多网卡的7种bond模式原理详解

多网卡的7种bond模式原理详解
多网卡的7种bond模式原理详解

多网卡的7种bond模式原理

Linux 多网卡绑定

网卡绑定mode共有七种(0~6) bond0、bond1、bond2、bond3、bond4、bond5、bond6

常用的有三种

mode=0:平衡负载模式,有自动备援,但需要”Switch”支援及设定。

mode=1:自动备援模式,其中一条线若断线,其他线路将会自动备援。

mode=6:平衡负载模式,有自动备援,不必”Switch”支援及设定。

需要说明的是如果想做成mode 0的负载均衡,仅仅设置这里options bond0 miimon=100 mode=0是不够的,与网卡相连的交换机必须做特殊配置(这两个端口应该采取聚合方式),因为做bonding的这两块网卡是使用同一个MAC地址.从原理分析一下(bond运行在mode 0下):

mode 0下bond所绑定的网卡的IP都被修改成相同的mac地址,如果这些网卡都被接在同一个交换机,那么交换机的arp表里这个mac地址对应的端口就有多 个,那么交换机接受到发往这个mac地址的包应该往哪个端口转发呢?正常情况下mac地址是全球唯一的,一个mac地址对应多个端口肯定使交换机迷惑了。所

以 mode0下的bond如果连接到交换机,交换机这几个端口应该采取聚合方式(cisco称

为 ethernetchannel,foundry称为portgroup),因为交换机做了聚合后,聚合下的几个端口也被捆绑成一个mac地址.我们的解 决办法是,两个网卡接入不同的交换机即可。

mode6模式下无需配置交换机,因为做bonding的这两块网卡是使用不同的MAC地址。

七种bond模式说明:

第一种模式:mod=0 ,即:(balance-rr) Round-robin policy(平衡抡循环策略)

特点:传输数据包顺序是依次传输(即:第1个包走eth0,下一个包就走eth1….一直循环下去,直到最后一个传输完毕),此模式提供负载平衡和容错能力;但是我们知道如果一个连接或者会话的数据包从不同的接口发出的话,中途再经过不同的链路,在客户端很有可能会出现数据包无序到达的问题,而无序到达的数据包需要重新要求被发送,这样网络的吞吐量就会下降

第二种模式:mod=1,即: (active-backup) Active-backup policy(主-备份策略)

特点:只有一个设备处于活动状态,当一个宕掉另一个马上由备份转换为主设备。mac地址是外部可见得,从外面看来,bond的MAC地址是唯一的,以避免switch(交换机)发生混乱。此模式只提供了容错能力;由此可见此算法的优点是可以提供高网络连接的可用性,但是它的资源利用率较低,只有一个接口处于工作状态,在有 N 个网络接口的情况下,资源利用率为1/N

第三种模式:mod=2,即:(balance-xor) XOR policy(平衡策略)

特点:基于指定的传输HASH策略传输数据包。缺省的策略是:(源MAC地址 XOR 目标MAC地址) % slave 数量。其他的传输策略可以通过xmit_hash_policy选项指定,此模式提供负载平衡和容错能力

第四种模式:mod=3,即:broadcast(广播策略)

特点:在每个slave接口上传输每个数据包,此模式提供了容错能力

第五种模式:mod=4,即:(802.3ad) IEEE 802.3ad Dynamic link aggregation(IEEE 802.3ad 动态链接聚合)

特点:创建一个聚合组,它们共享同样的速率和双工设定。根据802.3ad规范将多个slave工作在同一个激活的聚合体下。

外出流量的slave选举是基于传输hash策略,该策略可以通过xmit_hash_policy选项从缺省的XOR策略改变到其他策略。需要注意的 是,并不是所有的传输策略都是802.3ad适应的,尤其考虑到在802.3ad标准43.2.4章节提及的包乱序问题。不同的实现可能会有不同的适应 性。

必要条件:

条件1:ethtool支持获取每个slave的速率和双工设定

条件2:switch(交换机)支持IEEE 802.3ad Dynamic link aggregation

条件3:大多数switch(交换机)需要经过特定配置才能支持802.3ad模式

第六种模式:mod=5,即:(balance-tlb) Adaptive transmit load balancing(适配器传输负载均衡)

特点:不需要任何特别的switch(交换机)支持的通道bonding。在每个slave上根据当前的负载(根据速度计算)分配外出流量。如果正在接受数据的slave出故障了,另一个slave接管失败的slave的MAC地址。

该模式的必要条件:ethtool支持获取每个slave的速率

第七种模式:mod=6,即:(balance-alb) Adaptive load balancing(适配器适应性负载均衡)

特点:该模式包含了balance-tlb模式,同时加上针对IPV4流量的接收负载均衡(receive load balance, rlb),而且不需要任何switch(交换机)的支持。接收负载均衡是通过ARP协商实现的。bonding驱动截获本机发送的ARP应答,并把源硬件地址改写为bond中某个slave的唯一硬件地址,从而使得不同的对端使用不同的硬件地址进行通信。

来自服务器端的接收流量也会被均衡。当本机发送ARP请求时,bonding驱动把对端的IP信息从ARP包中复制并保存下来。当ARP应答从对端到达 时,bonding驱动把它的硬件地址提取出来,并发起一个ARP应答给bond中的某个slave。使用ARP协商进行负载均衡的一个问题是:每次广播 ARP请求时都会使用bond的硬件地址,因此对端学习到这个硬件地址后,接收流量将会全部流向当前的slave。这个问题可以通过给所有的对端发送更新 (ARP应答)来解决,应答中包含他们独一无二的硬件地址,从而导致流量重新分布。当新的slave加入到bond中时,或者某个未激活的slave重新 激活时,接收流量也要重新分布。接收的负载被顺序地分布(round robin)在bond中最高速的slave上

当某个链路被重新接上,或者一个新的slave加入到bond中,接收流量在所有当前激活的slave中全部重新分配,通过使用指定的MAC地址给每个 client发起ARP应答。下面介绍的updelay参数必须被设置为某个大于等于switch(交换机)转发延时的值,从而保证发往对端的ARP应答 不会被switch(交换机)阻截。

必要条件:

条件1:ethtool支持获取每个slave的速率;

条件2:底层驱动支持设置某个设备的硬件地址,从而使得总是有个slave(curr_active_slave)使用bond的

硬件地址,同时保证每个bond 中的slave都有一个唯一的硬件地址。如果curr_active_slave出故障,它的硬件地址将会被新选出来的 curr_active_slave接管

其实mod=6与mod=0的区别:mod=6,先把eth0流量占满,再占eth1,….ethX;而mod=0的话,会发现2个口的流量都很稳定,基本一样的带宽。而mod=6,会发现第一个口流量很高,第2个口只占了小部分流量。

网卡启动

网卡启动(网络唤醒) 原理: 网络唤醒 (Wake On LAN )提供了远程唤醒计算机的功能,网络唤醒的工作原理是由一个管理软件包发出一个基于Magic Packet标准的唤醒帧,支持网络唤醒的网卡收到唤醒帧后对其进行分析并确定该帧是否包含本网卡的MAC地址。如果包含本网卡的MAC地址,网卡向电源发送一个使能的信号,该计算机系统就会自动加电进入开机状态。 条件: 使用网络唤醒对计算机硬件有一定的要求,主要表现在网卡、主板和电源上,三者必须同时支持网络唤醒的要求才能实现该功能 ●网卡:被唤醒计算机的网卡(独立或集成网卡)必须支持WOL即Wake-up On LAN, 用于唤醒计算机的网卡对此无要求 ●主板BIOS支持远程唤醒:通过查看CMOS的“Power Management Setup”菜单中是 否有“Wake on LAN”或类似项而确认;另外,早期支持远程唤醒的主板( PCI2.1 标准)上通常都拥有一个专门的3芯插座,以给网卡供电。由于现在的主板通常支持PCI 2.2、PCI2.3标准,可以直接通过PCI插槽向网卡提供+3.3V Standby电源,即使不连接WOL电源线也一样能够实现远程唤醒,因此,不再提供3芯插座(实际很多主板还预留着该管脚位置)。 ●主板是否支持PCI2.2标准,可通过查看CMOS的“Power Management Setup”菜单 中是否拥有“Wake on PCI Card” 或类似选项来确认 ●电源:电源必须是符合ATX 2.01标准的ATX电源,+5V Standby电流至少应在600mA 以上。 ●计算机硬件支持远程唤醒功能,但还需要借助相应的唤醒软件才能实现该功能 网络要求: 远程唤醒必须保证网络通讯正常,且如果被唤醒主机处于不同网段,则要求所用的 网络设备不要使用广播屏蔽功能;现在很多设备如路由器默认跨网段是不转发广播 的,所以当使用此类设备时,如果发送唤醒命令的主机和被唤醒主机不在同一网段,则被唤醒主机无法接收到广播方式的唤醒祯 如果用户询问怎样设置从网卡启动可从上面的硬件条件和软件来进行说明。

SD卡读写包括两种模式

SD卡读写包括两种模式:SD模式和SPI模式。其中SD模式又可以分为1bit 和4bit两种传输模式。SD卡缺省使用专有的SD模式。SD卡规范中主要讲了一些命令,响应和CRC效验等等,整个规范的内容还是很多的。 SD卡上电后,卡处于空闲状态,主机发送CMD0复位SD卡,然后通过CMD55和ACMD41判断当前电压是否在卡的工作范围内。在得到了正确的响应后,主机可以继续通过CMD10读取SD卡的CID寄存器,通过CMD16设置数据块长度,通过CMD9读取卡的CSD寄存器。从CSD寄存器中,主机可以获知卡容量,支持的命令集等重要参数。此时,卡以进入了传输状态,主机就可以通过CMD17/18和CMD24/25对卡进行读写。CRC校验是为了防止SD卡的命令,应答,数据传输出现错误。每个命令和应答信号都会产生CRC效验码,每个数据块的传输也会长生CRC效验码。 这段程序是友善之臂推出的mini2440开发板中带的ADS测试源码。整个阅读代码的过程是对这S3C2440的芯片手册和SD卡规范来看的,对于MMC卡没有给出注释,其实和SD卡是大同小异。由于是初次接触ARM,对SD规范的认识也不是很深入,再加上自己水平有限,还不能完全读懂源代码,其中的肯定存在一些错误,欢迎大家一起交流讨论。

#define INT 1 #define DMA 2 int CMD13(void);// Send card status int CMD9(void); unsigned int*Tx_buffer;//128[word]*16[blk]=8192[byte] unsigned int*Rx_buffer;//128[word]*16[blk]=8192[byte] volatile unsigned int rd_cnt;//读数据计数器 volatile unsigned int wt_cnt;//写数据计数器 volatile unsigned int block;//读写块总数 volatile unsigned int TR_end=0; int Wide=0;// 0:1bit, 1:4bit int MMC=0;// 0:SD , 1:MMC int Maker_ID; char Product_Name[7]; int Serial_Num; volatile int RCA; void Test_SDI(void) { U32 save_rGPEUP, save_rGPECON; RCA=0;

网卡工作原理是怎样的

网卡工作原理是怎样的 如今网卡已经作为电脑的必配网络设备。不管是整体出售的品牌电脑还是单独出售的电脑主板,都集成网卡芯片拥有一个甚至多个网络接口(RJ45)。由此可见,网卡是我们使用电脑中所能接触到的第一件网络设备。不少电脑爱好者对于网卡的工作原理不太了解,下面小编将于大家揭开服务器神秘面纱,希望能够给新手朋友增加点电脑知识。 一、网卡工作原理 发送数据时,网卡首先侦听介质上是否有载波(载波由电压指示),如果有,则认为其他站点正在传送信息,继续侦听介质。一旦通信介质在一定时间段内(称为帧间缝隙IFG=9.6微秒)是安静的,即没有被其他站点占用,则开始进行帧数据发送,同时继续侦听通信介质,以检测冲突。在发送数据期间。 如果检测到冲突,则立即停止该次发送,并向介质发送一个“阻塞”信号,告知其他站点已经发生冲突,从而丢弃那些可能一直在接收的受到损坏的帧数据,并等待一段随机时间(CSMA/CD确定等待时间的算法是二进制指数退避算法)。在等待一段随机时间后,

再进行新的发送。如果重传多次后(大于16次)仍发生冲突,就放弃发送。 接收时,网卡浏览介质上传输的每个帧,如果其长度小于64字节,则认为是冲突碎片。如果接收到的帧不是冲突碎片且目的地址是本地地址,则对帧进行完整性校验,如果帧长度大于1518字节(称为超长帧,可能由错误的LAN驱动程序或干扰造成)或未能通过CRC校验,则认为该帧发生了畸变。通过校验的帧被认为是有效的,网卡将它接收下来进行本地处理。 二、网卡的基本知识 我们在使用网卡的时候,总是与它的接口打交道。不管你是接ADSL上网还是接LAN连接内部网络,将网线放入接口的时候“咔嚓的一声”则表示OK你连接正确,这就是RJ45接口。至今人类所使用的最广泛的网络接口,它主要应用在以太网中,于交换机、路由器或者ADSL等设备配合使用,其作为连接的网线学名叫双绞线。既然上面说了主流接口,现在说一下非主流。BNC接口:稍微接触电脑早点的朋友应该记得它,这个接口是96年至99年的时候,流行于那个时期网吧中。它的接口是凸出,类似闭路电视那种。所使用的网线叫做细同轴线,以以太网或者令牌环传输,不需要配置当时昂贵的交换机。因为其经济实惠的特点,所以深受早期的网吧或公司的喜爱。

计算机系统组成及工作原理题目

计算机系统组成及工作原理题目

计算机系统组成及工作原理 1.计算机系统一般有硬件和软件两大系统组成。 2.微型计算机系统结构由运算器、控制器、存储器、输入设备、输出设备五大部分组成。 3.微型计算机的运算器由算术逻辑运算部件(ALU)、累加器和通用寄存器组成。 4.微型计算机中,运算器和控制器合称为中曲处理单元(CPU)。 5.冯●诺依曼计算机工作原理的设计思想就是把程序输入到计算机存储起来,然后依次执行,简称为程序存储。 6.在衡量计算机的主要性能指标中,计算机运算部件一次能够处理的二进制数据位数叫做字长,总取8 位的整数倍。 7.在衡量计算机的主要性能指标中,速度指标一般通过主频和每秒百万条指令数(MIPS)两个指标来加以评价的。 8.在表示存储容量时,1GB表示2的30 次方,或是1024MB。

9.计算机性能指标中MTBF表示平均无故障工作时间,计算机性能指标中MTTR表示平均修复时间。 10.衡量计算机中CPU的性能指标主要时钟频率和字长两个。 11.存储器一般可以分为主存储器和辅助存储器两种。主存储器又称内存。 12.通常所说的内存用于存放当前执行的程序和数据。 13.构成存储器的最小单位是二进制位(bit),存储容量一般以字节(Byte)为单位。 14.内存储器按工作方式可以分为随机存储器(RAM)和只读存储器(ROM)。 15.计算机系统结构的五大基本组成部件一般通过总线加以连接。通常用总线宽度和总线频率来表征它的性能。 16.总线按连接的部件不同可以分为内部总线、系统总线和扩展总线3种。 17.计算机软件一般可以分为系统软件和应用软件两大类。

fifo详细说明

异步slave FIFO out的固件的问题 文章发表于:2009-08-29 17:06 我设置EP2为Slave out端点,下载程序后,用usb console发送数据老是不成功,不知道是哪里出问题了 void TD_Init(void) // CalLED once at startup { BREAKPT &= ~bmBPEN; // to see BKPT LED go out TGE OED="0xFF"; // 置端口PD为输出端口;为0x00时,置端口PD为输入端口 // set the CPU clock to 48MHz CPUCS = ((CPUCS & ~bmCLKSPD) | bmCLKSPD1) ;// CPU控制与状态寄存器 //置PA0、PA1为输出状态,并输出高电平 OEA="OEA|0x03"; IOA="IOA|0x03"; //设置cy7c68013a工作于slave FIFO模式 REVCTL="0X03"; SYNCDELAY; SYNCDELAY; IFCONFIG = 0xCB; //内部时钟、48M、三态、不翻转、slave异步模式、0 、FIFO模式SYNCDELAY; EP2CFG = 0xA2; //输出端点,块传输、512字节,双重缓冲 SYNCDELAY; // out endpoints do not come up armed FIFORESET = 0x80; // activate NAK-ALL to avoid race conditions SYNCDELAY; // see TRM section 15.14 FIFORESET = 0x02; // reset, FIFO 2 SYNCDELAY; // FIFORESET = 0x06; // reset, FIFO 6 SYNCDELAY; // FIFORESET = 0x08; // reset, FIFO 8 SYNCDELAY; FIFORESET = 0x00; SYNCDELAY; OUTPKTEND = 0x84; SYNCDELAY; OUTPKTEND = 0x84;

网卡工作原理图

网卡工作原理图 网卡工作原理图 网卡的主要工作原理:发送数据时,计算机把要传输的数据并行写到网卡的缓存,网卡对要传输的数据进编码(10M以太网使用曼切斯特码,100M以太网使用差分曼切斯特码),串行发到传输介质上.接收数据时,则相反。对于网卡而言,每块网卡都有一个唯一的网络节点地址,它是网卡生产厂家在生产时烧入ROM(只读存储芯片)中的,我们把它叫做MAC地址(物理地址),且保证绝对不会重复。MAC为48bit,前24比特由IEEE分配,是需要钱买的,后24bit 由网卡生产厂家自行分配. 我们日常使用的网卡都是以太网网卡。目前网卡按其传输速度来分可分为10M网卡、10/100M自适应网卡以及千兆(1000M)网卡。如果只是作为一般用途,如日常办公等,比较适合使用10M网卡和10/100M自适应网卡两种。如果应用于服务器等产品领域,就要选择千兆级的网卡。 一、网卡的主要特点 网卡(Network Interface Card,简称NIC),也称网络适配器,是电脑与局域网相互连接的设备。无论是普通电脑还是高端服务器,只要连接到局域网,就都需要安装一块网卡。如果有必要,一台电脑也可以同时安装两块或多块网卡。 电脑之间在进行相互通讯时,数据不是以流而是以帧的方式进行传输的。我们可以把帧看做是一种数据包,在数据包中不仅包含有数据信息,而且还包含有数据的发送地、接收地信息和数据的校验信息。一块网卡包括OSI模型的两个层――物理层和数据链路层。物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。 网卡的功能主要有两个:一是将电脑的数据封装为帧,并通过网线(对无线网络来说就是电磁

SlaveFIFO使用手册

红色飓风III开发板USB2FPGA 实验指导 RedLogic 目录 第一章FX2特性介绍 (3) 1.1介绍 (3) 1.2结构 (3) 1.3特征 (4) 第二章SlaveFIFO传输 (5) 2.1概述 (5) 2.2硬件连

接 (5) 2.3SlaveFIFO的几种传输方式 (6) 2.3.1同步SlaveFIFO 写 (6) 2.3.2同步SlaveFIFO 读 (9) 2.3.3异步SlaveFIFO 写 (11) 2.3.4异步SlaveFIFO 读 (12) 第三章寄存器设置 (15) 3.1IFCONFIG (15) 3.2PINFLAGSAB/CD (16) 3.3FIFORESET (17) 3.4FIFOPINPOLAR (18) 3.5EPxCFG……………………………………………………

(18) 3.6EPxFIFOCFG (19) 3.7EPxAUTOINLENH/L (20) 3.8EPxFIFOPFH/L (21) 3.9INPKTEND (22) 3.10OUTPKTEND (22) 3.11EPxFIFOIE和EPxFIFOIRQ (22) 3.12PORTACFG (23) 3.13EPxFIFOBCHEPxFIFOBCL (23) 3.14EP24\68FIFOFLAG (24) 3.15其它通用寄存器 (25) 第四章同步slavefifo测试操作指

南 (26) 4.1安装软件包 (26) 4.2同步写FIFO测试 (26) 4.3同步读FIFO测试 (30) 第五章红色飓风II开发板USB2FPGA软件设计 (33) 5.168013固件程序设计 (33) 5.2FPGA源代码设计 (35) 第六章USB2FPGA硬件原理图 (37) 第七章改板后注意的问题 (37) 附录1版本历史 (3) 9 一.FX2特性介绍 1.1介绍

网卡工作原理

网卡工作原理 精确的说: NIC 工作在数据链路层中的MAC子层上,而非物理层。NIC的作用是进行串并行的转换,即MAC子层规定了如何在物理线路上传输frame,LLC的作用是识别不同协议类型然后进行encapsulation。MAC地址烧入NIC,所以,NIC工作在Data Link Layer。 一、网卡的主要特点 网卡(Network Interface Card,简称NIC),也称网络适配器,是电脑与局域网相互连接的设备。无论是普通电脑还是高端服务器,只要连接到局域网,就都需要安装一块网卡。如果有必要,一台电脑也可以同时安装两块或多块网卡。 图1 一块10/100Mbps的PCI网卡 电脑之间在进行相互通讯时,数据不是以流而是以帧的方式进行传输的。我们可以把帧看做是一种数据包,在数据包中不仅包含有数据信息,而且还包含有数据的发送地、接收地信息和数据的校验信息。一块网卡包括OSI模型的两个层——物理层和数据链路层。物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。 网卡的功能主要有两个:一是将电脑的数据封装为帧,并通过网线(对无线网络来说就是电磁波)将数据发送到网络上去;二是接收网络上其它设备传过来的帧,并将帧重新组合成数据,发送到所在的电脑中。网卡能接收所有在网络上传输的信号,但正常情况下只接受发送到该电脑的帧和广播帧,将其余的帧丢弃。 然后,传送到系统CPU做进一步处理。当电脑发送数据时,网卡等待合适的时间将分组插入到数据流中。接收系统通知电脑消息是否完整地到达,如果出现问题,将要求对方重新发送。二、图解网卡

以太网网卡结构和工作原理

以太网网卡结构和工作原理 网络适配器又称网卡或网络接口卡(NIC),英文名NetworkInterfaceCard。它是使计算机联网的设备。平常所说的网卡就是将PC机和LAN连接的网络适配器。网卡(NIC)插在计算机主板插槽中,负责将用户要传递的数据转换为网络上其它设备能够识别的格式,通过网络介质传输。它的主要技术参数为带宽、总线方式、电气接口方式等。它的基本功能为:从并行到串行的数据转换,包的装配和拆装,网络存取控制,数据缓存和网络信号。目前主要是8位和16位网卡。 网卡必须具备两大技术:网卡驱动程序和I/O技术。驱动程序使网卡和网络操作系统兼容,实现PC机与网络的通信。I/O技术可以通过数据总线实现PC和网卡之间的通信。网卡是计算机网络中最基本的元素。在计算机局域网络中,如果有一台计算机没有网卡,那么这台计算机将不能和其他计算机通信,也就是说,这台计算机和网络是孤立的。 网卡的不同分类:根据网络技术的不同,网卡的分类也有所不同,如大家所熟知的ATM网卡、令牌环网卡和以太网网卡等。据统计,目前约有80%的局域网采用以太网技术。根据工作对象的不同务器的工作特点而专门设计的,价格较贵,但性能很好。就兼容网卡而言,目前,网卡一般分为普通工作站网卡和服务器专用网卡。服务器专用网卡是为了适应网络服种类较多,性能也有差异,可按以下的标准进行分类:按网卡所支持带宽的不同可分为10M网卡、100M网卡、 10/100M自适应网卡、1000M网卡几种;根据网卡总线类型的不同,主要分为ISA网卡、EISA网卡和PCI网卡三大类,其中ISA网卡和PCI网卡较常使用。ISA总线网卡的带宽一般为10M,PCI总线网卡的带宽从10M到1000M都有。同样是10M网卡,因为ISA总线为16位,而PCI总线为32位,所以PCI网卡要比ISA网卡快。 网卡的接口类型:根据传输介质的不同,网卡出现了AUI接口(粗缆接口)、BNC接口(细缆接口)和RJ-45接口(双绞线接口)三种接口类型。所以在选用网卡时,应注意网卡所支持的接口类型,否则可能不适用于你的网络。市面上常见的10M网卡主要有单口网卡(RJ-45接口或BNC接口)和双口网卡(RJ-45和BNC两种接口),带有AUI粗缆接口的网卡较少。而100M和1000M网卡一般为单口卡(RJ-45接口)。除网卡的接口外,我们在选用网卡时还常常要注意网卡是否支持无盘启动。必要时还要考虑网卡是否支持光纤连接。 网卡的选购:据统计,目前绝大多数的局域网采用以太网技术,因而重点以以太网网卡为例,讲一些选购网卡时应注意的问题。购买时应注意以下几个重点: 网卡的应用领域----目前,以太网网卡有10M、100M、10M/100M及千兆网卡。对于大数据量网络来说,服务器应该采用千兆以太网网卡,这种网卡多用于服务器与交换机之间的连接,以提高整体系统的响应速率。而10M、100M和 10M/100M网卡则属人们经常购买且常用的网络设备,这三种产品的价格相差不大。所谓10M/100M自适应是指网卡可以与远端网络设备(集线器或交换机)

嵌入式系统原理及接口技术复习题

一、简答题 1.什么是嵌入式系统?嵌入式系统的特点是什么? 答:以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能, 可靠性,成本,体积,功耗严格要求的专用计算机系统 特点:与应用密切相关,实时性,复杂的算法,制造成本,功耗,开发和调试,可 靠性,体积 2.简要说明嵌入式系统的硬件组成和软件组成。 答:硬件组成:微处理器,存储器,输入设备和输出设备。 软件组成:操作系统,文件系统,图形用户接口,网络系统,通用组建模块。 3.S3C2410A的AHB总线上连接了那些控制器?APB总线上连接了那些部件? AHB:LCD控制器,LCD DMA,总线控制器,USB主控制器,中断控制器,ExtMaster,电源管理,Nandflash控制器,储存器控制器。 APB:通用异步收发器,内部集成电路总线(IIC),USB设备控制器,集成电路内部 声音总线(IIS),MMC/SD/SDIO主控制器,通用I/O端口(GPIO),看门狗定时器(WDT),定时时钟(RTC),总线控制器,A/D转换器,串行外设接口,定时器/脉宽调制。 4.ARM体系结构支持几种类型的异常,并说明其异常处理模式和优先级状态? 答,支持7种类型的异常 异常处理过程:(进入异常)PC→LR,CPRS→SPSR,设置CPSR的运行模式位,跳转 到相应的异常处理程序,(异常返回)LR→PC,SPSR→CPSR,若在进入异常处理时 设置中断禁止位,要在此清楚,复位异常处理程序不需要返回。 Reset>数据中指>快速中断请求(FIQ)>中断请求(IRQ)>指令预取中止> 未定义指令和软件中止。 5.存储器生长堆栈可分为哪几种?各有什么特点? 4种,满递增堆栈,满递减堆栈,空递增堆栈,空递减堆栈。 6.简述存储器系统层次结构及特点。 答:层次结构:包括Cache,主存储器和辅助存储器 特点: 7.简述I2S总线接口的启动与停止过程。 通过I2S控制寄存器IISCON控制,当控制寄存器IISCON的地址为0=I2S禁止(停止); 当控制寄存器IISCON的地址为1=I2S允许(开始)。 8.简述ARM系统中的中断处理过程。 中断处理过程包括:中断请求、中断排队或中断判优、中断响应、中断处理和中断返回 9.ARM微处理器支持哪几种运行模式?各运行模式有什么特点? User:用户模式。绝大部分的任务执行都在这种操作模式下,此为正常的程序执行 模式。 FIQ:快速中断模式。支持数据传送或通道处理。 IRQ:普通中断模式。用于一半中断处理。 Supervisor:管理模式。一种操作系统受保护的方式。 Abort:中止模式。在访问数据中止后或指令预取中止后进入中止方式。 System:系统模式。是操作系统一种特权级的用户方式。 Undef:未定义模式。当执行未定义指令时会进入这种操作模式。

网卡组成及工作原理.

网卡组成及原理 一认识网卡 网卡充当计算机和网络缆线之间的物理接口或连线将计算机中的数字信号转换成电或光信号,称为nic(network interface card )。数据在计算机总线中传输是并行方式即数据是肩并肩传输的,而在网络的物理缆线中说数据以串行的比特流方式传输的,网卡承担串行数据和并行数据间的转换。网卡在发送数据前要同接收网卡进行对话以确定最大可发送数据的大小、发送的数据量的大小、两次发送数据间的间隔、等待确认的时间、每个网卡在溢出前所能承受的最大数据量、数据传输的速度。 网卡工作在osi的最后两层,物理层和数据链路层,物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。物理层的芯片称之为PHY。数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。以太网卡中数据链路层的芯片称之为MAC控制器。很多网卡的这两个部分是做到一起的。他们之间的关系是pci总线接mac总线,mac接phy,phy 接网线(当然也不是直接接上的,还有一个变压装置)。 二工作原理 以太网卡中数据链路层的芯片一般简称之为MAC控制器,物理层的芯片我们简称之为PHY。许多网卡的芯片把MAC和PHY的功能做到了一颗芯片中,比如Intel 82559网卡的和3COM 3C905网卡。但是MAC和PHY的机制还是单独存在的,只是外观的表现形式是一颗单芯片。当然也有很多网卡的MAC和PHY是分开做的,比如D-LINK的DFE-530TX等。

1 数据链路层MAC控制器 首先我们来说说以太网卡的MAC芯片的功能。以太网数据链路层其实包含MAC(介质访问控制)子层和LLC(逻辑链路控制)子层。一块以太网卡MAC 芯片的作用不但要实现MAC子层和LLC子层的功能,还要提供符合规范的PCI 界面以实现和主机的数据交换。 MAC从PCI总线收到IP数据包(或者其他网络层协议的数据包)后,将之拆分并重新打包成最大1518Byte,最小64Byte的帧。这个帧里面包括了目标MAC地址、自己的源MAC地址和数据包里面的协议类型(比如IP数据包的类型用80表示)。最后还有一个DWORD(4Byte)的CRC码。 可是目标的MAC地址是哪里来的呢?这牵扯到一个ARP协议(介乎于网络层和数据链路层的一个协议)。第一次传送某个目的IP地址的数据的时候,先会发出一个ARP包,其MAC的目标地址是广播地址,里面说到:"谁是xxx.xxx.xxx.xxx这个IP地址的主人?"因为是广播包,所有这个局域网的主机都收到了这个ARP请求。收到请求的主机将这个IP地址和自己的相比较,如果不相同就不予理会,如果相同就发出ARP响应包。这个IP地址的主机收到这个ARP请求包后回复的ARP响应里说到:"我是这个IP地址的主人"。这个包里面就包括了他的MAC地址。以后的给这个IP地址的帧的目标MAC地址就被确定了。(其它的协议如IPX/SPX也有相应的协议完成这些操作。) IP地址和MAC地址之间的关联关系保存在主机系统里面,叫做ARP表,由驱动程序和操作系统完成。在Microsoft的系统里面可以用arp -a 的命令查看ARP表。收到数据帧的时候也是一样,做完CRC以后,如果没有CRC效验错误,就把帧头去掉,把数据包拿出来通过标准的接口传递给驱动和上层的协议客栈,最终正确的达到我们的应用程序。 还有一些控制帧,例如流控帧也需要MAC直接识别并执行相应的行为。以太网MAC芯片的一端接计算机PCI总线,另外一端就接到PHY芯片上。以太网的物理层又包括MII/GMII(介质独立接口)子层、PCS(物理编码子层)、PMA (物理介质附加)子层、PMD(物理介质相关)子层、MDI子层。而PHY芯片是实现物理层的重要功能器件之一,实现了前面物理层的所有的子层的功能。

计算机的组成及工作原理

计算机的组成及工作原理 在电脑已经全面普及的今天,几乎每个家庭或者是每个人都有了自己的电脑了,不管是台式电脑还是笔记本电脑。我们对电脑的认识应该是再熟悉不过了。但是如果突然需要你讲述一些关于计算机的一些认识,你是不是都讲不出来了呢?今天就来讲解一些关于计算机的组成及工作原理的内容。现在跟着小编一起来看吧。 计算机的组成: 1、CPU:就是我们常说的计算机的中央处理器,是整部计算机的'核心。 2、内存:内存就是RAM,就是一种存储器,内存可以进行读取硬盘数据供Cpu使用。因此内存是硬盘与cpu之间的桥梁。 3、主板:计算机的主板是计算机尤为关键的部分,它可以进行连接各个硬件,使其能相互通讯。 4、硬盘:硬盘简单点说是电脑主要的存储媒介之一,用于存储操作系统及用户资料。 5、显卡:显卡又称为显示适配器,一个好的显卡可以提升计算机的运行操作的流畅性。它的功能是将计算机需要的信息,输出到显示器上面。 6、声卡:声卡也叫音频卡,实现声波输出的一个设备。 7、网卡:网卡是计算机能否使用网络的重要装备,可以实现接入网络,与其它设备进行通讯。 8、鼠标、键盘、显示器、主机等外部装备,直接与使用者连接的一些设备。 计算机的工作原理: 计算机的工作原理是相对比较复杂化的,在计算机运行的时候,计算机首先先从内存中取出一条指令,一般的指令就是一些代码了。然后计算机通过控制器的对这些代码进行翻译,翻译成功后,计算机按照指令的要求,进行指定的运算和逻辑操作等加工,最后将加工后的指令再次输送到内存上。接着计算机再取出第二条指令,同理,在控制器的指挥下完成翻译与输送,依此进行下去,计算机实现自动地完成指令。这个原理也是由美籍匈牙利数学家冯.诺依曼于提出来的,故也称为冯.诺依曼原理。

usb fifo中文说明文档

一.FX2特性介绍 1.1介绍 Cypress Semiconductor公司的EZ-USB FX2是世界上第一款集成USB2.0的微处理器,它集成了USB2.0收发器、SIE(串行接口引擎)、增强的8051微控制器和可编程的外围接口。FX2这种独创性结构可使数据传输率达到56Mbytes/s,即USB2.0允许的最大带宽。在FX2中,智能SIE可以硬件处理许多USB1.1和USB2.0协议,从而减少了开发时间和确保了USB的兼容性。GPIF(General Programmable Interface)和主/从端点FIFO(8位或16位数据总线)为ATA、UTOPIA、EPP、PCMCIA和DSP等提供了简单和无缝连接接口。1.2结构 CY7C68013结构图如图1所示。它有三种封装形式:56SSOP,100TQFP和128TQFP。 1.3特征: ★内嵌480MBit/s的收发器,锁相环PLL,串行接口引擎SIE——集成了整个USB 2.0协议的物理层。 ★为适应USB 2.0的480MBit/s的速率,FIFO端点可配置成2,3,4个缓冲区。 ★内嵌可工作在48MHz的增强型8051,它具有以下特征:

- 具有256Byte的寄存器空间,两个串口,三个定时器,两个数据指针。 - 四个机器周期(工作在48MHz下时为83.3ns)即组成一个指令周期。 - 特殊功能寄存器(包括I/O口控制寄存器)可高速访问。 - 应用USB向量中断,具有极短的ISR响应时间。 - 只用作USB事务管理,控制,不参与数据传输,较好地解决了USB高速模式的带宽问题。 ★“软配置”——USB固件可由USB总线下载,片上不需集成ROM。 ★拥有四个FIFO接口,可工作在内部或外部时钟下。端点和FIFO接口的应用使外部逻辑和USB总线可高速连接。 ★内嵌通用可编程接口GPIF,它是一个状态机,可充当主控制器,提供外部逻辑和USB总线的“无胶粘贴”。 ★一种单片USB 2.0外设解决方案,不需要外部的协议物理层,FX2把所有的功能集成在一个芯片上。

(完整word版)异步FIFO的实现方式

异步FIFO的实现方式 实验目的 本次实验介绍一种异步FIFO的实现方式。使用FIFO存储器可以在两个不同时钟系统之间快速而方便的传输数据。另外,在网络接口,图像处理等方面异步FIFO存储器也得到了广泛的应用。因此,异步FIFO存储器具有较大的研究和应用价值。 异步FIFO的介绍和整体结构 异步FIFO(First In First Out)存储器是指向FIFO缓冲器中写入数据的时钟域和从FIFO缓冲器中读取数据的时钟域是不同的,这两个时钟之间没有必然的因果关系。异步FIFO是一种先进先出的电路,使用在异步时钟域数据接口的部分,用来存储、缓冲在两个异步时钟之间的数据传输。在异步电路中,由于时钟之间周期和相位完全独立,所以数据的丢失概率不为零。如何设计一个高可靠性、高速的异步FIFO存储器便成为一个难点。 异步FIFO的一般结构如图1所示,都是由一个读时钟域电路、一个写时钟域电路和一个双端口的RAM来构成的。异步FIFO与同步FIFO所做的工作是相同的,都是在写信号有效时写数据到RAM中,在读信号有效时把数据从RAM中读出,所以对于中间部分的RAM 设计是比较简单的。另外,读电路和写电路单独实现起来也是比较容易的,只需要按照同步FIFO的工作情况,如果没有写满或读空的状态时每写一个数据就把写地址加1,每读一个数据就把读地址减1。设计难点在于两个时钟域的交叠部分:满、空状态的产生,这也是设计的重点。

图1 异步FIFO结构 针对这个问题,先从对亚稳态的处理开始介绍 亚稳态的处理 一个触发器进入亚稳态时,既无法预测该单元的输出电平,也无法预测何时输出才能稳定在某个正确的电平上。在这个稳定期间,触发器输出一些中间级电平,或者可能处于振荡状态、并且这种无用的输出电平可以沿信号通道上的各个触发器级联式传播下去。亚稳态发生的原因是由于在同步系统中,如果触发器的建立时间或保持时间不满足,就可能产生亚稳态,此时触发器输出端Q在亚稳态是指触发器无法在某个规定时间段内达到一个可确认的状态,逻辑误判有可能通过电路的特殊设计减轻危害(如本设计中将使用的Gray码计数器),而亚稳态的传播则扩大了故障面,难以处理。 在数字集成电路中寄存器要满足建立时间和保持时间。建立时间是在时钟翻转之前数据输入必须有效的时间,保持时间是在时钟沿之后数据输出必须仍然有效的时间。当一个信号被寄存器锁存时,如果信号和时钟之间不满足这个要求,Q的值是不确定的,并且在未知的时刻会固定到高电平或低电平。此时寄存器进入了亚稳态(Metastability)。解决这一问题的最简单方法是使用同步器,使得在另一个时钟域采样时信号足够稳定。 同步器的设计本身就是一个比较麻烦的问题,本次设计中也不深入讨论一些细节性的问题,直接采用两级采样的同步器,避免了使用一级同步器仍可能出现亚稳态的情况。每个这样的同步器都具有一个等于时钟周期的等待时间。这种同步器可以把一些亚稳态的值同步为确定值,但并不一定是正确值,同时有一些亚稳态也还是无法稳定成确切值的,这种情况称为同步出错。由于同步出错的随机性,很难对它们进行跟踪。如果想进一步降低亚稳态出现的概率、可以再増加同步器的级数,但是太多的同步器会使系统的性能下降,所以系统中不会用太多的同步器,一般使用两个同步器已经足够。 空满状态的判断 之所以在前面介绍了亚稳态的问题,是因为这是判断满状态或空状态无法回避的一个问题。因为读电路在读控制时维持一个地址指针,写电路在写控制时维持一个地址指针,简单来说,这两个地址指针直接一比较,就能得到空满的判断结果,但是实际操作起来非常麻烦。例如对于满状态来说,这是写入电路所关心的状态,因为满状态下不能继续写入数据,但是空状态对于写电路没有影响。如果写入电路要判断当前FIFO是否为满,就需要把写电路自身维持的写指针和读电路维持的读指针做比较,这个读指针就需要送入写电路中,此时就发生了穿过时钟域的问题,也就是说,读指针要从读时钟域同步到写时钟域,然后参与判断,此时就需要前面介绍的同步器。同样,对于空状态来说,这是读出电路所关心的状态,也是由读电路来维持的,因为空状态下再读数就会得到错误的数据,但是满状态下读数是没有影响的。如果读电路要判断当前FIFO是否为空,就需要把写时钟域中的写指针取到读时钟域来,和读时钟域的读指针进行比较得出是否是空状态,同样跨越了时钟域。在跨时钟域系统中希望出现错误的概率越低越好,此时格雷码无疑是最好的一个选择。格雷码属于可靠性编码,是一种误差最小化的编码,它大大减少了由一个状态到下一个状态时电路混淆。由这种编码相邻的两个码组之间只有一位不同,和其他编码同时改变2位和多位的情况相比更为可靠。表1所示是格雷码与二进制码的对应关系。

网卡 特点功能

网卡 名称: 网卡(有线·无线) 功能: 1.数据的封装与解封 发送时将上一层交下来的数据加上首部和尾部,成为以太网的帧。接收时将以太网的帧剥去首部和尾部,然后送交上一层 2.链路管理 主要是CSMA/CD(Carrier Sense Multiple Access with Collision Detection ,带冲突检测的载波监听多路访问)协议的实现 3.编码与译码 即曼彻斯特编码与译码。 特点: 网卡的不同分类:根据工作对象的不同务器的工作特点而专门设计的,价格较贵,但性能很好。就兼容网卡而言,网卡一般分为普通工作站网卡和服务器专用网卡。服务器专

用网卡是为了适应网络服种类较多,性能也有差异,可按以下的标准进行分类:按网卡所支持带宽的不同可分为10M网卡、100M网卡、10/100M自适应网卡、1000M网卡几种;根据网卡总线类型的不同,主要分为ISA网卡、EISA网卡和PCI网卡三大类,其中ISA网卡和PCI网卡较常使用。ISA 总线网卡的带宽一般为10M,PCI总线网卡的带宽从10M到1000M都有。同样是10M网卡,因为ISA总线为16位,而PCI 总线为32位,所以PCI网卡要比ISA网卡快。 网卡的接口类型:根据传输介质的不同,网卡出现了AUI 接口(粗缆接口)、BNC接口(细缆接口)和RJ-45接口(双绞线接口)三种接口类型。所以在选用网卡时,应注意网卡所支持的接口类型,否则可能不适用于你的网络。市面上常见的10M网卡主要有单口网卡(RJ-45接口或BNC接口)和双口网卡(RJ-45和BNC两种接口),带有AUI粗缆接口的网卡较少。而100M和1000M网卡一般为单口卡(RJ-45接口)。除网卡的接口外,我们在选用网卡时还常常要注意网卡是否支持无盘启动。必要时还要考虑网卡是否支持光纤连接。 优缺点: 品牌: Intel

网卡的组成工作原理

网卡的组成工作原理 1.认识网卡,我们上网必备组件之一。 网卡工作在osi的最后两层,物理层和数据链路层,物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。物理层的芯片称之为PHY。数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。以太网卡中数据链路层的芯片称之为MAC控制器。很多网卡的这两个部分是做到一起的。他们之间的关系是pci总线接mac总线,mac接phy,phy接网线(当然也不是直接接上的,还有一个变压装置)。 下面继续让我们来关心一下PHY和MAC之间是如何传送数据和相互沟通的。通过IEEE定义的标准的MII/GigaMII(Media Independed Interface,介质独立接口)接口连接MAC和PHY。这个接口是IEEE定义的。MII接口传递了网络的所有数据和数据的控制。 而MAC对PHY的工作状态的确定和对PHY的控制则是使用SMI(Serial Management Interface)接口通过读写PHY的寄存器来完成的。PHY里面的部分寄存器也是IEEE定义的,这样PHY把自己的目前的状态反映到寄存器里面,MAC通过SMI总线不断的读取PHY的状态寄存器以得知目前PHY的状态,例如连接速度,双工的能力等。当然也可以通过SMI设置PHY 的寄存器达到控制的目的,例如流控的打开关闭,自协商模式还是强制模式等。 我们看到了,不论是物理连接的MII接口和SMI总线还是PHY的状态寄存器和控制寄存器都是有IEEE的规范的,因此不同公司的MAC和PHY一样可以协调工作。当然为了配合不同公司的PHY的自己特有的一些功能,驱动需要做相应的修改。 一片网卡主要功能的实现就基本上是上面这些器件了。其他的,还有一颗EEPROM芯片,通常是一颗93C46。里面记录了网卡芯片的供应商ID、子系统供应商ID、网卡的MAC地址、网卡的一些配置,如SMI总线上PHY的地址,BOOTROM的容量,是否启用BOOTROM引导系统等东西。 很多网卡上还有BOOTROM这个东西。它是用于无盘工作站引导操作系统的。既然无盘,一些引导用必需用到的程序和协议栈就放到里面了,例如RPL、PXE等。实际上它就是一个标准的PCI ROM。所以才会有一些硬盘写保护卡可以通过烧写网卡的BootRom来实现。其实PCI 设备的ROM是可以放到主板BIOS里面的。启动电脑的时候一样可以检测到这个ROM并且正确识别它是什么设备的。AGP在配置上和PCI很多地方一样,所以很多显卡的BIOS也可以放到主板BIOS里面。这就是为什么板载的网卡我们从来没有看到过BOOTROM的原因。 2.工作过程 PHY在发送数据的时候,收到MAC过来的数据(对PHY来说,没有帧的概念,对它来说,都是数据而不管什么地址,数据还是CRC),每4bit就增加1bit的检错码,然后把并行数据转化为串行流数据,再按照物理层的编码规则(10Based-T的NRZ编码或100based-T的曼彻斯特编码)把数据编码,再变为模拟信号把数据送出去。收数据时的流程反之。现在来了解PHY的输出后面部分。一颗CMOS制程的芯片工作的时候产生的信号电平总是大于0V的(这取决于芯片的制程和设计需求),但是这样的信号送到100米甚至更长的地方会有很大的直流分量的损失。而且如果外部网现直接和芯片相连的话,电磁感应(打雷)和静电,很容易造成芯片的损坏。 再就是设备接地方法不同,电网环境不同会导致双方的0V电平不一致,这样信号从A传到B,由于A设备的0V电平和B点的0V电平不一样,这样会导致很大的电流从电势高的设备流向电势低的设备。我们如何解决这个问题呢? 这时就出现了Transformer(隔离变压器)这个器件。它把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到连接网线的另外一端。这样不但使网线和PHY之间没有物理上的连接而换传递了信号,隔断了信号中的直流分量,还可以在不同0V 电平的设备中传送数据。

fifo原理以及两种模式

关于 ALTERA 提供的 FIFO 核使用原理(转)
加入收藏
2010-12-18 16:01
?
转发分享 人人网 开心网 新浪微博 搜狐博客 百度收藏 谷歌收藏 qq 书签 豆瓣 淘江湖 Facebook Twitter Digg Yahoo!Bookmarks
ALTERA 提供了 LPM_FIFO 参数宏模块,可以在代码中例化使用。 FIFO 有两种工作模式:(1)SCFIFO,(2)DCFIFO 其中 SCFIFO 指读写用一个时钟进行同步,可以支持同时读写的功能。 其中 DCFIFO 指读写使用不同的时钟进行同步,这在设计多时钟系统中相当有用,可用于 不同时钟同步信号之间的同步调整。 首先看看 DCFIFO 模式下的几个比较重要的信号: [A]在写端,主要有以下几个信号: (1) data[n-1:0]:写入数据信号总线; (2) wrreq:写入请求信号,高有效 (2) wrclk:写入同步时钟; (3) wrfull, wrempty:用于指示写端 FIFO 为空或者满的状态; (4) wrusedw[log2(SIZE_FIFO)-1:0] :写入的数据个数,按写入个数递增; 上述信号都与写入时钟 srclk 同步; [B]在读端,主要有以下几个信号: (1) q[n-1:0]:读取数据信号总线; (2) rdreq:读取请求/确认信号,高有效 (2) rdclk:读取同步时钟;

(3) rdfull, rdempty:用于指示读端 FIFO 为空或者满的状态; (4) rdusedw[log2(SIZE_FIFO)-1:0] :读取的数据个数,按读取顺序递减; FIFO 主要有两种工作模式: (1) Legacy mode(Legacy synchronous FIFO mode ) (2) Show-ahead mode(Show-ahead synchronous FIFO mode) 其中: 在 Legacy mode, 读端的 rdreq 信号作为读取 FIFO 的请求信号(REQ), 读取数据在 rdreq 置位后的第二个时钟周期有效。 在 Show-ahead mode,读端的 rdreq 信号作为读取 FIFO 的确认信号(ACK),读取数据 在 rdreq 置位后立即有效,不要额外的读取周期。 下面分别给出 Legacy mode 和 Show-ahead mode 的读写时序: [A] Legacy mode
[B] Show-ahead mode
由上述时序可以看出两种模式的区别。 值得注意的是: 读端在读取数据的时候,必须等待写端数据准备好,即 rdempty 为低之后开始读取数据, 为高期间表明 FIFO 状态为空,写端写入数据未有效。 相应的在写端如果 wrfull 为高,则表明 FIFO 状态以满,不能再写入数据,此时写入的数 据无效。

相关文档
最新文档