经网络、遗传算法等控制方法,以及自适应科学研究技术、自组织技术、(自)学习技术等组织形式.智能控制的研究内容之一就是把智能控制的相关技术结合或综合交叉结台构成风格和功能各异的智能控制系统和智能控制器。

专家系统是利用专家知识对专门的或困难的问题进行描述. 用专家系统所构成

的专家控制,无论是专家控制系统还是专家控制器,其相对工程费用较高,而且还涉及自动地获取知识困难、无自学能力、知识面太窄等问题. 尽管专家系统在解决复杂的高级推理中获得较为成功的应用,但是专家控制的实际应用相对还是比较少。模糊逻辑用模糊语言描述系统,既可以描述应用系统的定量模型也可以描述其定性模型. 模糊逻辑可适用于任意复杂的对象控制. 但在实际应用中模糊逻辑实现简单的应用控

制比较容易. 简单控制是指单输入单输出系统(SISO) 或多输入单输出系统(MISO)

的控制. 因为随着输入输出变量的增加,模糊逻辑的推理将变得非常复杂。神经网络是利用大量的神经元按一定的拓扑结构和学习调整方法. 它能表示出丰富的特性:并行计算、分布存储、可变结构、高度容错、非线性运算、自我组织、学习或自学习等. 这些特性是人们长期追求和期望的系统特性. 它在智能控制的参数、结构或环境的自适应、自组织、自学习等控制方面具有独特的能力. 神经网络可以和模糊逻辑一样适用于任意复杂对象的控制,但它与模糊逻辑不同的是擅长单输入多输出系统和多输入多输出系统的多变量控制. 在模糊逻辑表示的SIMO 系统和MIMO 系统中,其模糊推理、解模糊过程以及学习控制等功能常用神经网络来实现.模糊神经网络技术和神经模糊逻辑技术:模糊逻辑和神经网络作为智能控制的主要技术已被广泛应用.

2.4智能控制应用的研究

主要是智能控制在工业过程控制、计算机集成制造系统、机器人、航天航空等领域的应用研究。

3能控制研究所面临的问题与发展前景

3.1智能控制研究所面临的问题

首先,智能控制的应用研究目标和主攻方向不够明确。作为应用研究和应用基础研究,智能控制在于寻求有别于传统控制的、新的实用控制技术。离开了实际而纸上谈兵,那就不是真正的应用研究。

其次,智能控制要面向复杂系统。对于一些比较简单的系统,引入智能控制并不值得,犹如用大炮打蚊子一样。如果简单的智能控制系统的复杂性、故障率和成本高于同类应用传统控制系统,那么智

能控制的优越性就会令人质疑。

最后,研制新型智能控制硬件和软件。在智能控制研究中,软件方面存在的问题更大。例如,大多数基于神经网络的控制系统,还停留在“仿真”水平上,未能真正解决实现问题更谈不上实际应用。提高系统的运行速度、实现实时控制、提高对环境的感觉和解释能力、改善信息识别和处理能力、设计模块化的传感器接口等方面要做的事情还很多。

3.2智能控制的发展前景

随着智能控制应用方法的日益成熟,智能控制的研究领域必将进一步扩大。有高级机器人、过程智能控制和智能故障诊断等,及下列领新的应用领域:交通控制(如高速列车、汽车运输、飞机飞行控制等),用于CAD、C』~M、CIMS和CIPS的自动加工控制,医疗过程控制、商业、农业、文化教育和娱乐等。

当代最高意义上的智能自动化要算机器人学的进步和应用。机器人从爬行到直立行走,现在已能用手使用工具,能看、听、用多种语言说话,并能可靠的去干最脏最累最危险的活。据统计,目前世界上有将近100万个机器人在各生产线上工作,美国和日本在核反应堆中使用机器人,印度科学家在2002年8月27日也宣称,他们已经建造成一种6条腿的机器人用于核电站工作。据估计到2010年,智能机器人可能进入家庭,许多家政劳动将由机器人来代替。智能型机器人进入社会服务业,可以当出租车司机、医院护士、家庭保姆和银行出纳等。因此,智能机器人将逐渐代替人类的复杂劳动,解放人类的身体,提高未来休闲时代的生活质量。

按照我国规划,到2010年,70%以上的家庭具备互联网接入条件,大中城市中60%的住宅实现智能化。到时候,新兴的语音识别技术,会在智能家居中运用“生物特征智能识别技术”,对我们脸部、

角膜、指纹等特征进行技术识别,方便我们的生活。远程医疗和健康监护等自动化技术,也将问津寻常人家的日常生活。在手术过程中的麻醉深度智能控制系统,已证明其控制质量超过了人工控制。交通事故死亡率成为人类和平时期非正常死亡概率的第一因素,引入智能交通系统,可以大大缓解这一状况。智能交通系统是信息自动化处理的系统,包括收集最基本的道路信息,建立多种交通模型,需求最优的交通诱导,给出行者提供充分的信息。智能交通系统在美国的一些城市已经实施,它可以减小10%的废弃材料,20%的交通延迟,30%的停车次数。有关资料表明:2010年智能交通将会在世界性大城市普及,2020年,智能交通将成为生活中的一部分。我国科技部已经正式确定上海、广州、深圳、青岛、重庆等9

个城市为首批全国智能交通系统应用和示范工程试点城市。

全世界约有6万种语言,智能化电脑同步翻译机的出现,将真正实现人类语言达到沟通无障碍的“全球通”状。目前我国科学家已经成功试制出中国和韩国间的同声翻译,以及中日间掌上电脑的同步翻译。预计十多年后,会有大量的语音翻译产品问世,30年后将出现没有领域限制的翻译系统,全球将基本实现无语言障碍交流。决策系统、专家控制系统、学习控制系统、模糊控制系统、神经网络控制、智能规划和故障诊断等智能控制的一些研究成果,也已被应用于各类工业(电力、化工、冶金、造纸等)生产过程控制系统和智能化生产(制造)系统,如:飞行器制造,汽车自动驾驶系统等。智能技术广泛应用于社会,有利于提高人民的生活质量,提高劳动生产率,提高全社会的文化素质,创造更高的就业率。目前,在世界范围内,智能控制和智能自动化科学与技术正在成为自动化领域中最兴旺和发展最

迅速的一个分支学科,并被许多发达国家确认为面向21世纪和提高国家竞争力的核心技术。4以遗传算法为例讲述智能控制系统

4.1遗传算法的发展及应用

从20世纪60年代起,美国、德国等国家的一些科学家就开始研究用模仿生物和人类进化的方法求解复杂优化问题,从而形成了模拟进化优化方法(Optimization Method by Simulated Evolution),其代表性方法有遗传算法(GA:Genetic Algorithms)、进化规划(EP:Evolutionary Programming)、进化策略(ES:Evolutionary Strategies)。

常规的数学优化技术基于梯度寻优技术,计算速度快,但要求优化问题具有可微性,且通常只能求得局部最优解;而模拟进化方法无可微性要求,适用于任意的优化问题,尤其适用于求解组合优化问题以及目标函数不可微或约束条件复杂的非线性优

化问题。由于它们采用随机优化技术,所以会以较大的概率求得全局最优解。其计算费用较高的问题也因计算机软硬件技术的飞速发展而不再成为制约因素。

4.2遗传算法的基本原理

遗传算法是基于自然选择和基因遗传学原理的搜索方法,它将“优胜劣汰、适者生存”的生物进化原理引入到由待优化参数形成的编码串种群中,按照一定的适应度函数及一系列遗传操作对各个个体进行筛选,使适应度值较高的个体被保留下来,从而组成新的种群,新种群中包含了上一代的大量信息,并且引入了新的优于上一代的个体。如此周而复始,种群中各个体的适应度不断提高,直至满足一定的收敛条件。最后,以种群中适应度值最高的个体作为待优化参数的最优解。

遗传算法也用到了随机搜索技术,但它通过对参数空间的随机编码并用适应度函数作为工具来引导搜索过程向着更有效的方向发展,因而它不同于常规的随机法。

4.2.1遗传算法的具体实现

1.编码方式的选取

利用遗传算法求解实际问题时,问题的解是用字符串来表示的,遗传算子也是直接对字符串进行操作的。因此,如何用适当的字符串编码来表示问题的解成为了遗传算法应用过程中的首要问题。

目前所使用的字符串编码方式主要有:二进制、浮点数和符号等。

(1)采用二进制形式编码,个体的位数多,描述得比较细致,从而加大了搜索范围,但交叉运算的计算量较大;由于大量的具体问题本身都是十进制的,并且还需对实际参数进行编码和译码,从而增加了额外的计算时间。(2)采用浮点数编码,交叉运算的计算量较小,但变异过程难于进行。(3)符号编码方式通常在一些专门的应用场合使用。

2. 初始种群的产生

初始种群对应着问题的初始解,通常有两种方式产生:①完全随机方式产生(字符串每一位均随机产生);②随机数发生器方式产生(整个字符串用随机数发生器一次产生)。另外,如果对于寻优问题有某些先验知识,则可先将这些先验知识转变为必须满足的一组约束,然后再在满足这些约束的解中随机地选取个体以组成初始种群。

另外,如果对于寻优问题有某些先验知识,则可先将这些先验知识转变为必须满足的一

组约束,然后再在满足这些约束的解中随机地选取个体以组成初始种群。

3. 适应度函数的确定

适应度函数是遗传算法与实际优化问题之间的接口。在遗传算法中要求适应度函数值是非负的,且任何情况下都希望其值越大越好;而实际优化问题的目标函数并不一定满足这个条件,有的是正的,有的可能为负,甚至可能是复数值。因此,对于任意优化问题,首先应把其数学形式表示为遗传算法适于求解的形式,同时要保证二者在数学优化层面上是等价的。这个过程称为适应度转换。

适应度转换首先要保证适应度值是非负的,其次要求目标函数的优化方向应与适应度值增大的方向一致。设实际优化问题的目标函数为J(x),遗传算法的适应度函数为f(x),则有:

①可以将适应度函数表示为实际优化问题目标函数的线性形式,即有

其中,a ,b 是系数,可根据具体问题的特征及所期望适应度的分散程度来确定。

②对于最小化问题,一般采用如下转换形式:

其中,cmax 既可以是到目前为止所有进化代中目标函数 J(x) 的最大值(此时cmax 将随着进化而有所变化),也可以根据经验人为设定。

③对于最大化问题,一般采用如下转换形式:

min min ()()0

()0J x c J x c f x -->?=??

其中,cmin 既可以是当前代中目标函数 J(x) 的最小值,也可以根据经验人为设定

4. 复制(选择)(Reproduction or Selection )

复制是基于适者生存理论而提出的,是指种群中每一个体按照适应度函数进入到匹配池中的过程。适应度值高于种群平均适应度的个体在下一代中将有更多的机会繁殖一个或多个后代,而低于平均适应度的个体则有可能被淘汰掉。复制的目的在于保证那些适应度高的优良个体在进化中生存下去,复制不会产生新的个体。常用的选择方法有:赌轮法、两两竞数法、排序法

5. 交叉(Crossover )

交叉是指对从匹配池中随机选出的两个个体按一定的交叉概率 pc 部分地交换某些基因的过程。一般分两步实现:第一步是将新复制产生的匹配池中的个体随机两两配对;第二步是进行交叉繁殖,产生一对新的个体。交叉的目的是为了产生新的基因组合,生成新的个体,避免每代种群中个体的重复。

6. 变异(Mutation)

一般的变异操作只作用于采用二进制编码的某单个个体,它以一定的变异概率pm对个体的某些位进行取反操作。如同自然界很少发生基因突变一样,变异概率pm一般都取得比较小。变异的目的是为了增加种群个体的多样性,防止丢失一些有用的遗传模式。

7. 常规的数学优化方法有数学上比较严格的收敛判据,而遗传算法的收敛判据通常是启发式的。由于遗传算法没有利用梯度信息,因此要从数学上构造比较严格的收敛判据相当困难。常用的收敛判据有:①根据计算时间和所采用计算机的性能确定收敛判据:一般采用指定最大迭代次数的方法;②从解的质量方面确定判据:如果连续几代(或几十代)种群中的最优解没有变化,则认为算法收敛;或种群中最优个体的适应度与平均适应度之差和平均适应度的比值小于某一给定值时,也可以认为算法已经收敛。

图1 遗传算法流程图

4.2.2遗传算法的特点

遗传算法还具有以下几方面的特点:

(1)遗传算法从问题解的串集开始搜索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。

(2)遗传算法同时处理群体中的多个个体,即对搜索空间中的多个解进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。

(3)遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作。适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。这一特点使得遗传算法的应用范围大大扩展。

(4)遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导他的搜索方向。

(5)具有自组织、自适应和自学习性。遗传算法利用进化过程获得的信息自行组织搜索时,适应度大的个体具有较高的生存概率,并获得更适应环境的基因结构。

4.3遗传算法的应用现状

进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。

随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习,这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其它智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗

传算法在这方面将会发挥一定的作用,五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP 和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的智能计算方法,即同遗传算法具有相同之处,也有各自的特点。目前,这三者之间的比较研究和彼此结合的探讨正形成热点。

1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。

D.H.Ackley等提出了随机迭代遗传爬山法(Stochastic Iterated Genetic

Hill-climbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力。

H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。

国内也有不少的专家和学者对遗传算法的交叉算子进行改进。2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题 2004年,赵宏立等针对简单遗传算法在较大规模组合优化问题上搜索效率不高的现象,提出了一种用基因块编码的并行遗传算法(Building-block Coded Parallel GA,BCPGA)。该方法以粗粒度并行遗传算法为基本框架,在染色体群体中识别出可能的基因块,然后用基因块作为新的基因单位对染色体重新编码,产生长度较短的染色体,在用重新编码的染色体群体作为下一轮以相同方式演化的初始群体。 2005年,江雷等针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。

自动控制现代控制与智能控制的关系

自动控制、现代控制与智能控制的关系 一、基本区别 控制理论发展至今已有100多年的历史,经历了“经典控制理论”和“现代控制理论”的发展阶段,已进入“大系统理论”和“智能控制理论”阶段。智能控制理论的研究和应用是现代控制理论在深度和广度上的拓展。20世纪80年代以来,信息技术、计算技术的快速发展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智能控制系统的发展已成为一种趋势。 自动控制理论中建立在频率响应法和根轨迹法基础上的一个分支。经典控制理论的研究对象是单输入、单输出的自动控制系统,特别是线性定常系统。经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频率域方法。建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。 在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。 二、华山论剑:自动控制的机遇与挑战 传统控制理论在应用中面临的难题包括:(1)传统控制系统的设计与分析是建立在已知系统精确数学模型的基础上,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型;(2)研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合;(3)对于某些复杂的和包含不确定性的对象,根本无法用传统数学模型来表示,即无法解决建模问题;(4)为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初始投资和维修费用,降低了系统的可靠性。 为了讨论和研究自动控制面临的挑战,早在1986年9月,美国国家科学基金会(NSF)及电气与电子工程师学会(1EEE)的控制系统学会在加利福尼亚州桑克拉拉大学(University of Santa Clare)联合组织了一次名为“对控制的挑战”的专题报告会。有50多位知名的自动控制专家出席了这一会议。他们讨论和确认了每个挑战。根据与会自动控制专家的集体意见,他们发表了《对控制的挑战——集体的观点》,洋洋数万言,简直成为这一挑战的宣言书。 到底为什么自动控制会面临这一挑战,还面临哪些挑战,以及在哪些研究领域存在挑战呢? 在自动控制发展的现阶段,存在一些至关重要的挑战是基于下列原因的:(1)科学技术

智能控制在汽车上应用的进展综述

智能控制在汽车上应用的进展综述 一、简介 1.1汽车智能化综述 从上个世纪的末期,全球的汽车以汽车的电动化、智能化、网联化为主题进入一个重大的历史时期。到本世纪初,随着ICT技术的发展,汽车的智能化和网联化系统随之诞生,由此产生了一种新型的交通系统。 “智能汽车”是在普通汽车的基础上增加了先进的传感器、控制器、执行器等装置,通过车载传感系统和信息终端实现与人、车、路等的智能信息交换,使汽车具备智能的环境感知能力,能够自动分析汽车行驶的安全及危险状态,并使汽车按照人的意愿到达目的地,最终实现替代人来操作的目的。 从汽车自身的智能化来讲,我们现在处于这种汽车的一种智能化的初级阶段,即智能驾驶辅助这个阶段,其终极目标就是无人驾驶。另外从智能汽车发展模式来讲是两种模式,一种是依靠自身车载传感决策和控制系统,来实现自动驾驶。另外一种是通过协同的方式,借助通信的技术,利用车联网和物联网的整合,来实现它的整个一种智能化的驾驶。 总之,汽车的智能化可以归结为两轴或者两个发展,一个是纵轴,就是由现在的部分功能的替代到以后完全的无人化驾驶,另外一个就是自身的提升,单车的智能化并不能解决交通的问题,所以必须通过网联化把汽车和交通系统,交通所有参与者在一个平台上一个系统下进行完全的可控可调,这样才能彻底地改变交通社会现在面临的诸如安全、拥堵、节能的问题。所以未来期望或者目标的实现是一个智能网联的汽车。 智能汽车它会带来对我们社会产业带来什么样的变化?首先我们关注的是安全,通过汽

车的智能化、网联化,交通事故可以降低到目前的1%。现在每年因为交通事故死亡人数大概130万,也就是说在不远的将来也许二十年三十年以后,全球交通事故死亡率会低于1万甚至更低,未来接近的目标是零死亡零事故。第二,对于交通拥堵、油耗,对于整个经济,还有对于人的生活方式的影响都有非常高的期待。 1.2国内外汽车智能化研究现状 就汽车智能化发展而言,从美国来讲,从本世纪初他们对于智能汽车提出了一个定义,把它分为五个等级,第一个等级就是没有智能化,第二个等级是具有特殊功能的一些驾驶辅助,第三个等级是一个部分的自动驾驶,然后是高度自动驾驶到完全自动驾驶,以及无人驾驶这样五个等级,它设计的目标是到2025年能够实现完全智能驾驶。所以基于此,美国专门成立了交通变革研究中心,另外其交通部将推动汽车智能化网联化的发展作为一个国家战略,在。对于欧盟来讲,它制定了详细的发展路径图,就是从当下现有的驾驶辅助到2030年实现无人驾驶,或者能够产生无人驾驶的这种技术和产品,这是它的愿景。从日本来讲,不光从车,还从车和路两端来进行协调的发展,日本这一个计划详细地定义了从汽车、道路到各种法规协调发展的一个庞大的技术。 发展汽车智能化一个强劲的动力是标准,汽车这个技术持续的迭代是依托于标准的,一个是排放的法规,一个是碰撞的法规,现在主动安全或智能安全的一些项目,已经纳入了汽车的法规评定体系DSRC里,这是对于技术持续进步的一个强大的推进力。 从欧美整个发展情况比较来看各有特色,美国主打推动IT企业,并在该领域独领风骚,另外它在程序还有法规方面也是领先一步,从日本来讲,它的信息化体系是全球做得最为完备的,它现在有一个VICS,交通系统信息,现在整个汽车是8千多万辆,有4千万辆已经入网,对于大数据信息化它有很强的一些设备支持。另外以丰田、日产这些汽车企业主导智

智能控制技术现状与发展

摘要:在此我综述智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法;然后介绍智能控制在各行各业中的应用现状;接着论述智能控制的发展。智能控制技术的主要方法,介绍了智能控制在各行各业中的应用。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制应用自动化 浅谈智能控制技术现状及发展 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 一、智能控制的性能特点及主要方法 1.1根据智能控制的基本控制对象的开放性,复杂性,不确定性的特点,一个理想的智能控制系统具有如下性能: (1)系统对一个未知环境提供的信息进行识别、记忆、学习,并利用 积累的经验进一步改善自身性能的能力,即在经历某种变化后,变化后的

智能控制综述

智能控制综述 摘要:本文首先介绍了智能控制的发展和智能控制系统的结构和特点以及与传统控制的关系。然后,综述几种智能控制研究的主要内容。 关键词:智能控制、自动控制、研究内容 1、智能控制的发展 任何一种科学技术的发展都由当时人们的生产发展需求和知识水平所决定和限制,控制科学也不例外。1948年,美国著名的控制论创始人维纳(N.Wiener)在它的著作《控制论》中首次将动物与机器相联系。1954年钱学森博士在《工程控制论》中系统的阐明了控制论对航空航天和电子通讯等领域的意义及影响,1965年傅京孙(K.S.Fu)教授首先把人工智能的启发式推理规则用于学习控制系统,又于1971论述了人工智能与自动控制的交集关系,成为国际公认的智能控制的先行者和奠基人[1]。 20世纪60年代,随着航海技术,空间技术的发展,控制领域面临着人们对其性能要求愈来愈高和被控对象的复杂性和不确定性,被控对象的复杂性和不确定性主要表现在被控对象的非线性和不确定性,以及分散的传感元件与执行元件,复杂的信息网络和庞大的数据量。而传统控制在解决这些问题时存在三方面的问题:一、由于传统控制理论是建立在以微积分为工具的精确模型上,所以无法对高度复杂和不确定的被控对象进行描述;二、传统控制理论中的自适应控制和Robust控制虽可克服系统中所包含的的不确定性,达到优化控制的目的,但这些方法只适用于缓慢变化的情况。三、传统控制系统输入较单一,而面对海量信息(视觉的、听觉的、触觉的等)的复杂环境,智能控制应运而生。 智能控制是对传统控制的补充和发展,是自动控制发展的高级阶段,而传统控制是智能控制产生的基础。 国内对智能控制的研究今年来也十分活跃。从八十年代人工智能与系统科学相结合到863计划的实施,智能控制在我国的发展已有稳固的基础。 2、智能控制结构与特点 智能控制是自动控制发展的高级阶段,是人工智能、控制论、系统论、信息论、仿生学、和计算机等多种学科的高度结合,是一门新兴的边缘交叉学科。它不仅包含了自动控制、人工智能、系统理论和计算机科学,而且还涉及到生物学,正在成为自动化领域中最兴旺和发展最迅速的一个分支学科[2]。 (1)智能控制具有明显的跨学科、多元结构特点。至今,智能控制方面的专家已提出二元结构、三元结构、四元结构等三种结构,它们可分别以交集的形式表示如下: IC=AI∩AC (1) IC=AI∩CT∩OR (2) IC=AI∩CT∩ST∩OR (3) 上式中,各子集的含义为 AI——人工智能;AC——自动控制;CT——控制论; OR——运筹学;ST——系统论;IC——智能控制。 智能控制的二元交集结构、三元交集结构和四元交集结构分别由傅京孙、萨克迪斯(G.N.Saridis)和蔡自兴于1971,1977和1986年提出的[3],以上的交集表达式也可表示成如下图1、2、3的形式:

智能控制器使用手册

一概述 智能控制器是框架式空气断路器的核心部件,适用于50~60Hz电网,主要用作配电、馈电或发电保护,使线路和电源设备免受过载、短路、接地/漏电、电流不平衡、过压、欠压、电压不平衡、过频、欠频、逆功率等故障的危害;通过负载监控,需量保护,区域连锁等功能实现电网的合理运行。同时也用作电网节点的电流、电压、功率、频率、电能、需量、谐波等电网参量的测量;故障、报警、操作、电流历史最大值、开关触头磨损情况等运行维护参数的记录;当电力网络进行通讯组网时,智能控制器可用为电力自动化网络的远程终端实现遥测,遥信,遥控,遥调等,智能控制器支持多种协议以适用不同的组网要求。 二基本功能 对于M型无任何可选功能(加*的项目)时其功能配置为基本功能,如表1所示: 表1 基本功能配置 2.1.3 通讯功能 通讯功能为可选项,对于M型没有通讯功能,对于H型通讯协议可根据需要选择为Modbus,Profibus-DP,Device net.

2.1.4增选功能选择 增选功能为可选项,M型,H型都可以选择增选功能配置,不同增选功能代号与增选功能容如表2所示。 2.1.5 区域连锁及信号单元的选择 “区域连锁及信号单元”为可选项,M型、H型都可以选择信号单元的功能配置,当信号单元选择为S2,S3时,控制器具备区域连锁功能。 2.2 技术性能 2.2.1 适用环境 工作温度:-10℃~+70℃(24h?平均值不超过+35℃) 储存温度:-25℃~+85℃ 安装地点最湿月的月平均最大相对湿度不超过90%,同时该月的月平均最低温度不超过+25℃,允许由于温度变化产生在产品表面的凝露。 污染等级:3级。 (在和断路器装配在一起的情况下) 安装类别:Ⅲ。 (在和断路器装配在一起的情况下) 2.2.2工作电源 由辅助电源和电源互感器同时供电,保证负载很小和短路情况下控制都可以可靠工作。控制器的供电方式有下面3种方式:

智能控制技术及其发展趋势

智能控制技术及其发展趋势 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。智能控制正是在这种条件下产生的。它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。1985年,在美国首次召开了智能控制学术讨论会。1987年又在美国召开了智能控制的首届国际学术会议,标志着智能控制作为一个新的学科分支得到承认。智能控制具有交叉学科和定量与定性相结合的分析方法和特点。 一个系统如果具有感知环境、不断获得信息以减小不确定性和计划、产生以及执行控制行为的能力,即称为智能控制系统。智能控制技术是在向人脑学习的过程中不断发展起来的,人脑是一个超级智能控制系统,具有实时推理、决策、学习和记忆等功能,能适应各种复杂的控制环境。 智能控制与传统的或常规的控制有密切的关系,不是相互排斥的。常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。

智能控制概论

内蒙古科技大学 智能控制概论结课报告 题目:一级倒立摆板模糊控制 学生姓名: 学号: 专业:测控技术与仪器 班级: 指导教师:刘慧博

目录 第1章概述 (3) 1.1 一阶倒立摆的概述 (3) 1.2 倒立摆系统的组成 (4) 1.3 倒立摆的控制方法 (4) 第二章倒立摆的建模 (5) 2.1 一级倒立摆的物理模型 (5) 2.2 数学模型的建立 (5) 2.3 模糊控制器的设计 (7) 第三章一级倒立摆系统的Simulink模型及系统仿真 (8) 3.1 MATLAB及Simulink (8) 3.2 一级倒立摆系统的Simulink的模型 (8) 3.3 仿真结果 (9) 第四章总结 (10) 参考文献 (11)

第1章概述 1.1 一阶倒立摆的概述 倒立摆系统是典型的自不稳定的非线性系统,由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多抽象的控制概念如控制系统的稳定性、可控性、快速性和抗干扰能力,都可以通过倒立摆系统直观地表示出来。 早在20世纪60年代,人们就开始了对倒立摆系统的研究。1966年Schacfer 和Cannon应用Bang-Bang控制理论,将一个曲轴稳定于倒置位置。到了20世纪60年代后期,倒立摆作为一个典型不稳定、非线性的例证被提出。自此,对于倒立摆系统的研究便成了控制界关注的焦点。 倒立摆的种类很多,有悬挂式倒立摆、平行倒立摆、环形倒立摆、平面倒立摆;倒立摆的级数可以是一级、二级、三级、四级乃至多级;倒立摆的运动轨道可以是水平的,还可以是倾斜的(这对实际机器人的步行稳定控制研究更有意义);控制电机可以是单电机,也可以是多级电机。 目前有关倒立摆的研究主要集中在亚洲,如中国的北京师范大学、北京航空航天大学、中国科技大学;日本的东京工业大学、东京电机大学、东京大学;韩国的釜山大学、忠南大学,此外,俄罗斯的圣彼得堡大学、美国的东佛罗里达大学、俄罗斯科学院、波兰的波兹南技术大学、意大利的佛罗伦萨大学也对这个领域有持续的研究。近年来,虽然各种新型倒立摆不断问世,但是可自主研发并生产倒立摆装置的厂家并不多。目前,国内各高校基本上都采用香港固高公司和加拿大Quanser公司生产的系统;其它一些生产厂家还包括(韩国)奥格斯科技发展有限公司(FT-4820型倒立摆)、保定航空技术实业有限公司;最近,郑州微纳科技有限公司的微纳科技直线电机倒立摆的研制取得了成功。

人工智能的发展及应用

人工智能的发展及应用 这是个信息爆炸自动控制飞速发展的时代,而在这样的时代中,人工智能也取得了飞速的发展。成为了最前沿最热门的学科和研究方向之一。 人工智能的定义 “人工智能” (Artificial Intelligence) 一词最初是在1956 年Dartmouth 学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支, 它企图了解智能的实质, 并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。 人工智能理论进入21 世纪, 正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品” , 并使之在越来越多的领域超越人类智能, 人工智能将为发展国民经济和改善人类生活做出更大贡献。 人工智能的应用领域 1. 在管理系统中的应用 (1) 人工智能应用于企业管理的意义主要不在于提高效率, 而是用计算机实现人们非常需要做, 但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中, 以数据管理和处理为中心, 围绕企业的核心业务和主导流程建立若干个主题数据库, 而所有的应用系统应该围绕主题数据库来建立和运行。换句话说, 就是将企业各部门的数据进行统一集成管理, 搭建人工智能的应用平台, 使之成为企业管理与决策中的关键因子。 2. 在工程领域的应用

(1) 医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用, 具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题, 作为医生诊断、治疗的辅助工具。事实上, 早在1982年, 美国匹兹堡大学的Miller 就发表了著名的作为内科医生咨询的Internist 2? 内科计算机辅助诊断系统的研究成果, 由此, 掀起了医学智能系统开发与应用的高潮。目前, 医学智能系统已通过其在医学影像方面的重要作用, 从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。 (2) 地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978 年美国 斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECT”OR, 该系统用于勘探评价、区域资源估值和钻井井位选择等, 是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积, 价值超过1 亿美元。 3. 在技术研究中的应用 (1) 在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器, 以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动减少了任务因素造成的无擦, 提高了检测的可靠性, 实现了超声检测和评价的自动化、智能化。 (2) 人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点, 因此我们必须在传统技术的基础上进行网络安全技 术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更 高级AI 通用和专用语言, 和应用环境以及开发专用机器, 而与人工智能技术则为我们提供了可能性。 人工智能的发展 人工智能的发展也并不是一帆风顺的,人工智能的研究经历了以下几个阶段: 孕育阶段:古希腊的Aristotle( 亚里士多德)( 前384-322) ,给出了形式逻辑的基本规律。英国的哲学家、自然科学家Bacon(培根)(1561-1626),系统地给出了归纳法。“知识就是力量”

智能控制技术综述

网络高等教育 本科生毕业论文(设计)需要完整版请点击屏幕右上的“文档贡献者” 题目:智能控制技术综述

20世纪20年代,在建立了以频域法为主的经典控制理论的基础上,智能控制技术逐步发展。随着信息技术的进步,许多新方法和新技术进入工程化、产品化阶段。这对自动控制理论技术提出了新的挑战,促进了智能理论在控制技术中的应用。在智能控制技术比较的基础上,较详细地阐述了智能控制技术主要方式的特点及优化算法,并举例说明。智能控制技术将不断地发展和充实。 关键词:自动化;智能控制;应用

摘要............................................................. I 1 绪论.. (1) 1.1 智能控制技术简介 (1) 1.2 智能控制技术研究的领域及应用 (1) 1.2.1模糊逻辑控制 (1) 1.2.2神经网络控制 (1) 1.3 智能控制技术的应用现状 (1) 1.4 本论文的主要工作 (1) 2 智能控制理论概述 (2) 2.1 智能控制的基本概念 (2) 2.2 智能控制技术的主要方法 (2) 2.2.1 模糊控制 (2) 2.2.2 专家控制 (2) 2.2.3 神经网络控制 (3) 2.2.4 集成智能控制 (3) 2.3 智能控制技术常用的优化算法 (3) 2.3.1 遗传算法 (3) 2.3.2 蚁群算法 (3) 3 模糊控制及其应用 (4) 3.1 模糊控制理论提出 (4) 3.1.1 模糊控制理论的概念 (4) 3.1.2 模糊控制理论与传统控制相比的优势 (4) 3.2 模糊控制理论在制冷领域的应用情况 (4) 3.3 模糊控制理论在磨煤机控制系统领域的应用情况 (4) 4 神经网络控制及其应用 (5) 4.1 神经网络控制理论提出 (5) 4.1.1 神经网络控制理论的概念 (5) 4.1.2 神经网络控制理论与传统控制相比的优势 (5)

智能控制发展趋势及应用

智能控制的发展趋势和应用 学号0000000 姓名****** 老师钟春富

摘要:描述了智能控制产生的历史以及全世界对于智能控制有研究的多个国家在智能控制的研究方向以及研究水平,介绍了智能控制的发展趋势以及智能控制发展面临的问题,详述了智能控制的主要研究方向,说明了智能控制的应用方向以及具体应用,展望了智能控制的发展前景以及对于社会生产和日常生活的积极意义。 关键词:智能控制、模糊控制、神经网控制、专家控制、智能化。 一、智能控制的产生 人类的进化归根结底是智能的进化,而智能反过来又为人类的进步服务。我们学习与研究智能系统、智能机器人和智能控制等,其目的就在于创造和应用智能技术和智能系统,从而为人类进步服务。因此,可以说对智能控制的钟情、期待、开发和应用,是科技发展和人类进步的必然趋势。 在科学技术发展史上,控制科学同其他技术科学一样,它的产生与发展主要由人类的生产发展需求和人类当时的知识水平所决定和限制的。 20世纪以来,特别是第二次世界大战以来,控制科学与技术得到了迅速的发展,由研究单输入单输出被控对象的经典控制理论,发展成了研究多输入多输出被控对象的现代控制理论。1948年,美国著名的控制论创始人维纳(N.Wiener)在他的《控制论》中第一次把动物和机器相提并论,引起哲学界的轩然大波,有人骂控制论是“伪科学”。 直到1954年钱学森博士在《工程控制论》中系统地揭示了控制论这一新兴学科对电子通讯、航空航天和机械制造工业等领域的重要意义和深远影响后,反控制论的热潮才逐渐开始平息。20世纪60年代,由于空间技术,海洋技术和机器人技术发展的需要,控制领域面临着被控对象的复杂性和不确定性,以及人们对控制性能要求越来越高的挑战。被控对象的复杂性和不确定性表现为对象特性的高度非线性和不确定性,高噪声干扰,系统工作点动态突变性,以及分散的传感元件与执行元件,分层和分散的决策机构,复杂的信息模式和庞大的数据量。 面对复杂的对象,复杂的环境和复杂的任务,用传统控制(即经典控制和现代控制)

智能控制技术实验报告

《智能控制技术》实验报告书 学院: 专业: 学号: 姓名:

实验一:模糊控制与传统PID控制的性能比较 一、实验目的 通过本实验的学习,使学生了解传统PID控制、模糊控制等基本知识,掌握传统PID控制器设计、模糊控制器设计等知识,训练学生设计控制器的能力,培养他们利用MATLAB进行仿真的技能,为今后继续模糊控制理论研究以及控制仿真等学习奠定基础。 二、实验内容 本实验主要是设计一个典型环节的传统PID控制器以及模糊控制器,并对他们的控制性能进行比较。主要涉及自控原理、计算机仿真、智能控制、模糊控制等知识。 通常的工业过程可以等效成二阶系统加上一些典型的非线性环节,如死区、饱和、纯延迟等。这里,我们假设系统为:H(s)=20e0.02s/(1.6s2+4.4s+1) 控制执行机构具有0.07的死区和0.7的饱和区,取样时间间隔T=0.01。 设计系统的模糊控制,并与传统的PID控制的性能进行比较。 三、实验原理、方法和手段 1.实验原理: 1)对典型二阶环节,根据传统PID控制,设计PID控制器,选择合适的PID 控制器参数k p、k i、k d; 2)根据模糊控制规则,编写模糊控制器。 2.实验方法和手段:

1)在PID控制仿真中,经过仔细选择,我们取k p=5,k i=0.1,k d=0.001; 2)在模糊控制仿真中,我们取k e=60,k i=0.01,k d=2.5,k u=0.8; 3)模糊控制器的输出为:u= k u×fuzzy(k e×e, k d×e’)-k i×∫edt 其中积分项用于消除控制系统的稳态误差。 4)模糊控制规则如表1-1所示: 在MATLAB程序中,Nd用于表示系统的纯延迟(Nd=t d/T),umin用于表示控制的死区电平,umax用于表示饱和电平。当Nd=0时,表示系统不存在纯延迟。 5)根据上述给定内容,编写PID控制器、模糊控制器的MATLAB仿真程序,并记录仿真结果,对结果进行分析。 表1-1 FC的模糊推理规则表 四、实验组织运行要求 根据本实验的综合性、设计性特点以及要求学生自主设计MATLAB仿真程序的要求以及我们实验室的具体实验条件,本实验采用以学生自主训练为主的开

智能控制理论及应用的发展现状

●专家论谈  智能控制理论及应用的发展现状 杭州浙江大学工业控制技术研究所 (310027) 许晓鸣 孙优贤上海交通大学自动化系 (200030) 熊 刚 在控制工程实践中,人们常常涉及到传感器、执行器、通信系统、计算机以及控制策略和具体算法。它们构成的控制系统可以比拟成一个人,如图1。传感器用来采集反映被控对象特性的信息,它就象人的五官;执行器用来把控制决策命令施加于被控对象,它好比人的四肢;通信技术把传感器采集到的信息及时送到控制器,就象人们的神经系统;计算机是控制器的硬件环境,就象人的脑袋。这四部分在控制系统设计中占去人们大部分精力, 但是控制策略和具体算法就好象人的大脑一样,是控制系统的“指挥中心”。设计尽量“聪明”和适用的控制算法是控制理论发展的动力和内容。 图1 控制系统的构成框图 1 智能控制的兴起 111 自动控制的发展与挫折 本世纪40~50年代,以频率法为代表的单变量系统控制理论逐步发展起来,并且成功地用在雷达及火力控制系统上,形成了今天所说的“古典控制理论”。60~70年代,数学家们在控制理论发展中占了主导地位,形成了以状态空间法为代表的“现代控制理论”。他们引入了能控、能观、满秩等概念,使得控制理论建立在严密精确的数学模型之上,从而造成了理论与实践之间的巨大分歧。70年代后,又出现了“大系统理论”。但是,由于这种理论解决实际问题的能力更弱,它很快被人们放到了一边。112 人工智能的发展 斯坦福大学人工智能研究中心的N ilsson 教授认为:“人工智能是关于知识的科学——怎样表示知识以及怎样获得知识并使用知识的科学”。M IT 的W in ston 教授指出:“人工智能就是研究如何使计算机去做过去只有人才做的智能性工作”。 1956年以前是人工智能的萌芽期。英国数学家图灵(A 1M 1T u ring 1912 ~1954)为现代人工智能作了大量开拓性的贡献;1956年~1961年是人工智能的发展期,人们重点研究了诸如用机器解决数学定义,通用问题求解程序等。1961年以后人工智能进入了飞跃期,主要内容涉及知识工程、自然语言理解等。 人们研究人工智能方法也分为结构模拟派和功能模拟派,分别从脑的结构和脑的功能入手进行研究。113 智能控制的兴起 建立于严密的数学理论上的控制理论发展受到挫折,而模拟人类智能的人工智能却迅速发展起来。 控制理论从人工智能中吸取营养求发展成为必然。 工业系统往往呈现高维、非线性、分布参数、时变、不确定性等复杂特征。特别是非线性对控制结果的影响复杂,控制工程人员很难深入理解,更谈不上设计出合适的控制算法。不确定性是最难以解决的问题,也是导致大系统理论失败的根本原因。但是,对这些问题用工程控制专家经验来解决则往往是成功的。人是最聪明的控制器,模仿人是一种途径。 萨里迪斯(Saridis )于1977年提出了智能控制的三元结构定义,即把智能控制看作为人工智能、自动控制和运筹学的交点。在智能控制发展初期,美国普渡大学的傅京孙(K 1S 1Fu )教授首先提出了学习控制的概念,引入了人工智能的直觉推理。后来在人工智能的概念模拟基础上,发展了许多智能控制方法,如自整定、参数调整P I D 等。再后来则以发展实用的智能控制算法为主,尤以专家系统和神经元网络最为突出。 2 智能控制的发展框架 图2 智能控制的发展框架 现在有关智能控制方面的论文很多,我们可以把

智能控制技术及其应用 毕业论文

摘要:本文主要介绍了智能控制技术从经典控制理论、现代控制理论发展到今天的智能控制理论的发展过程和主要方法,并介绍了智能控制在工业发展、机械制造、电力电子学研究领域中的应用。 关键字:自动化智能控制应用 随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 一、智能控制的发展过程 从经典控制理论、现代控制理论发展到今天的智能控制理论,经历了很长时间。 四十年代到五十年代形成了经典控制理论。经典控制理论中基于传递函数建立起来的如频率特性、根轨迹等图解解析设计方法,对于单输入-单输出系统极为有效,至今仍在广泛地应用。但传递函数对处于系统内部的变量不便描述,对某些内部变量还不能描述,且忽略了初始条件的影响。鼓传递函数描述不能包含系统的所有信息。 现代控制理论主要研究具有高性能、高精度的多变量变参数系统的最优控制问题,它对多变量有很强的描述和综合能力,其局限在于必须预先知道被空对象或过程的数学模型。 智能控制是在经典和现代控制理论基础上进一步发展和提高的。智能控制的提出,一方面是实现大规模复杂系统控制的需要;另一方面是现代计算机技术、人工智能和微电子学等学科的高度发展,给智能控制提供了实现的基础。智能控制提供了一种新的控制方法,基本解决了非线性、大时滞、变结构、无精确数学模型对象的控制问题。 二、智能控制的主要方法 通俗地讲,智能控制就是利用有关知识(方法)来控制对象,按一定要求达到预定目的。智能控制为解决控制领域的难题,摆脱了经典和现代控制理论的困境,开辟了新的途径。 智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。 1、模糊控制 模糊控制以模糊集合、模糊语言变量、模糊推理为其理论基础,以先验知识和专家经验作为控制规则。其基本思想是用机器模拟人对系统的控制,就是在被控对象的模糊模型的基础上运用模糊控制器近似推理等手段,实现系统控制。在实现模糊控制时主要考虑模糊变量的隶属度函数的确定,以及控制规则的制定二者缺一不可。

智能控制技术的发展现状及心得体会

智能控制技术的发展现状及心得体会 摘要: 在此综述了智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法,然后介绍智能控制在各行各业中的应用现状,接着论述智能控制的国内外发展和现状。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出创新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制模糊控制神经网络遗传算法 一、引言 智能控制作为当今的一种交叉前沿学科,其研究中心始终是解决传统控制理论、方法(包括经典控制、现代控制、自适应控制、鲁棒控制、大系统方法等)所难以解决的不确定性问题。自智能控制概念的提出,自动控制界纷纷仿效,主流是人工智能技术引入到自动控制系统中,寻求难以精确建模的复杂系统的自动控制(自治)。 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 二、智能控制的性能特点 智能控制是自动控制发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂、非线性和不确定的系统控制问题。智能控制系统具有以下几个特点:(1)较强的学习能力: 能对未知环境提供的信息进行识别、记忆、学习、融合、分析、推理,并利用积累的知识和经验不断优化、改进和提高自身的控制能力; (2)较强的自适应能力: 具有适应受控对象动力学特性变化、环境特性变化和运行条件变化的能力; (3)较强的容错能力: 系统对各类故障具有自诊断、屏蔽和自恢复能力; (4)较强的鲁棒性: 系统性能对环境干扰和不确定性因素不敏感; (5)较强的组织功能: 对于复杂任务和分散的传感信息具有自组织和协调功能,使系统具有主动性和灵活性; (6)实时性好:

智能控制作业

1、已知某一炉温控制系统,要求温度保持在600度恒定。针对该控制系统有以下控制经验: (1)若炉温低于600度,则升压;低的越多升压越高。(2)若炉温高于600度,则降压;高的越多降压越低。(3)若炉温等于600度,则保持电压不变。 设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。输入、输出变量的量化等级为7级,取5个模糊集。试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。 解:1)确定变量 定义理想温度为600℃,实际温度为T,则温度误差为E=600-T。 将温度误差E作为输入变量 2)输入量和输出量的模糊化 将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将偏差E的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1所示。

表1 温度变化E划分表 控制电压u也分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将电压u的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。 表2 电压变化u划分表

表3 模糊控制规则表

2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态误差为零,超调量不大于1%,输出上升时间≤0.3s 。假定被控对象的传递函数分别为: 2 55.01)1()(+= -s e s G s ) 456.864.1)(5.0(228 .4)(2+++= s s s s G 解: 在matlab 窗口命令中键入fuzzy ,得到如下键面: 设e 的论域范围为[-1 1],de 的论域范围为[-0.1 0.1],u 的论域范围为[0 2]。 将e 分为8个模糊集,分别为NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; u 分为7个模糊集,分别为 NB ,NM ,NS, Z ,PS ,PM ,PB;

智能控制文献综述

智能控制的发展,应用及展望 周杰 21225062 摘要:智能控制是当今控制学领域研究和发展的热点之一。本文论述了智能控制的发展过程,相比传统控制的优势,在低压电器中的应用,并对其未来发展做了展望。 关键词:发展历史;智能控制;低压电器技术;模糊控制;人工智能;展望 1.智能控制的发展历史 从20世纪60年代起,由于空间技术、计算机技术及人工智能技术的发展,控制界学者在研究自组织、自学习控制的基础上,为了提高控制系统的自学习能力,开始注意将人工智能技术与方法应用于控制系统。 1965年,美国著名控制论专家Zadeh 创立了模糊集合论,为解决复杂系统的控制问题提供了强有力的数学工具;同年,美国著名科学家Feigenbaum着手研制世界上第一个专家系统;就在同年,傅京孙首先提出把人工智能中的直觉推理方法用于学习控制系统。1996年,Mendl进一步在空间飞行器的学习控制系统中应用了人工智能技术,并提出了“人工智能控制”的概念。直到1967年,Leondes和Mendel才首先正式使用“智能控制”一词,并把记忆、目标分解等一些简单的人工智能技术用于学习控制系统、提高了系统处理不确定性问题的能力。 从20世纪70年代开始,傅京孙、Glorios 和Saridis等人从控制论角度进一步总结了人工智能技术与自适应、自组织、自学习控制的关系,正式提出了智能控制就是人工智能技术与控制理论的交叉,并创立了人—机交互式分级递阶智能控制的系统结构。在70年代中后期,以模糊集合论为基础,从模仿人的控制决策思想出发,智能控制在另一个方向—规则控制上也取得了重要的进展。进入80年代以来,由于微机的迅速发展以及人工智能的重要领域—专家系统技术的逐渐成熟,使得智能控制和决策的研究及应用领域逐步扩大,并取得了一批应用成果。80年代后期,神经网络的研究获得了重要进展,为智能控制的研究起到了重要的促进作用。 2.智能控制的分支 目前关于智能控制的研究和应用沿着几个主要的分支发展,主要有专家控制、模糊控制、神经网控制、学习控制、基于知识的控制、复合智能控制、基于进化机制的控制、自适应控制等等。有的已在现代工业生产过程与智能自动化方面投入应用。主要介绍如下:专家控制是由K.J.Astrom将人工智能中的专家系统技术引入到控制系统。组成的一种类型的智能控制。借助专家系统技术,将常规的RLS 控制、最小方差控制等不同方法有机结合起来P 能根据不同的情况分别采取不同的控制策略。 模糊控制自1965年Zadeh 教授创建模糊集理论和1974年英国的Mamdani成功地将模糊控制应用于蒸汽机控制以来,模糊控制得到了很大的发展和广泛的应用。模糊控制是基于模糊推理、模仿人的思维方式、对难以建立精确数学模型的对象实施的一种控制,成为处理推理系统和控制系统中不精确和不确定性的一种有效方法,构成了智能控制的重要组成部分。 神经网络控制是另一类智能控制的重要形式。神经网络模拟人的大脑神经结构和功能,

智能控制及其应用综述

第18卷第3期重庆邮电学院学报(自然科学版)Vol.18No.3 2006年6月Journal of C hongqing University of Posts and Telecom munications(Natural Science)Jun.2006 文章编号:1004-5694(2006)03-0376-06 智能控制及其应用综述* 李文,欧青立,沈洪远,伍铁斌 (湖南科技大学信息与电气工程学院,湖南湘潭411201) 摘要:介绍了智能控制的产生背景以及智能控制的概念、性能和特点,分析了几种典型的智能控制技术及当前的工程应用现状。最后,对今后智能控制的发展前景进行了展望。 关键词:智能控制;专家控制;神经网络控制;模糊控制;混沌控制;智能优化 中图分类号:T P18文献标识码:A 0引言 智能控制是近年来控制界新兴的研究领域,是一门边缘交叉学科。自1985年在纽约召开第一届智能控制学术会议至今,智能控制已经被广泛应用于工业、农业、服务业、军事航空等众多领域。智能控制是自动控制发展的高级阶段,为解决那些用传统方法难以解决的复杂系统的控制问题提供了有效的理论和方法。它处于控制科学的前沿领域,代表着自动控制科学发展的最新进程。 1智能控制产生的背景 科学技术的产生和发展主要由生产发展需求和知识水平所决定,控制科学也不例外。20世纪以来,特别是二战以来,控制科学与技术得到了迅速发展,由研究单输入单输出被控对象的经典控制理论,发展形成了研究多输入多输出被控对象的现代控制理论。经典控制理论主要是采用频域法对控制系统进行描述、分析和设计,现代控制主要采用时域的状态空间方法。20世纪60年代,由于空间技术、海洋工程和机器人技术发展的需要[1],控制领域面临着被控对象的高度复杂性和不确定性,以及人们对控制性能要求越来越高的挑战。被控对象的高度复杂性和不确定性主要表现为对象的高维、高度非线性和不确定性[2],高噪声干扰、强耦合,系统工作点动态突变性,以及分散的传感元件与执行元件,分层和分散的决策机构,复杂的信息模式和庞大的数据量。面对复杂的对象,复杂的任务和复杂的环境,用传统控制(即经典控制和现代控制)的理论和方法去解决是不可能的。其原因[3]:1传统的控制理论都是建立在以微分和积分为工具的精确数学模型之上的,而复杂系统的复杂性和不确定性都难以用精确的数学模型描述,否则就会使原问题丢失很多信息,例如:骑自行车沿一条曲线行走这套看似简单的动作,如果我们要把这一系列的动作和环境建立出精确的数学模型,然后再一步一步按模型去操作,可以想象其过程是多复杂而又难以实现;o传统的控制理论虽然也有办法对付控制对象的不确定性和复杂性,如自适应控制和Robust控制可以克服系统中所包含的不确定性,保证控制系统的控制质量不变,达到优化控制的目的。但他们仅适用于系统参数在一定范围内缓慢变化的情况,其优化控制的范围是很有限的。?传统的控制系统要求输入的信息比较单一,而现代的控制系统要面对复杂系统以各种形式(视觉的、听觉的、触觉的和直接操作的方式)将周围环境信息作为输入的状况,并将各种信息进行融合、分析和推理,再随环境与条件的变化,相应地采取对策或行动。传统的控制策略单一,不能适合高层决策问题,所以智能控制应运而生。 2智能控制的发展概况 智能控制的概念最早是由美国普渡大学的美籍华人傅京孙教授提出的,他在1965年发表的论文中首先提出把人工智能的启发式推理规则用于学习系统[4],为控制技术迈向智能化揭开了崭新的一页。接着,M endel于1966年提出了/人工智能控制0的新概念[5]。1967年,Leo ndes和M endel首次使用了/智能控制(Intellig ent Control)0一词[6],并把记忆、目标分解等技术应用于学习控制系统[7]。1974年,英国的E.H.Mamdani教授首次成功地将模糊逻辑用于蒸汽机控制[8]。1977年,Saridis全面地论述了从反馈控制到最优控制、随机控制及至自适应控制、自组织控制、学习控制,最终向智能控制发展的过 *收稿日期:2005-09-262005-12-26 基金项目:国家自然科学基金(50274060);湖南省自然科学基金(04JJ40041);湖南省教育厅科研项目(04C198) 作者简介:李文(1982-),男,湖南永州人,硕士研究生,研究方向为计算机控制与应用,E-mail:liwhnust@163.co m;欧青立,男,教授。

相关文档
最新文档