人工智能技术在电力系统故障诊断中应用

人工智能技术在电力系统故障诊断中应用
人工智能技术在电力系统故障诊断中应用

人工智能技术在电力系统故障诊断中应用α

廖志伟1,2,孙雅明1,叶青华2

(1.天津大学电气与自动化工程学院,天津300072;

2.华南理工大学电力学院,广州510640)

ART IF I C I AL INTELL IGENT TECHNOLOGIES FOR FAUL T

D I AGNOSIS IN POW ER S Y ST

E M

L iao Zh i w ei1,2,Sun Yam ing1,Ye Q inghua2

(1.T ian jin U n iversity,T ian jin300072;

2.Sou th Ch ina T echno logy U n iversity,Guangzhou510640,Ch ina)

ABSTRACT:T he basic concep t and app licati on of artificial intelligent(A I)techno logies fo r fault diagno sis are briefly introduced,including artificial neural netw o rk(ANN),ex2 pert system(ES),genetic algo rithm s(GA)and fuzzy set theo ry(FST).T heir feature and m ain p roblem s are dis2 cussed from the view of p racticability,and their future de2 velopm ents are also fo recast in th is paper.

KeyW ords:pow er system;fault diagno sis;artificial intel2 ligent techno logies

摘要:对人工神经网络、专家系统、遗传算法、模糊理论等人工智能技术的基本概念进行了简单的介绍,并从实用化的观点对它们在电力系统故障诊断中的应用特点、存在问题进行分析,最后指出人工智能技术用于电力系统故障诊断的最新发展动向。

关键词:电力系统;故障诊断;人工智能

1 引言

电力系统实时故障诊断问题的研究,一般都是根据在故障过程中,对某些装置和设备所出现的一系列数字和状态信息量进行分析和推理。在此基础上查出导致系统某种功能失调的原因和性质,判断故障发生的元件以及预测故障恶化的发展趋势,得出诊断结论。在电力系统的故障诊断(fau lt diagno sis of pow er system——FD2PS)方面已开展了不少研究,传统型的FD2PS研究是在建立被诊断系统网络拓扑结构模型的基础上,根据发生故障时,系统结构和参数变化,导致系统潮流的变化,进而根据潮流计算的变化判断出故障。但潮流计算和分析处理的耗时量大,会影响诊断速度和快速故障恢复处理。另外正常运行时某些线路潮流值小,接近于0(如线路轻载运行),故用潮流来判断故障,也不能保证诊断的准确性。所以电力系统故障诊断用传统的数学方法,因系统规模、复杂程度和不确定因素等的限制,系统故障诊断难以达到理想的效果。

由于电力系统的整个故障过程难以用数学模型来进行描述,而A I善于模拟人类分析和处理问题的智能行为,适宜对难以用数学模型分析和求解问题的研究,所以A I技术的发展为FD2PS的研究开辟了新途径和新方法。近十几年来,国内外将A I 技术用于电力系统的研究已有不少,并取得了有成效的研究成果,且已有部分成果在实际中得到了应用[1~3],但转成商用化的数量与研究数量相比实在是太少了,因此在新的世纪中,应致力于将A I的研究推广应用到实际中,作为进一步研究的目标。

本文对国内外已研究的智能型FD2PS作全面分析和归纳,主要对ES、ANN、FST、GA及Petri 网络等技术在FD2PS中应用研究进行全面的概述,并在此基础上用实用化的观点来分析它们在FD2PS中应用的特点以及存在的主要问题,对智能技术在FD2PS中的发展趋势进行了探讨。

2 基于ES原理的电力系统故障诊断[4~20]

ES[4~6]是发展最早,也是比较成熟的A I分支之一,它与知识工程研究紧密联系在一起。在ES构造中,它必须涉及所研究问题领域的知识表达方式,知识处理与知识运用方面的理论和方法。ES不仅是融合了书本相关的理论知识来处理各种定性的问题,而且还可总结和利用专家的经验知识(或称启发式知识)来求解问题。它不仅可解决那些依

第15卷第6期2003年12月 电力系统及其自动化学报

P roceedings of the EPSA

V o l.15N o.6

D ec. 2003

α收稿日期:2002211207

靠解析方法不能解决的问题,也可使所求解问题的知识搜索和推理范围缩小,提高问题求解速度和推理效率;另外ES的解释模块能够对推理所用的知识、推理过程及结论进行解释。在电力系统中,ES 在故障诊断和恢复处理方面的研究较多,可根据ES知识表达方式和推理机结构的不同对ES进行划分。

在电力系统故障诊断的ES中,常用的知识表达方式有:基于谓词逻辑表示法,基于产生式规则表示法,基于过程式知识表示法,基于框架式表示法,基于知识模型表示法和基于面向对象表示法。实质上后两种是由于计算机和语言技术、智能技术的发展而形成的,它们是在前三种基础上的新形式和新结构。对它们在电力系统故障诊断应用的特性分析如下:

谓词逻辑法是一种较早的知识描述方法之一。文献[7]提出利用保护和断路器信息来构造知识库,文中使用P ro log语言用谓词逻辑构造三个知识库:1)描述电力系统结构、保护和断路器动作关系及断路器的状态方面的知识;2)描述保护原理方面的知识;3)描述故障位置的规则和启发性知识。它根据故障设备与保护、断路器的信息关系,采用反向推理,实现多重故障、保护和断路器误动、拒动诊断的功能。但谓词逻辑仅仅依据形式逻辑进行,推理过程太冗长,效率低;不便于加入启发性知识;灵活性差。故其应用范围受限制。

在FD2PS中,由于各种保护的动作逻辑,保护与断路器之间的因果关系易于用模块化的规则集表示,故不少ES采用产生式规则来描述知识[8,9]。文献[8]则根据诊断的对象不同,将诊断规则知识库分为两类:一类属于对保护和断路器进行评价的规则库;另一类则是输电线、变压器、母线诊断的知识库。当发生故障时,将事故信息与相应的规则库相匹配,得出故障结果。基于产生式规则的知识表示结构便于增加、删除或修改一些规则。它适宜于表示因果关系的知识,但难于描述电力系统结构性的知识,且这种知识表达方式对层次性、继承性知识的表达能力较差,降低了推理的效率。

基于框架理论表示法是将概念性和经验性的知识事例、事件细节,用类似框架的通用数据结构描述的一种结构化知识表达方式。由于电力系统中网络结构复杂,设备之间存在各种拓扑关联和电气关联,宜于用框架结构来描述[5~6,10~11]。文献[10~11]通过线路框架表示厂站和厂站的连接关系,形成框架网络,将电网的整个拓扑结构知识清晰描述。框架可灵活的形成层次关系,继承属性使表达简单,简化复杂的推理知识,其缺点是不善于表达过程性的知识。

基于知识模型表示法[12,13]用“与,或”逻辑元代替传统的经验启发式规则来表示各电力系统设备内在功能,各设备与各种输入信息间的物理连接关系,构造被诊断系统内各种设备的知识逻辑模型。这种表达方式描述了对象的整个逻辑推理的过程,就相当于过程式知识描述,不同处是根据信息的具体情况嵌入相应的逻辑运算,使整体概念和行为更清晰。文献[12]是通过用“与,或”逻辑元表示断路器与保护之间多重性关系,并将它们有序连接构成所要诊断的电力系统“前向”逻辑电路模型。当发生事故时,根据所得到事故信息输入电路模型,再由电路模型的输出与实际断路器的状态相比较,最后给出诊断结果或相应的诊断假设进行进一步的推理。基于知识模型表示法是将电力设备表示为等效的逻辑元件,它是局部的整体性,缺乏整个ES的通用性及层次性,并对诊断假设的验证推理增加了复杂性。

面向对象的知识表达方法是随着面向对象技术和语言而推出的。将研究问题抽象为类,将类实例化为对象,通过采用继承和封装技术,减少了知识表达的冗余性和易于知识库修改[14~16]。文献[15]通过分析被诊断系统每个组成设备的属性,用不同层次类来描述相应的电网组成设备,并由对象的实体来描述整个电网在故障情况下它们的动态可能行为。在此基础上将推理机的诊断过程用面向对象技术进行处理。这种知识表示方法在本质上与框架式表示法没有质的区别,但由于面向对象技术和语言的发展而赋予新的定义,使其在表达方式上更简洁、清晰。同时将框架理论的优点更充分的发挥,特别是对逻辑推理过程的适应能力增强。

在电力系统故障诊断的ES中,常用的推理机制可以划归为正向推理、反向推理、正反向混合推理三种基础推理结构。

文献[17]输电线路故障诊断中采用正向推理。根据系统发生故障时,跳闸的断路器和动作的保护信息作为驱动输入,按照知识指导的推理策略调动知识库在相关空间中规则,搜索求得故障诊断的结果(由网络结构信息、断路器状态、断路器与保护装置的连接和保护系统的属性等组成)。当规则的条件部分与诊断输入信息相匹配,就将该规则作为可用规则放入候选队列中,再通过冲突消解,将其作为进一步推理的证据直至得到诊断结果。

?

2

7

?电力系统及其自动化学报 2003年第6期

反向推理首先提出假设,然后寻找支持该假设的证据,若所需证据都能够找到,则表明该假设成立,反之假设不成立[7]。这种推理方法极少单独在FD2PS中使用,而是与前向推理相结合,用于构造正反向混合推理[18~20]。文献[18]中对输电线和配电网报警处理和故障诊断ES的推理机是采用基于正反向混合推理机结构,首先根据跳闸断路器的保护信息进行初步推理,得到故障设备的假设。根据所得假设,再用断路器和保护设备之间的逻辑规则进行反向推理,验证假设的故障设备的正确性,有效的缩小查找故障范围。

综上所述,基于ES技术的电力系统故障诊断系统的研究已有近20年的历史。随着计算机和语言技术、智能技术的发展,使知识表达形式和结构也随之有所相应的变化,在知识获取和构造方面有很多的改进,其发展的趋势是力图使知识获取、知识表达工作简化,进而使故障诊断的推理效率得到提高。但ES基于知识实现故障诊断的推理逻辑过程原理是不变的,因此,在实际应用中的某些缺陷仍不能忽视。

1)在电力系统故障诊断ES研究中,知识获取的工作一直给予研究者很大的压力。如何更有效、更全面的获取专家知识,是构造一个完备的ES的诊断系统不得不必须面对的难题。

2)ES的知识表达:知识表达方式和知识构造质量是ES成功的关键;专业知识和专家启发性知识转化和形成完备的知识库仍是故障诊断ES的瓶颈;知识库的可维护性也是极其重要的,知识库不完整或不一致可能导致ES推理混乱并得出错误的结论。

3)ES的高容错性推理:无论何种知识表达方式,当发生故障时,都是依据故障信息所对应知识库进行树图的搜索。而知识库是建立在诊断问题所对应的知识树,它是按预先领域知识构造成的组合固定的树,而并非是任意组合的,其自学习能力是极有限的。但实际中的FD2PS问题所依据的故障信息都属于实时信息,在现实的环境中,信息在形成和传递过程中发生信息畸变的可能性是不可避免的,易出现知识库没有涵盖的新故障情况。会使得基于知识推理ES陷入无穷递归,无法求解或得出错误解。故ES的容错能力较差,这是用于实时ES的最大局限性。

因此,将具有自学习和联想功能的ANN,基于FST的不确定性推理与ES技术相结合,是近年来ES发展的主要趋势。3 基于ANN原理的电力系统故障诊断[21~46]

ANN也是A I技术的一个重要分支,基于ANN原理的FD2PS与基于ES原理的FD2PS相比,其最大的特点是不需要为专业知识与专家启发性的知识转化、知识形成、知识表达方式和知识库构造作大量工作,而只需以领域专家所提供的大量和充分的故障实例,形成故障诊断ANN模型的训练样本集,运用一定的学习算法对样本集进行训练。通过有导师监督的训练学习使ANN实现知识的自我组织,自我学习能力。经学习后,在神经元及它们之间的有向权重连接中蕴涵了处理问题的知识,即它的知识表达不同于ES的显形表达,是隐式的并具有一定的联想和泛化能力;对已训练的ANN模型,由于问题的求解就蕴涵于ANN的权值中,因此它的推理也是隐式的,执行计算速度很快。由于ANN具有强的自组织、自学习能力,鲁棒性高,免去推理机的构造,且推理速度与规模大小无明显的关系[21~24],很快引起人们的重视,使得基于ANN的故障诊断的研究也日益广泛。ANN除在电力系统故障诊断中的应用外,在故障定位和故障类型识别等方面也有不少的应用。

文献[25]提出基于BP算法FNN模型,对电力系统故障诊断作了初步的研究。为了克服BP算法训练速度慢,陷入局部最小可能的缺点,文献[26]用附加动量因子BP算法对一个小型的电网模型结构进行诊断,并对改进BP算法中动量因子的取值,FNN的隐层节点个数和层数对诊断性能的影响进行了分析。

文献[27]使用局部逼近的径向基函数NN(RB F2NN)实现对电力系统的故障诊断,通过对一个小规模的网络结构,对基于B P2FNN、RB F2NN及自适应RB F2NN三种故障模型算法进行仿真对比,它们均以输电网络中设备的保护和断路器的状态作为输入,可能的故障位置作为输出,以0,1逻辑值表示输入、输出元素激活与否。基于径向基函数的NN学习收敛速度比较快,泛化能力比常规的BP2FNN更好,但相应的应用条件也比较严格。

FD2PS所依据的是实时故障信息,在信息畸变的情况,尽管FNN具有一定的泛化能力,但仍存在容错性的问题。为提高基于ANN的FD2PS的容错性,文献[28]利用NN组合模型来提高FD2PS的容错性,文中模仿ES推理方式建立了正、反向推理

?

3

7

?

2003年第6期 廖志伟等:人工智能技术在电力系统故障诊断中应用

的FDNN和B TNN,评定CNN的组合。它们中各个NN又按故障的类别组合划分成几个相应的子NN。其中各FDNN i都接收保护信息和断路器的状态作为输入,以表示故障位置(设备类型、编号)和故障类型的故障编码为输出。而BTNN i的输入、输出是与FDNN i正好相反,即是FDNN的逆映射。各相应的评定CNN i是故障编码与主、后备保护之间的关联。该系统可通过正向、反向NN的相互校核,对某些错误信息能鉴别,因此对诊断系统的容错性能有一定程度的改善。但该方法使系统的复杂性增加,特别是电力系统规模大时,问题更突出。文献[29]提出用Bo ltz m ann机和BP2NN模型组合进行故障诊断,将正常的报警模式存储于Bo ltz m ann 机中,当故障发生时,首先将利用Bo ltz m ann机对实时故障信息进行纠错处理,再将纠错处理后的输出作为诊断BP2NN模型的输入进行故障诊断。这样可在一定程度上实现对错误信息的纠错,从而提高诊断的容错性。

针对大规模电网故障诊断使得NN模型结构规模扩大而导致NN训练和应用的复杂性,有学者研究提出建立分层分布式的NN群组来解决[30~31]此类问题。文献[30]是根据电网结构分区结构,利用决策树推导构造形成分布式NN诊断群组,将各分布NN的结果综合起来得出故障诊断结论。文献[31]除基于知识模型组成分布式NN外,还根据高压网络保护的层次性,同时还隐含了动作的时间序列,在此基础上提出了具时空特性的分层分布式的NN群组来构造一个完整的高压输电线路故障诊断系统。

在已研究的基于BP2NN的电力系统故障诊断中,大多数的研究更强调如何提高学习算法的收敛速度,克服陷入局部极小点,提高精度;或者根据研究目标的需要改变ANN模型结构,通过对ANN 的知识分层分布存储来提高和改善NN泛化能力,联想记忆性能,在此同时也改善了容错性能。但是明显的缺乏对影响ANN容错性的因素和如何提高ANN容错性能的系统性的研究。

从以上对基于ES、ANN的FD2PS问题的分析和讨论可知,它们都有各自的不足。所以在研究具体问题时,根据需要可以将两者结合,解决问题的不同方面[32~33],可以达到取长补短的效果。文献[32]用NN实现知识获取、知识表示、推理和知识维护,将故障诊断的知识隐含于ANN的连接权矩阵中,将实时信息作为ANN输入信息进行推理。但在某些特殊结构化的推理过程中,由NN来处理会导致结构比效繁琐,这时候由ES来处理可大大地简化知识推理。另外,由ES构造解释模块来实现解释较为方便,更提高系统的透明度。这样就将ES的解释推理能力与ANN的快速执行和学习能力有机的结合起来。文献[33]提出利用一组B P2NN模型和ES进行报警处理,其中每个B P2NN模型负责识别单个变电站或某区段的故障,而由ES根据故障信号确定调用相应的BP2NN 诊断模型对故障进行处理,这样还可以利用ES依次调用相关的NN模型而达到识别系统中发生多重故障的情况。

综上分析ANN在故障诊断中应用的局限性为:1)对于有导师学习的ANN模型,具有较好的内插结果和相应的联想容错能力。但ANN外推时误差较大,难以保证解的准确度和容错性能。因此,要确保具有全面的、代表性的样本集提供给ANN 训练学习,它们是保证和提高ANN容错性能的一个最基本的因素;2)系统结构发生变化,则有可能需要改变ANN的组成结构,或增加新的样本重新学习获得新知识;3)ANN难以实现基于结构化知识的逻辑推理;4)缺乏解释能力,诊断结果不易于运行人员理解。另外,如何确保ANN训练时收敛的快速性和避免陷入局部最小,也是每一个基于ANN的诊断系统必须面对的问题。

4 基于FST的电力系统故障诊断[34~42]

FST是L.A.Zadeh教授于1965年创立的模糊集合理论基础上发展起来[34~35],它突破了经典集合用0和1表示非此即彼的清晰概念,而采用模糊隶属度的概念来描述不精确的、不确定事件与现象,并引入语言变量和近似推理的模糊逻辑,来表述专家的经验知识。FST经过多年的研究,已成为具有完整推理体系的人工智能技术之一。在电力系统故障诊断系统中,根据具体知识表达或推理的需要引入FST,使得精确推理相应转换为近似推理,在一定程度上也提高了故障诊断系统的容错性。FST与其它A I技术相结合(如ES、ANN、GA 等)相互渗透,取长补短。FST的加入,使各相应智能诊断系统在电力系统故障诊断在分析不确定因素问题上原理更成熟,技术更完善,而性能得到相应的提高。

FST在电力系统故障诊断的应用中分两类情况:第一类认为诊断所依据的信息正确,但故障与对应的动作保护装置和断路器状态之间存在不确定的关联关系,用模糊隶属度来对这种可能性进行

?

4

7

?电力系统及其自动化学报 2003年第6期

描述的度量;另一类则是认为诊断所依据的报警信息的可信度不为1,而根据系统网络拓扑与故障所发生动作保护、断路器状态赋予报警信息的可信度,再由ES或ANN给出故障诊断结果的模糊输出。文献[36]属前一类,认为故障与动作的保护装置之间,动作的保护装置与所控制的断路器之间可以存在不确定的关联关系,可用模糊数学来描述它们之间的关联关系。根据可能的故障,可寻找由故障点到报警信息可能的通路,再寻找故障点与可能动作的保护装置之间,动作的保护装置与可控制的断路器之间关联关系合成总的模糊度,用以表示故障诊断位置可能性的度量。

文献[37~42]属后一类,它先对诊断模型所依据的输入信息模糊化,即认为系统的输入报警信息的可信度不为1。它是根据输电网络拓扑当前情况,对保护、断路器动作行为的统计数据赋予报警信息可信度,通过ANN或ES诊断模型输出模糊数,再由反模糊系统去解释其输出,提供给运行人员一个语言化的结论。

根据模糊系统具体应用的分析结果,得出尚须深入研究的问题:1)对不确定性问题用隶属度函数来描述时,应建立什么样的隶属函数是极其关键的问题,须在足够经验和实验的基础上,有效地建立隶属函数;2)研究诊断系统的结构、设备或自动装置的配置发生变化时,与之有关的模糊知识库或规则的模糊度也要相应的修改,即也存在可维护性问题;3)电力系统故障诊断的不确定性情况是多种多样的,并非是固定不变的,取决于系统中硬件装置的可靠性(如断路器跳闸误跳或拒跳),诊断系统所依据的实时信息的可信度(如实时信息在传递中出现的畸变可能性与环境有关)等因素。显然, FT对不确定因素的处理只能是有限度的改进。

5 基于GA的电力系统故障诊断[43~49]

GA是建立在D ar w in自然选择和M endel遗传学说基础上,通过模仿生物遗传和进化的进程,寻求对复杂问题的全局最优解的优化算法。它按一定规则对问题解进行字符串编码,模拟人工染色体表示某优化问题的可行解,用随机方法形成初始解群,再按自然选择的原理,通过群体搜索策略和遗传操作,对群体中个体之间的信息交换,使得G A 不易陷入局部极小点,能够以很大概率得到全局最优解集或局部最优解集。与传统优化技术不同,G A 对待求解问题不需涉及常规优化问题求解的复杂数学过程;同时GA也不需要直接对知识规则和训练样本选择处理,这是它和基于ES、NN诊断系统相比的最大优势之处。

文献[43]研究用GA解决输电网络故障诊断问题。文章根据各类保护动作时段内断路器动作的时序信息,从而将输电网络故障诊断问题转化为021整数规划问题,建立了GA的电力系统故障诊断的适应度函数模型,实现任意复杂的故障情况下的故障诊断。

文献[44]用无源信息识别故障区域的方法,将故障诊断问题局限于小的局部网络,在此基础上分别用Bo ltz m ann机法、模拟退火法、简单的和高级的GA实现了故障诊断系统,验证了对交叉和变异算子做过调整的高级G A在诊断信息不完整的情况下,可以有效的找到全局最优解,得到比较理想故障诊断效果。

用GA从优化的角度解决故障诊断问题,它能够在诊断信息不完整的情况下给出全局最优或局部最优的多个可能的诊断结果。但在诊断所依据的信息发生畸变,出现复杂的故障模式的时候,也难以保证诊断结果的可靠性。因此如何根据被诊断对象特征,建立能保证高容错性能故障诊断适应度函数,以及如何确定迭代操作结束的准则和保证最终的结果为最优解或近似最优解。这些问题是基于GA应用中需要深入研究的内容。

6 基于Petri网络的电力系统故障诊断[50~56]

Petri网络(Petri net)是由德国数学家C.A. Petri于1960~1965年提出的一种通用的数学模型[50],是在构造有向图的组合模型的基础上,形成可用矩形运算所描述的严格定义的数学对象。Petri网分析方法既可用于静态的结构分析,又可用于动态的行为分析。它以研究系统的组织结构和动态行为为目标,能够对系统中同时发生,次序发生或循环发生的各种活动过程进行定性或者定量的分析。所以Petri网络是离散事件动态系统建模和分析的理想工具。

电力系统故障属于一个离散事件的动态系统,由系统中各级电压、各类保护动作反映故障,并把切除故障的过程看作一系列事件活动的组成,而事件序列与相应实体联系在一起。动态事件主要包括实体活动(如断路器、继电保护、自动装置等)和信息流活动(如信号的传递,控制指令发送,各监测信号流等)。鉴于电力系统故障动态过程描述的可行性,可确定用Petri网去构造电力系统诊断模型。

?

5

7

?

2003年第6期 廖志伟等:人工智能技术在电力系统故障诊断中应用

文献[51]以输电网络中的设备为单位,首先研究了故障“切除”过程的Petri网络模型,进而对故障诊断的Petri网络模型求解。整个系统的物理概念清晰,数学求解速度快适宜实时性诊断。文中还分析了保护、断路器不正确动作对Petri网络模型的影响,并分别给出了识别保护和断路器不正确动作的模块。对IEEE118节点系统的测试结果表明,Petri网络是一种比较有潜力的模型。但文中对保护多重性配置,时间差异,性能发生变化都未深入讨论,它也正是基于Petri网络原理存在的局限性。

文献[52]文中提出嵌入冗余Petri网方法,它是在原考虑的故障类型Petri网的基础上加入错误伴随式矩阵C。其目的是要解决由于网络中事件序列和信息流不正常时(如保护或断路器的拒动等)的故障诊断。采用差错控制编码技术构造C矩阵,但它必须是在预先设想的前提下构造,而不能自动构造,并且构造复杂,工作量大。而在实际系统中,故障诊断所依据信息的畸变是不确定的,所以它的容错能力是有限的,该类问题与ES差不多。

对大规模电网基于Petri网模型建模时,因设备增加和网络扩大会出现状态的组合爆炸,且基本的Petri网不能描述时间特征要求高的行为特征,因此在复杂系统建模时,需要采用高级的Petri网,如谓词 变迁网,有色时间网等。

7 基于A gen t技术的电力系统故障诊断[89~95]

人工智能技术研究的不断发展为故障诊断开辟新途径和新方法提供了可能性。分布式人工智能是在传统A I的基础上发展起来的,主要研究在逻辑上或物理上分散的智能系统如何并行的,或相互协作地进行问题的求解。它分为分布式问题求解和多A gen t系统两个方向,多A gen t系统被看作是A I的试验平台,当一个问题涉及多个物理或者从逻辑上能形成分解的问题求解实体,每个子问题求解实体仅仅拥有问题求解所需的有限数据、信息和资源,不同的子问题求解实体之间必须相互交互才能最终求解问题。多A gen t系统中A gen t的自治性以及A gen t之间的合作、协同等特征为这类问题提供了一种自然的建模方式。基于多A gen t技术的应用研究开始于上世纪80年代,近年来在工业、制造业、经济管理、航天业等领域得到了明显增长[53~54],成为A I的研究热点之一。

基于多A gen t技术也引起了电力系统研究者的关注[77~79],特别是在近2、3年来,人们尝试着将多A gen t技术引入电力系统的故障诊断相关研究和应用中。文献[55]以A gen t技术来实现故障恢复系统,系统由数个母线A gen t单元和唯一的一个在整个决策过程中充当了管理角色的服务A gen t,在服务A gen t的协调下,母线A gen t单元在故障状态下通过与其他的母线A gen t单元相互作用、交换、通讯、合作形成多A gen t诊断系统,得到局部最优目标;文献[56]建立了基于多A gen t的D I AM OND系统,将数个监控系统和诊断系统集为一个综合的集散系统,简化了问题的处理过程和增加了系统的开放性。

从A gen t的特点上看,它区别于传统智能系统的显著特征在于它所具备的与其所处环境,与其它A gen t进行交互,协调和协作的能力。A I的研究目标是认识和模拟人类智能行为,单个A gen t主要用于模拟个人的智能行为,而多A gen t系统则是以模拟人类社会群体智能行为作为最终目标,它通过多个A gen t之间的交换或通讯、合作形成了一个多A gen t系统。研究多A gen t系统意义下的A gen t,实际是将多个A gen t单元的推理和知识结合起来,创建多智能系统,以完成对更复杂、更大规模的问题的解决起到重要的作用。

8 基于数据挖掘技术的电力系统故障诊断[57~61]

数据库中的知识发现的核心技术——数据挖掘(data m in ing—DM)是近年来国际上较为活跃的研究领域,是人工智能与数据库技术相结合的产物。它应用一些专门算法从数据中抽取出有效的模式,从大量数据中发现潜在规律,提取有用知识。DM出发点是代替专家从大量的数据中挖掘出隐含于其中的知识,它使数据存储技术进入了一个更高级的阶段。即它不仅利用了数据库的存储功能,对过去的数据进行查询和遍历,能回答“什么”(W hat);还能够找出过去数据之间的潜在联系,挖掘出其背后隐藏着的许多重要信息(这些信息是关于数据的整体特征的描述及对发展趋势的预测,在决策生成的过程中具有重要的参考价值),从而可很好地支持人们的决策,回答出“为什么”(W hy)。DM属于客观计算,只和已知数据有关,从而避免了主观和经验因素的影响。因此DM 在商业、工业领域中已得到了广泛的应用,显示出了强大的生命力[57~58]。

已有研究人员开始将DM技术引入电力系统

?

6

7

?电力系统及其自动化学报 2003年第6期

故障诊断,并取得了一些成功的经验,利用DM技术用于决策支持和控制[59,60]。如在常规的电力系统运行模式下,需要依赖经验丰富的专家,一旦电力系统发生故障时,系统中保护装置的动作信息自动传递给调度中心。调度员则需要根据经验从这些信息中判断出故障的原因和故障的具体位置,由此来实施具体的隔离故障和恢复处理。为了减少损失要在极短时间内完成,这对调度员的压力很大。这种故障处理模式已无法适应,特别在信息流量庞大的今天。因任何人面对2000个 分钟数据流组成的数据表都不可能进行有效的处理。基于粗糙集的DM方法具较强的定性分析能力[61],能从给定问题的数据分析,通过不可分辨关系和不可分辨类确定给定问题的近似解,从信息表中去除冗余属性,获取该问题的内在规律,即属性约简,并能估计某一属性的重要程度,得到分类规则的能力。因此,DM 可将每一种状态的故障特征提取出来,将其作为调度人员判断电力系统处于何种状态和如何快速做出故障处理和决策的有力工具。

DM技术在电力系统故障诊断中的应用目前正处于起步阶段,解决如何将DM的算法与诊断对象相结合,确定出诊断对象的诊断模型如分类模型、回归模型、时间序列模型、聚类模型、关联模型、序列模型及如何将DM与传统人工智能技术相结合,如获取对象的模糊隶属度是值得进一步深入研究探讨的课题。

9 智能型电力系统故障诊断总结

本文对ES、ANN、模糊逻辑推理、GA等各种人工智能技术在电力系统故障诊断中的应用进行了概括;从实用化的观点,对各种算法的适用特点进行了分析;并指出了人工智能技术在电力系统故障诊断发展的新方向和趋势。

参考文献

1 L iu Chen ch ing,D aniela A P ierce,Song H aili.Intellige2 nt system app licati ons to pow er system s[J].IEEE Computer A pp licati ons in Pow er,1999,10(4):21-24

2 毕天姝,倪以信,杨奇逊.人工智能技术在输电网络故障诊断中的应用述评[J].电力系统自动化,2000,24(25): 11-16

3 韩桢祥,文福栓,张琦.人工智能在电力系统中的应用[J].电力系统自动化,2000,24(2):2-10

4 D illon T S.Expert System A pp licati ons in Pow er Sys2 tem s[M].P rentice H all,1990

5 孙雅明.人工智能基础[M].北京:水利电力出版社,

1992

6 杨以涵等.专家系统及其在电力系统的应用[M].北京:水利电力出版社,1995

7 Fukul C,et al.A n expert system fo r fault secti on esti2 m ati on using info r m ati on from p ro tective relay and cir2 cuit breaker[J].IEEE P W RD,1986,1(4):83-91

8 Shah ram B Jadi o,Jeyasurya B,Khaparde S A.Pow er system fault diagno sis expert system using PROLO G

[C].In:4th IEEE R egi on10th Internati onal Confer2

ence2T EN CON’89,1989:778-78

9 L ee H eung Jae,A hn Bok Sh in,Park Young M oon.A fault diagno sis expert system fo r distributi on substa2 ti ons[J].IEEE transacti on on pow er delivery,2000,15

(1)

10 Zhou Guozhong,Sun Yam ing.A n expert system fo r s w itch ing operati on p lanning in a dispatch ing centre [J].Int.Journal of Engineering Intelligent System s fo r E lectrical Engineering and comm unicati on1994,2

(2):143-150

11 P ietro B,U lrico C G.Fault diagno sis th rough h isto ry reconstructi on:A n app licati on to pow er trans m issi on netw o rk s[J].Expert System s w ith A pp licati ons, 1997,12(1):37-52

12 M c A rthur S D J,D ysko,et al.T he app licati on of mod2 el based reasoning w ith in a decisi on suppo rt system fo r p ro tecti on engineers[J].IEEE T ransacti on on Pow er D elivery,1996,11(4):1748-1754

13 M carthur S D J.Know ledge and model based decisi on suppo rt fo r pow er system p ro tecti on engineers[C].

In:P roceedings of Internati onal Conference on Intelli2 gent System s A pp licati ons to Pow er System s,1996: 215-219

14 Xu Kali,Zhou M ing,R en J ianw en.A n object2o riented pow er system fault diagno sis expert system[C].In:

Internati onal Conference on E lectrical Engineering, Hong Kong,1999

15 H asan K,R am say B,M oyes I.O bject2o riented expert system fo r pow er system alar m p rocessing and fault i2 dentificati on[C]:In M editerranean E lectro technical Conference2M EL ECON3,1994:909-912

16 Chang Shaohung,L in M uh shenq,et al.O bject2o rient2 ed expert system s fo r fault diagno sis[C].In:Interna2 ti onal Conference on System s,M an and Cybernetics, 1993,5:102-107

17 E sp D G,Cah ill E T.A real ti m e expert system fo r fault diagno sis on a trans m issi on netw o rk[C].In:

Pow er System M onito ring and Contro l,T h ird Inter2 nati onal Conference on.IEE Conference Pubilcati on n 366,1991:237-240

?

7

7

?

2003年第6期 廖志伟等:人工智能技术在电力系统故障诊断中应用

18 M cdonald JR,et al.A lar m p rocessing and fault diagn2 o sis using know ledge based system s fo r trans m issi on and distributi on netw o rk contro l[J].IEEE P W R S, 1992,7(3)

19 Ph illi p Burrell,D ave Inm an.A n expert system fo r the analysis of faults in an electricity supp ly netw o rk -p roblem s and ach ievem ents[J].Journal of Comput2 ers in Industry,1998,37:113-123

20 柳青松,夏道止.基于正反向推理的电力系统故障诊断专家系统[J].电网技术,1999,23(9):66-71

21 焦李成.ANN计算[M].西安:西安电子科技大学, 1993

22 焦李成.ANN系统理论[M].西安:西安电子科技大学,1992

23 杨行峻,郑君里.人工ANN[M].北京:高等教育出版社,1992

24 M oham ed E I S,D agm ar N.A rtificial neural netw o rk s w ith app licati ons to pow er system s,tuto rial course and video.IEEE Pow er Engineering Society,IEEE N eural N etw o rk Council and IEEE Educati onalA ctiv2 ities,ISBN:0-7803-4010-8,N T SC P roduct N o.

HV6957,P iscataw ay,N J,1996

25 Chan E H P.A pp licati on of neural2netw o rk computing in intelligent alar m p rocessing[C].In:P roceedings of IEEE Conference P I CA,1989:246-251

26 N avarro V icto r,et al.A rtificial neural netw o rk s fo r pow er system s diagno sis[C].In:IEEE Internati onal Conference on N eural N etw o rk s2Conference P roceed2 ings1994,6:3738-3743

27 N agabhushana T N,Chandrasekharaiah H S.Fault di2 agno sis of electrical pow er system s using increm ental radial basis functi on nets[C].In:P roceedings of the Internati onal Conference on Energy M anagem ent and Pow er D elivery,E M PD1995,2:560-564

28 Am jady N.O n2line fault diagno sis of pow er system s by a new expert system[C].Canadian Conference on

E lectrical and Computer Engineering,1998,2:731-

733

29 Jongejier A G,et al.N eural netw o rk app llied to alar m p rocessing[C].In:P roc.of ESA P’89,Seattle,1989

30 Yang H T,ChangW Y,H uang C L.Pow er system dis2 tributed on2line fault secti on esti m ati on using decisi on tree based neural nets app roach[J].IEEE T ransac2 ti ons on Pow er D elivery,1995,10(1):540-546

31 Sun Y,J iang H,W ang D.Fault synthetic recogniti on fo r an EHV trans m issi on line using a group of neural netw o rk s w ith a ti m e2space p roperty[J].IEE P rocee2 dings-Generati on,T rans m issi on and D istributi on, 1998,145(3):265-27032 Yang H T,Chang W Y,H uang Ch L.O n2line fault di2 agno sis of pow er substati on using connecti onist expert system[J].IEEE T ransacti ons on Pow er System s, 1995,10(1):323-331

33 Karunakaran R,et al.A rtificial neural netw o rk as a dispatcher’s aid in alar m p rocessing[C].In:P roceed2 ings of the F irst Internati onal Fo rum on A pp licati ons of N eural N etw o rk s to Pow er System s,1991:167-

173

34 M omoh J A,M a X W,Tom sovic K.O verview and lit2 erature survey of fuzzy set theo ry in pow er system s [J].IEEE T ransacti ons on Pow er System s,1995,10

(3):1676-1690

35 王平洋,胡兆光.模糊数学在电力系统中的应用[M].

北京:中国电力出版社,1998

36 Cho H J,Park J K.A n expert system fo r fault secti on diagno sis of pow er system s using fuzzy relati ons[J].

IEEE T ransacti ons on Pow er System s,1997,12(1): 342-348

37 M onsef H,R anjbar A M,Jadid S.Fuzzy rule2based ex2 pert system fo r pow er system fault diagno sis[J].IEE P roceedings-Generati on,T rans m issi on and D istribu2 ti on,1997,144(2):186-192

38 Chang C S,Chen J M,Srinivasan D,et al.Fuzzy logic app roach in pow er system fault secti on identificati on [J].IEE P roceedings-Generati on,T rans m issi on and

D istributi on,1997,144(5):406-414

39 Chang C S,Chen J M,L iew A C,et al.Pow er system fault diagno sis using fuzzy sets fo r uncertainties p ro2 cessing[C].In:P roceedings of1996Internati onal Con2 ference on Intelligent System s A pp licati ons to Pow er System s(ISA P’96),O rlando(U SA),1996:333-338 40 T ang S K,D illon T S,Kho sla R.A pp licati on of an in2 tegrated fuzzy,know ledge2based,connecti onistc arch i2 tecture fo r fault diagno sis in pow er system s[C].In: P roceedings of1996Internati onal Conference on Intel2 ligent System s A pp licati ons to Pow er System s (ISA P’96),O rlando(U SA),1996:188-193

41 Chow M Y,Yee S O,T aylo r L S.R ecognizing ani m al2 caused faults in pow er distributi on system s using arti2 ficial neural netw o rk s[J].IEEE T ransacti ons on Pow2 er D elivery,1993,8(3):1268-1273

42 N avarro V,D a Silva A L,Zebulum R S.A n integrati2 on of neural netw o rk s and fuzzy logic fo r pow er sys2 tem s diagno sis[C].In:P roceedings of Internati onal Conference on Intelligent System s A pp licati ons to Pow er System s(ISA P’96),O rlando(U SA):1996:237 -241

43 文福栓,韩桢祥等.基于遗传算法的电力系统故障诊断

?

8

7

?电力系统及其自动化学报 2003年第6期

的解析模型与方法第一模型与方法(一)、(二)、(三) [J].电力系统自动化学报,1998,10(3):1-18

44 W en Fushuan,H an Zhenxiang.A refined genetic algo2 rithm fo r fault secti on esti m ati on in pow er system s using the ti m e sequence info r m ati on of circuit break2 ers[J].E lectric M ach ines and Pow er System s,1996, 24:801-815

45 W en Fushuan,Chang C S.A p robabilistic app roach to alar m p rocessing in pow er system s using a refined ge2 netic algo rithm[C].In:P roceedings of Internati onal Conference on Intelligent System s A pp licati ons to Pow er System s(ISA P’96),O rlando(U SA):1996:14-

19

46 W en Fushuan,H an Zhenxiang.Fault secti on esti m ati2 on in pow er system s using a genetic algo rithm[J].

E lectric Pow er System s R esearch,1995,34:165-172 47 文福栓,邱家驹,韩桢祥.利用断路器信息诊断电力系统故障的高级遗传算法[J].电工技术学报,1994,11

(2):58-64

48 L aiL L,Sichanie A G,Gw yn B https://www.360docs.net/doc/cf3167353.html,parison betw een evo luti onary p rogramm ing and a genetic algo rithm fo r fault2secti on esti m ati on[J].IEE P roceedings-Gener2 ati on,T rans m issi on and D istributi on,1998,145(5): 616-620

49 N agabhushana T N.Chandrasekharaiah H S.A dap tive fault diagno sis of large interconnected pow er net2 w o rk s using genetic algo rithm s[J].Journal of the In2 dian Institute of Science,1997,77(1):95-106

50 袁崇义.Petri网原理[M],北京:电子工业出版社, 1998

51 L o K L,N g H S,T recat J.Pow er system s fault diag2 no sis using petri nets[J].IEE P roceedings-Genera2 ti ons,T rans m issi ons and D istributi ons,1997,144(3): 231-23652 H adjico stis C N,et al.Pow er system monito ring using petri net em beddings[J].IEE P roceedings-Genera2 ti on,T rans m issi on and D istributi on,2000,147(3):299 -303

53 W oo ldridge M J,Jennings N R.Intelligent agent:theo2 ry and p ractice[J].Know ledge Engineering R eview ing R eview.1995,10(2):115-152

54 吴伟蔚,杨叔子,吴今培.基于智能A gent的故障诊断系统研究[J],模式识别与人工智能,2000,13(1):78-

81

55 Sanz2BobiM A,et al.M ulti2agent environm ent fo r in2 telligent diagno sis in pow er system s[C].In:IEEE IS2

A P Conference,Budapest,H ungary,2001

56 M angina E E,et al.M ulti2agent system know ledge rep resetati on fo r pow er p lant conditi on monito ring based on modal logic[C].In:IEEE ISA P Conference,

Budapest,H ungary,2001

57 Fu Y.D ata m ining:task s,techniques and app licati ons [J].IEEE Po tentials,1997,16(4):18-20

58 Fayyad U.D ata m ining and know ledge discovery: m ak ing sense out of data[J].IEEE Expert Intell.

System s,1996,11(5):20-25

59 M adan S,Son,W on2Kuk,Bo llinger K E.A pp licati ons of data m ining fo r pow er system s[C].In:P roceedings of IEEE Canadian Conference on E lectrical and Com2 puter Engineering,1997,2:403-406

60 廖志伟,孙雅明.数据挖掘技术及其在电力系统中应用的综述.电力系统及其自动化,2001,25(11):15-19 61 Zhang Q i,H an Zhenxiang,W en Fushuan.A new ap2 p roach fo r fault diagno sis in pow er system s based on rough set theo ry[C].In:P roceedings of the4th Inter2 N ati onal Conference on A dvances in Pow er System Contro l,Operati on and M anagem ent,1997

?

9

7

?

2003年第6期 廖志伟等:人工智能技术在电力系统故障诊断中应用

人工智能技术在医学中的应用.

论人工智能及其在医学上的应用 摘要 阐释了人工智能的概念,概括了人工智能的发展与起源,细数了人工智能已经取得的与人类智能相媲美的成就,最后对人工智能的发展前景与发展方向进行了探讨,并进一步展望了人工智能在医学领域的应用前景。 关键词:人工智能;医学;发展;前景。 1什么是人工智能 人工智能(Artificial Intelligence,简称AI)是在计算机科学、控制论、信息论、神经心理学、哲学、语言学等多种学科研究的基础上发展起来的一门综合性很强的交叉学科,是一门新思想、新观念、新理论、新技术不断出现的新兴学科以及正在发展的前沿学科。 自1956年正式提出人工智能这个术语并把它作为一门新兴科学的名称以来,人工智能获得了迅速的发展,并取得了惊人的成就,引起了人们的高度重视,受到了很高的评价,它与空间技术、原子能技术一起被誉为20世纪三大科学技术成就。有人称它为继三次工业革命后的又一次革命,认为前三次工业革命主要是延长了人手的功能,把人类从繁重的体力劳动中放出来,而人工智能则是延伸了人脑的功能,实现了脑力劳动的自动化。 关于“人工智能”的含义,早在它正式提出之前,就由英国数学家图灵提出了。1950年他发表了题为《计算机与智能》(Computing Machinery and Intelligence)的论文,文章以“机器机能思维吗?”开始,论述并提出了著名的“图灵测试”,形象地指出了什么是人工智能以及机器应该达到的智能标准,现在许多人仍把它作为衡量机器智能的准则。图灵在这篇论文中指出不要问机器是否能思维,而是要看它能否通过如下测试:分别让人与机器位于两个房间里,他们可以通话,但彼此都看不到对方,如果通过对话,作为人的一方不能分辨对方是人还是机器,那么就可以认为对方的那台机器达到了人类智能的水平。为了进行这个测试,图灵还设计了一个很有趣且智能性很强的对话内容,称为“图灵的梦想”。 2为什么要研究人工智能

人工智能在自动驾驶技术中的的应用

人工智能在自动驾驶技术中的应用 摘要:随着技术的快速发展云计算、大数据、人工智能一些新名词进入大众的视野,人工智能是人类进入信息时代后的又一技术革命正受到越来越广泛的重视。作为人工智能等术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。自动驾驶技术将成为未来汽车一个全新的发展方向。本文将主要介绍人工智能技术在自动驾驶中的应用领域,并对自动技术的发展前景进行一个简单的分析。 关键词:人工智能;自动驾驶;智能汽车;图像识别 0. 引言 人工智能是一门起步晚却发展快速的科学。20 世纪以来科学工作者们不断寻求着赋予机器人类智慧的方法。现代人工智能这一概念是从英国科学家图灵的寻求智能机发展而来,直到1937年图灵发表的论文《理想自动机》给人工智能下了严格的数学定义,现实世界中实际要处理的很多问题不能单纯地是数值计算,如言语理解与表达、图形图像及声音理解、医疗诊断等等。1955 年Newell 和Simon 的Logic Theorist证明了《数学原理》中前52 个定理中的38 个。Simon 断言他们已经解决了物质构成的系统如何获得心灵性质的问题( 这种论断在后来的哲学领域被称为“强人工智能”) ,认为机器具有像人一样逻辑思维的能力。1956 年,“人工智能”( AI) 由美国的JohnMcCarthy 提出,经过早期的探索阶段,人工智能向着更加体系化的方向发展,至此成为一门独立的学科。五十年代,以游戏博弈为对象开始了人工智能的研究;六十年代,以搜索法求解一般问题的研究为主;七十年代,人工智能学者进行了有成效的人工智能研究;八十年代,开始了不确定推理、非单调推理、定理推理方法的研究;九十年代,知识表示、机器学习、分布式人工智能等基础性研究方面都取得了突破性的进展。 1. 人工智能在自动驾驶技术中的应用概述 人工智能发展六十年,几起几落,如今迎来又一次热潮,深度学习、计算机

2019年度专业技术人员公需科目人工智能与健康考试

2019 年度人工智能与健康 1.()是自然语言处理的重要应用,也可以说是最基础的应用。( 2.0 分) A.文本识别 B.机器翻译 C.文本分类 D.问答系统 我的答案: C √答对 2.如果一个人体检时发现乳腺癌 1 号基因发生突变,可以推断出()。(2.0 分) A.这个人患乳腺癌的概率增加了 B.这个人已经患了乳腺癌 C.这个人一定会患乳腺癌 D.这个人很快会被检查出乳腺癌 我的答案: A √答对 3.在()年,AlphaGo 战胜世界围棋冠军李世石。( 2.0 分) A.2006 B.2012 C.2016 D.2017

我的答案: C √答对 4.在中国现有的心血管病患中,患病人数最多的是()。( 2.0 分) A.脑卒中 B.冠心病 C.高血压 D.肺原性心脏病 我的答案: C √答对 5.当前人工智能重点聚焦()大领域。( 2.0 分) A.6 B.7 C.8 D.9 我的答案: B √答对 6.医学上用百分位法来判定孩子是否属于矮小。如果一个孩子的身高低于同种族、同年龄、同性别正常健康儿童身高的第()百分位数,医学上称之为矮小。(2.0 分) A.1 B.2 C.3 D.4

我的答案:C√答对 7.《“健康中国2030”规划纲要》中提到,全民健康是建设健康中国的()。(2.0分) A.必然要求 B.基础条件 C.核心要义 D.根本目的 我的答案:D√答对 8.()是一种处理时序数据的神经网络,常用于语音识别、机器翻译等领域。(2.0分) A.前馈神经网络 B.卷积神经网络 C.循环神经网络 D.对抗神经网络 我的答案:C√答对 9.据2005年美国一份癌症统计报告表明,在男性的所有死亡原因中,排在第二 位的是()。( 2.0分) A.肺癌 B.肝癌 C.前列腺癌

人工智能历史、核心技术和应用

人工智能历史、核心技术和应用 一、概述 2011年以来,开发与人工智能相关的产品和技术并商业化的公司已获得超过总计20亿美元的风险投资,还有数十亿美元的投资收购人工智能初创公司。巨额投资、计算机导致失业等问题也开始浮现,计算机比人更加聪明并有可能威胁到人类生存这类论断被媒体四处引用并引发广泛关注。 IBM承诺拨出10亿美元来使他们的认知计算平台Watson商业化。谷歌在最近几年里的投资主要集中在人工智能领域,比如收购了8个机器人公司和1个机器学习公司。Facebook聘用了人工智能学界泰斗Yann LeCun 来创建人工智能实验室。牛津大学研究人员的报告,美国约47%的工作因为机器认知技术自动化而变得岌岌可危。 纽约时报畅销书《The Second Machine Age》论断,数字科技和人工智能带来巨大积极改变的时代已经到来,但是随之而来的也有引发大量失业等负面效应。 硅谷创业家Elon Musk 则通过不断投资的方式来保持对人工智能的关注。他甚至认为人工智能的危险性超过核武器。著名理论物理学家Stephen Hawking认为,如果成功创造出人工智能则意味着人类历史的终结,“除非我们知道如何规避风险。”

二、人工智能与认知科技 揭秘人工智能的首要步骤就是定义专业术语,勾勒历史,同时描述基础性的核心技术。 1、人工智能的定义 人工智能领域苦于存在多种概念和定义,有的太过有的则不够。作为该领域创始人之一的Nils Nilsson先生写到:“人工智能缺乏通用的定义。”一本如今已经修订三版的权威性人工智能教科书给出了八项定义,但书中并没有透露其作者究竟倾向于哪种定义。实用的定义为——人工智能是对计算机系统如何能够履行那些只有 依靠人类智慧才能完成的任务的理论研究。例如,视觉感知、语音识别、在不确定条件下做出决策、学习、还有语言翻译等。 比起研究人类如何进行思维活动,从人类能够完成的任务角度对人工智能进行定义,而非人类如何思考,在当今时代能够让我们绕开神经机制层面对智慧进行确切定义从而直接探讨它的实际应用。随着计算机为解决新任务挑战而升级换代并推而广之,人们对那些所谓需要依靠人类智慧才能解决的任务的定义门槛也越来越高。所以,人工智能的定义随着时间而演变,这一现象称之为“人工智能效应”,概括起来就是“人工智能就是要实现所有目前还无法不借助人类智慧才能实现的任务的集合。” 2、人工智能的历史

人工智能应用技术课程标准

《人工智能应用技术》课程标准 一、课程定位与目标 (一)课程定位 《人工智能应用技术》是一门综合性前沿学科,是信号与系统与计算机的交叉学科。机电一体化技术专业培养方案中“职业能力与素质”模块中的一门专业核心课。培养学生程序设计能力、软件开发能力、硬件开发能力、数字信号处理能力、机器算法能力以及神经网络算法能力。 先修课程:《C语言程序设计》、《Java程序设计》、《Android编程》、《Linux操作系统》、《嵌入式技术与应用》。 后续课程:《工业机器人应用技术》和《机电一体化技术》 (二)课程目标 通过本课程的学习和训练,使学生掌握人工智能技术的基本原理;了解启发式搜索策略、与或图搜索问题、谓词逻辑与归结原理、知识表示、不确定性推理方法、机器学习和知识发现等目前人工智能的主要研究领域的原理、方法和技术;增强学生的逻辑思维与实验能力,为今后在各自领域开拓高水平的人工智能技术应用奠定基础。 二、设计理念与思路 (一)设计理念 1.以职业教育模式为中心,突出教师的主导作用和学生的主体地位。 教师的教授应以学生为主体,以学生的学习为中心进行课程教学活动的设计。 2.注重学生的素质教育和能力培养 作为计算机网络技术专业的一门应用性很强的专业基础课,要紧紧扣住技术应用这一主线,进行课程内容的改革,帮助学生“学其所用,用其所学”。 3.课程设计充分体现了职业性、实践性和开放性的要求 体现职业岗位的能力要求,使课程设计与职业岗位能力紧密对应。让企业参与到专业建设及课程设置的各个环节中,在校企合作中创新人才培养模式。

(二)设计思路 1.理解和记忆算法基本结构 在整个课程所涉及的教学内容的学习过程中都按照“算法基本结构的理解和记忆-简单C++程序算法设计-上机调试程序技能训练-实际应用”这条主线来进行。也就是说对人工智能的各种算法主要内容的学习,以理解加记忆为主,通过上机调试程序加深理解和记忆;要求学生熟记常用的典型算法。 2.熟练上机调试技能,灵活掌握编程技巧 本课程安排有多媒体理论课和上机实践课,理论课力求让学生掌握编程基本思想;上机课通过编辑程序、运行程序、查看程序结果,改正程序错误再运行、观察结果等方法掌握编程技能。本课程是一个实践操作很强的课程,要求学生熟练根据各种错误信息提示迅速解决程序中出现的各种错误。加强编程逻辑思维能力的锻炼,力求让学生能够掌握灵活的编程技巧。 3.以赛促学 建议学生在学习完本课程后参加各类人工智能相关的技能大赛,通过这种方式起到“以赛促学”的目的。 4.“活动导向设计”的教学方法 在课程教学中融入案例教学法、启发教学法、互动式教学法等多种教学方法的组合。适时选用提问、讨论等生动花样的形式,营造师生互动、生生互动的学习氛围。 5.注重过程考核 考核方式突出“四个注重”。考核内容“注重”能力,考核形式“注重”多样化,考核评价“注重”过程,考核机制“注重”多种奖励。注重过程考核,坚持全面评价,强调知行统一,对学生掌握知识起到积极作用。 三、典型工作任务 根据职业岗位的需求,总结归纳如下典型工作任务: (一)基于谓词逻辑的机器推理 1.一阶谓词逻辑 2.归结演绎推理 3.应用归结原理求取问题答案

人工智能技术在游戏中的应用解读

人工智能技术在游戏中的应用 学院 专业 研究方向 学生姓名 学号 任课教师姓名 任课教师职称 2012年6月22 日

人工智能技术在游戏中的应用 前言:人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸 和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机 科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出 反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系 统等,研究成果已经广泛地用于了各行各业,当然也包括游戏。 我们玩电脑游戏,主要是为了得到一种放松、一种享受、以及在现实生活中无法得到的一种快感。这需要电脑游戏能制作得符合玩家的口味,游戏的主题能够吸引玩家深入,游戏的规则和结果能够使得玩家满意。而在这一切中,人工智能技术扮演了相当重要的角色。摘要:本文探讨了当前人工智能游戏中的应用状况,阐述了游戏AI的应用技术,并列举。 关键词:游戏;人工智能;有限状态自动机;模糊逻辑;产生式系统;决策树;人工生命; 专家系统;神经网络;遗传算法 1. 电脑游戏与人工智能的关系 电脑游戏从诞生以来,由于其强大的模拟现实作用,越来越受到人们的喜爱。随着现代计算机、网络、虚拟现实、人工智能等技术的发展,游戏的拟人化越来越逼真。高度的拟人化使得现代电脑游戏能够模仿人类社会中的各种情形,并把这些情形通过视觉、听觉、甚至触觉等多种感官反映到人的大脑,从而对人们的现实生活产生巨大冲击。 无论是什么游戏,游戏玩家都希望在游戏中能够体验到现实中无法体验到的刺激,得到现实中无法得到的满足。这些刺激和满足主要表现在特定的挑战、社会化、幻想、情感等方面。 人们在玩电脑游戏的时候,也希望游戏中的其他角色能够拥有某些程度上的智能。这些智能可以使得人们能够在游戏的同时得到满足,它可以使人在进行游戏中不觉得孤单。然而,这种智能必须得到控制。如果游戏中的机器角色的智能明显高于玩家的能力,玩家会有很强烈的挫败感,之后便会放弃这样的游戏。所以,人工愚蠢(Artificial Stupidity)技术也是必不可少的。在游戏中,太强或太弱的人工智能都是不合适的。 那何种程度的人工智能才是合适的呢?回答这个问题首先要考虑怎样的机器可以算作智能机器。这里就不能不提人工智能之父图灵。图灵在1950年提出了“图灵实验”的概念,他认为能够通过图灵实验的机器是具有智能的。其实,在游戏中也是一样的。“图灵实验”在游戏中可以这样描述:当玩家和其他玩家同诸多机器在同时游戏时,如果这个玩家通过游戏规则中的任何方式都无法分辨游戏中的其他角色哪个是其他玩家,哪个是机器的线程,那么我们可以说这个游戏通过了“游戏中的图灵测试”。一般来说,通过了“游戏中的图灵测试”的游戏是最适合玩家娱乐的。 最近网络游戏大量流行,我觉得,网络游戏也许是人工智能最佳的实验场合。因为网游是现实社会的一个简化版本,这在里,大量需要各种处理问题的知识与技巧,需要各种类

未来人工智能的十大应用方向

未来人工智能的十大应用方向 导读: 随着人工智能理论和技术的不断完善,应用范围领域也在逐渐向多方向发展。未来,人工智能虽然不能向人类一样,拥有自己的意识和思维方式,但是这种自我思考的人工智能已经打破了常规。未来,人工智能带来的产品,或许将是人类智慧的“容器”。由此,对于未来人工智能应用方向,也将会成为热点。 关键字:人工智能机器视觉 人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是对人的意识、思维的信息过程的模拟。但不是人的智能,能像人那样思考、也可能超过人的智能。但是这种会自我思考的高级人工智能还需要科学理论和工程上的突破。从诞生以来,人工智能理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。正因为如此,人工智能的应用方向才十分之广。 1、机器视觉 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 人工智能能使机器能够担任一些需要人工处理的工作。而这些工作需要做一定的决策,要求机器能够自行的根据当时的环境做出相对较好的决策。这就需要计算机不仅仅能够计算,还能够拥有一定得智能。而要对周围的环境进做出好的决策就需要对周边的环境进行分析,即要求机器能够“看”到周围的环境,并能够理解它们。就像人做的那样。所以机器视觉是人工智能中非常重要的一个领域。 机器视觉在许多人类视觉无法感知的场合发挥重要作用,如精确定律感知、危险场景感知、不可见物体感知等,机器视觉更突出他的优越性。现在机器视觉已在一些领域的到应用,如零件识别与定位,产品的检验,移动机器人导航遥感图像分析,安全减半、监视与跟踪,国防系统等。它们的应用于机器视觉的发展起着相互促进的作用。 2、指纹识别 指纹识别技术把一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,就可以验证他的真实身份。每个人(包括指纹在内)皮肤纹路在图案、断点和交叉点上各不相同,也就是说,是唯一的,并且终生不变。依靠这种唯一性和稳定性,我们才能创造指纹识别技术。

浅谈人工智能技术及其应用发展

2019.01科技论坛 浅谈人工智能技术及其应用发展 李思睿 (绵阳南山中学,四川绵阳,6n o o o) 摘要:本文就人工智能的定义以及其主要的相关技术题型进行阐述,并且探讨了人工智能技术所应用的一些热门领域。 人工智能技术目前作为一门交叉性的学科,未来其发展趋势会在很大程度上影响和改变我们的生活。 关键词:物联网;计算机技术;人工智能 Talking about Artificial Intelligence Technology and Its Application Development Li Sirui (Mianyang Nanshan Middle School,Mianyang Sichuan,621000) Abstract:In this paper,the definition of artificial intelligence and its main related technical topics are described,and some hot areas of application of artificial intelligence technology are discussed.Artificial intelligence technology is currently an interdisciplinary subject,and its future development trend will affect and change our lives to a large extent. K e y w o r d s:Internet of Things;Computer Technology;Artificial Intelligence 〇引言 AI(人工智能技术)其本质是模拟人类意识和思维信息 的过程,通过机器实现,模拟人类感知、识别、和决策功能的 技术。在大数据挖掘,云计算以及深度学习等理论支持下,人 工智能呈现出跨界融合、人机协同、自主操纵等特征。目前,人工智能技术广泛地应用于自动驾驶、智能家居、智慧医疗、图像识别、语音助手等领域。 1人工智能的相关技术 人工智能的应用领域包括问题求解、自然语言处理、人 工智能方法和程序语言等等,这些应用领域已经适用到了很 多行业,进而推动了社会科学的总体发展。对于人工智能技 术的实现技术体系而言,主要涉及以下四个方面:机器学习、自然语言处理技术、图像处理技术、人机交互技术。在机器学 习上,机器学习的能力是人工智能技术最为凸显的一种表现 手段,与此同时人工智能也在此技术上有了很多改变。自然 语言处理是融合了计算机科学、语言学和人工智能于一体的 交叉研宄方向,它的目的是“让计算机理解自然语言”,更高 效的完成工作任务。图像处理技术是将图像处理技术与人工 智能相结合的方法,在原有自动识别的基础上,我们提出一 种基于专家系统的知识识别方法。人机交互技术使用户与计 算机系统通过可以通过人机交互界面进行交流。机器显示大 量提示与请求,用户通过输入设备给计算机提供有关信息,从而达成人机互动。其知识结构体系如表1所示。 表1人工智能主要技术体系 技术体系技术方法 机器学习监督学习(监督分类学习,回归飞行系),无监 督学习,强化学习 图像处理技术遗传算法,图像降维,图像识别,图像分割,特 征提取 人机交互技术UI 设计、可视化技术、GIS跟踪技术、动作识人 机界面技术,语音识别技术 自然语言处理语音识别,语句分析,文本转化 1.1机器学习 机器学习指的是计算机通过分析、学习、归纳大量数据, 达到拥有能够自主做出最佳判断与决策的能力,简单的说, 机器学习是一种A I技术在不同应用场景下时‘命令行”语句 或者方法。机器学习主要内容包涵有深度学习、深度人工神经 网络、决策树、增强算法等。机器学习对于人工智能技术十分重 要,而算法的发展也对人工智能技术的发展起到了作用。 1.2自然语言舰 自然语言处理技术包含两个方面,一是将人类语言转化 为计算机可以处理的形式,二是将计算机数据转为人类语言 的自然形式,以此达到计算机能够理解人类语言的目的。目前,市面上已有应用该技术的产品,例如Apple的siri、微软 的C o r t m a,这些产品能够协助人们完成许多任务,其核心技 术不仅包括自然语言技术,也包含了深度学习。自然语言处 理综合了语言学、计算机科学、数学等学科,该技术内又包含 了信息检索、信息抽取、词性标注、语法分析、语音识别、语法 解析、语种互译等技术。 1.3图像顺支术 图像是人类获取信息的主要途径,人工智能技术要实现 模拟人类分析问题、解决问题的功能,图像处理技术不可缺 少。图像处理技术使计算机拥有视觉,可以处理、分析图片或 多维的数据。在大数据时代,如何对海量图像数据进行信息 iliiia m

人工智能的发展及应用

人工智能的发展及应用 这是个信息爆炸自动控制飞速发展的时代,而在这样的时代中,人工智能也取得了飞速的发展。成为了最前沿最热门的学科和研究方向之一。 人工智能的定义 “人工智能” (Artificial Intelligence) 一词最初是在1956 年Dartmouth 学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支, 它企图了解智能的实质, 并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。 人工智能理论进入21 世纪, 正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品” , 并使之在越来越多的领域超越人类智能, 人工智能将为发展国民经济和改善人类生活做出更大贡献。 人工智能的应用领域 1. 在管理系统中的应用 (1) 人工智能应用于企业管理的意义主要不在于提高效率, 而是用计算机实现人们非常需要做, 但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中, 以数据管理和处理为中心, 围绕企业的核心业务和主导流程建立若干个主题数据库, 而所有的应用系统应该围绕主题数据库来建立和运行。换句话说, 就是将企业各部门的数据进行统一集成管理, 搭建人工智能的应用平台, 使之成为企业管理与决策中的关键因子。 2. 在工程领域的应用

(1) 医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用, 具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题, 作为医生诊断、治疗的辅助工具。事实上, 早在1982年, 美国匹兹堡大学的Miller 就发表了著名的作为内科医生咨询的Internist 2? 内科计算机辅助诊断系统的研究成果, 由此, 掀起了医学智能系统开发与应用的高潮。目前, 医学智能系统已通过其在医学影像方面的重要作用, 从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。 (2) 地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978 年美国 斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECT”OR, 该系统用于勘探评价、区域资源估值和钻井井位选择等, 是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积, 价值超过1 亿美元。 3. 在技术研究中的应用 (1) 在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器, 以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动减少了任务因素造成的无擦, 提高了检测的可靠性, 实现了超声检测和评价的自动化、智能化。 (2) 人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点, 因此我们必须在传统技术的基础上进行网络安全技 术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更 高级AI 通用和专用语言, 和应用环境以及开发专用机器, 而与人工智能技术则为我们提供了可能性。 人工智能的发展 人工智能的发展也并不是一帆风顺的,人工智能的研究经历了以下几个阶段: 孕育阶段:古希腊的Aristotle( 亚里士多德)( 前384-322) ,给出了形式逻辑的基本规律。英国的哲学家、自然科学家Bacon(培根)(1561-1626),系统地给出了归纳法。“知识就是力量”

(完整版)人工智能技术发展趋势及应用

一) 单选题,每题 2 分,共 20 题。 1. 下列有关人工智能的说法中,不正确的是(B)。 (A) 人工智能是以机器为载体的智能 (B) 人工智能是以人为载体的智能 (C) 人工智能是相对于动物的智能 (D) 人工智能也叫机器智能 2. 以下属于素养性知识的是(A)。 (A) 为人处事方面的知识 (B) 行业性知识 (C) 分析性知识 (D) 创造性知识 3. 本课程提到,人工智能皇冠上的明珠是(D)。 (A) 数据智能 (B) 读写智能 (C) 逻辑智能 (D) 语言智能 4. 根据本课程,以下哪项不属于情感分析四维模型的内容(D)。 (A) 读音知情 (B) 读脸知情 (C) 读搏知情

(D) 读书知情 5. 人工神经网络发展的第一次高潮是(C)。 (A) 1986年启动“863计划” (B) 1977年,吴文俊创立吴方法 (C) 1957年,罗森布拉特提出感知机神经元关系 (D) 1985-1986年提出误差反向传播算法 6. 人工智能在围棋方面的应用之一是AlphaGo通过(A)获得“棋感”。 (A) 视觉感知 (B) 扩大存储空间 (C) 听觉感知 (D) 提高运算速度 7. 以下哪项不属于教育信息化的三个阶段(A)。 (A) 教育创新化 (B) 教育技术化 (C) 教育智能化 (D) 教育智慧化 8. 以下不属于人工智能对当前经济社会冲击最大的四个领域的是(C)。 (A) 制造 (B) 教育

(C) 艺术 (D) 金融 9. 2013年,麻省理工学院的基础评论把(D)列为第一大技术突破。 (A) 机器学习 (B) 人工智能 (C) 智能围棋 (D) 深度学习 10. 根据本课程,过去生产一台哈雷机车需要21天,但在工业4.0时代,只需要(D)就可以把私人定制的摩托车交给客户,极大提高了生产效率,同时满足用户的个性化需求。 (A) 2天 (B) 24小时 (C) 12小时 (D) 6小时 11. 根据本课程,根据相关机构数据分析,中国制造业总体成本与美国相比(C) (A) 远远低于美国 (B) 远远高于美国 (C) 已经几乎相等同 (D) 无法判断

AI人工智能技术地应用范围和案例

AI人工智能技术的应用范围和案例 人工智能(Artificial Intelligence),也就是常说的为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。 作为一门学科,人工智能于1956年问世,由“人工智能之父“McCarthy 及一批数学家、信息学家、心理学家、神经生理学家、计算机科学Dartmouth大学召开的会议上,首次提出。 当前人工智能己在如下一些领域和方向取得了深入的应用和发展:机器人,金融, 零售,无人驾驶,智能医疗等。 1.人工智能在机器人方向的应用 人工智能在智能机器人中应用所要经过的过程为:

1、识别过程,外界输入的信息向概念逻辑信息转译,将动态静态图像、声音、语音、文字、触觉、味觉等信息转化为形式化(大脑中的信息存储形式)的概念逻辑信息。 2、智能运算过程,输入信息刺激自我学习、信息检索、逻辑判断、决策,并产生相应反应。 3、控制过程,将需要输出的反应转译为肢体运动和媒介信息。 人工智能实体将首先在精确思维能力上超过人,然后在模糊思维能力上超过人。由于创造力是个性化的产物,较高的创造力不是复制及经验的吸收所能产生的,它需要通过个性化的学习来获得,而个性化的学习不是短时间内所能完成的,因而人工智能实体在创造力上全面超过人将需要较长的时间。一旦人工智能实体的创造力超过人其智力水平也就能远远超过人。“智能机器人”将在工业、服务业、军事、航空航天等领域发挥越来越重要的作用。 今天,尽管我们的机器人已经具备了一定的智能,但距离真正的“智能机器人”还有相当大的差距。随着生理学,行为学等学科的发展,随着我们对人脑的工作方式的理解进一步的加深,随着机器视觉和自然语言理解等人工智能领域在机器人上的应用,机器人终将成为真正意义上的“智能机器人”。 这是充满了生机与活力科研领域。研制机器人的最初目的是为了帮助人们摆脱繁重劳动或简单的重复劳动, 以及替代人到有辐射等危险环境中进行作业,因此机器人最早在汽车制造业和核工业领域得以应用。随着机器人技术的不断发展,工业领域的焊接、喷漆、搬运、装配、铸造等场合,己经开始大量使用机器人。另外在军事、海洋探测、航天、医疗、农业、林业甚到家用机器人,服务娱乐行业,也都开始使用机器。

人工智能技术在电子商务中的应用

人工智能技术在电子商 务中的应用 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

人工智能技术在电子商务中的应用 摘要:人工智能技术和电子商务的飞速发展推动了全球科技经济领域的进步,基于人工智能技术的电子商务更趋向完美和成熟。随着电子商务的不断发展和人工智能技术的不断完善,两者在各个领域、各个层次的相互融合将更加密切。作为各自的成功因素,电子商务和人工智能技术的融合必将成为一种关键技术。 关键词:电子商务;人工智能;数据挖掘 电子商务的飞速发展给全球经济带来的冲击是巨大的。基于人工智能技术的电子商务将能更好的为其发展带来良好的基础,这一过程是电子商务向着良性发展的必然趋势。下面,我将从人工智能技术与电子商务的国内外动态、人工智能技术在电子商务中的应用例子以及数据挖掘技术在Web上的应用等几个方面对其进行论述。 1.人工智能技术与电子商务的国内外动态 人工智能技术的国内外动态 从1956年正式提出人工智能学科算起,40多年来,人工智能学科取得了长足的发展,成为一门广泛的交叉和前沿科学。总的说来,人工智能的目的就是让计算机这台机器能够象人一样思考。如果希望做出一台能够思考的机器,那就必须知道什么是思考,更进一步讲就是什么是智慧。什么样的机器才是智慧的呢科学家已经作出了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功

能,但是能不能模仿人类大脑的功能呢到目前为止,我们也仅仅知道这个装在我们天灵盖里面的东西是由数十亿个神经细胞组成的器官,我们对这个东西知之甚少,模仿它或许是天下最困难的事情了。 当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。现在人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,现在计算机似乎已经变得十分聪明了。例如,1997年5月,IBM公司研制的深蓝(Deep Blue)计算机战胜了国际象棋大师卡斯帕洛夫(Kasparov)。大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。 在大多数学科中存在着几个不同的研究领域,每个领域都有其特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括语言处理、自动定理证明、智能数据检索系统、视觉系统、问题求解、人工智能方法和程序语言以及自动程序设计等。在过去30多年中,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人

人工智能技术在航空航天领域的应用

人工智能技术在航空航天领域的应用 2013年06 月 15 日

人工智能技术在航空航天领域的应用 摘要:随着人工智能技术的迅速发展逐渐成熟,已经成为许多高新科技产品中的核心技术。本文对人工智能技术在航空航天领域中的一些应用进行了简要介绍,并对人工智能技术在未来航空航天中的应用进行了展望。 关键词:航空航天;人工智能;自动化;专家系统 一、引言 “开发天疆”已成为美、俄、中、日及欧空局的科学家们最热门的话题,这些国家和地区先后制定了各自的空间开发计划,规模相当庞大,技术也非常复杂,多样,对可靠性的要求也越来越高。这就要求进一步提高机械化和自动化的水平,人工智能技术是达到这一目的的重要手段之一。它可以使一系列的复杂操作,管理和应用实现高可靠性,产生惊人的经济效益。人工智能在航天领域中得到了广泛的应用在美国,一些著名的公司及大学,如麦道公司、波音公司、麻省理工学院、卡内基梅隆大学及美国陆、海、空三军等均已开始研究人工智能在航天领域的应用。在欧洲,欧洲经济共同体的欧洲信息技术研究与发展战略计划与法国发起的尤里卡计划合作开发人工智能技术。英国皇家飞行研究院研究将人工智能用于航天器和其它航天活动,用于故障分析及卫星,空间平台和空间站的辅助工作系统。航空航天工业是最前沿技术领域,因此最有可能采用先进技术,对人工智能系统需求量最大。 下面分几个方面详细介绍人工智能在航空航天领域中的应用,以及在未来航空航天中应用的展望。 二、人工智能在无人飞行器上的应用 1、自动化和智能机器人 为使卫星顺利完成飞行任务,大幅度降低造价,人们在卫星上大量地采用了自动化和机器人技术。早在1967 年美国发射的勘测者 3 号飞行器上就装有机械臂,它在月球上完成了掘沟,地质调查和采集标本等工作,1 9 7 0 年苏联发射了“月球”16 号和 17 号两个飞行器,飞行器上装有月球车,月球车在地面遥控下完成月面行走和摄影任务,车上的掘岩机还完成了标本采集工作。1978 年美国海资号火星着陆飞船(一种先进的空间机器人) ,通过搭载计算机不仅成功地控制飞船安垒着陆,而且还在没有地面指令的情况下实现了长达 58 个火星日(每个火星日相当于 24 小时 37 分 26。4 秒)的探测, 19 7 7-1986 年,美国在旅行者探测器上采用了人工智能技术,完成了精密导航,科学观测任务,其上计算机收集和处理了木星和土星等各种不同数据。 2、专家系统

专业技术人员继续教育《人工智能技术发展趋势与应用》试题与答案涵盖

10.501v2 《人工智能技术发展趋势及应用》试题及答案 ( 一) 单选题,每题 2 分,共20 题。 1. 下列有关人工智能的说法中,不正确的是()。 (A) 人工智能是以机器为载体的智能 (B) 人工智能是以人为载体的智能 (C) 人工智能是相对于动物的智能 (D) 人工智能也叫机器智能 2. 以下属于素养性知识的是()。 (A) 为人处事方面的知识 (B) 行业性知识 (C) 分析性知识 (D) 创造性知识 3. 本课程提到,人工智能皇冠上的明珠是()。 (A) 数据智能 (B) 读写智能 (C) 逻辑智能 (D) 语言智能 4. 根据本课程,以下哪项不属于情感分析四维模型的内容()。 (A) 读音知情 (B) 读脸知情

(C) 读搏知情 (D) 读书知情 5. 人工神经网络发展的第一次高潮是()。 (A) 1986 年启动“863计划” (B) 1977 年,吴文俊创立吴方法 (C) 1957 年,罗森布拉特提出感知机神经元关系 (D) 1985-1986 年提出误差反向传播算法 6. 人工智能在围棋方面的应用之一是AlphaGo 通过()获得“棋感”。 (A) 视觉感知 (B) 扩大存储空间 (C) 听觉感知 (D) 提高运算速度 7. 以下哪项不属于教育信息化的三个阶段()。 (A) 教育创新化 (B) 教育技术化 (C) 教育智能化 (D) 教育智慧化 8. 以下不属于人工智能对当前经济社会冲击最大的四个领域的是()。 (A) 制造 (B) 教育

(C) 艺术 (D) 金融 9. 2013 年,麻省理工学院的基础评论把()列为第一大技术突破。 (A) 机器学习 (B) 人工智能 (C) 智能围棋 (D) 深度学习 10. 根据本课程,过去生产一台哈雷机车需要21 天,但在工业 4.0 时代,只需要()就可以把私人定制的摩托车交给客户,极大提高了生产效率,同时满足用户的个性化需求。 (A) 2 天 (B) 24 小时 (C) 12 小时 (D) 6 小时 11. 根据本课程,根据相关机构数据分析,中国制造业总体成本与美国相比() (A) 远远低于美国 (B) 远远高于美国 (C) 已经几乎相等同 (D) 无法判断 12. 根据本课程,高速公路自动驾驶属于智能网联汽车的哪个发展阶段?() (A) 驾驶辅助 (B) 部分自动驾驶

专业技术人员继续教育《人工智能技术发展趋势和应用》试题和答案涵盖80%内容

《人工智能技术发展趋势及应用》试题及答案 (一) 单选题,每题2 分,共20 题。 1. 下列有关人工智能的说法中,不正确的是()。 (A)人工智能是以机器为载体的智能 (B)人工智能是以人为载体的智能 人工智能是相对于动物的智能 (C) (D)人工智能也叫机器智能 2. 以下属于素养性知识的是()。 (A)为人处事方面的知识 (B)行业性知识 分析性知识 (C) (D)创造性知识 3. 本课程提到,人工智能皇冠上的明珠是()。 (A)数据智能 (B)读写智能 逻辑智能 (C) (D)语言智能 4. 根据本课程,以下哪项不属于情感分析四维模型的内容()。

(A)读音知情 (B)读脸知情 读搏知情 (C) (D)读书知情 5. 人工神经网络发展的第一次高潮是()。 (A)1986年启动“863计划” (B)1977年,吴文俊创立吴方法 1957年,罗森布拉特提出感知机神经元关系 (C) (D)1985-1986年提出误差反向传播算法 6. 人工智能在围棋方面的应用之一是AlphaGo通过()获得“棋感”。 (A)视觉感知 (B)扩大存储空间 听觉感知 (C) (D)提高运算速度 7. 以下哪项不属于教育信息化的三个阶段()。 (A)教育创新化 (B)教育技术化

教育智能化 (C) (D)教育智慧化 8. 以下不属于人工智能对当前经济社会冲击最大的四个领域的是()。 (A)制造 (B)教育 艺术 (C) (D)金融 9. 2013年,麻省理工学院的基础评论把()列为第一大技术突破。 (A)机器学习 (B)人工智能 智能围棋 (C) (D)深度学习 10. 根据本课程,过去生产一台哈雷机车需要21天,但在工业4.0时代,只需要()就可以把私人定制的摩托车交给客户,极大提高了生产效率,同时满足用户的个性化需求。 (A)2天 (B)24小时 12小时 (C)

六年级信息技术《人工智能的应用》教学设计

月日第周星期总第课时 第24课人工智能的应用 【教材分析】 在我们的生活中很多领域已经在使用人工智能产品。本课主要介绍了人工智能在生活中的一些具体的应用,让学生体验人工智能的应用、了解其原理,为后面设计创作简单的人工智能作品打下基础。 【学情分析】 本节课的教学对象是六年级的学生,他们之前已经对什么是人工智能以及人工智能发展史有了初步的了解,对生活中一些人工智能产品也有一些感知。在本课教学中可以发挥学生的主观能动性,让学生通过动手实践,自主探究,感受人工智能对生活带来的便利,为后面学习使用xDing软件编写程序,实现人工智能的应用作好铺垫。 【教学目标与要求】 1.了解人工智能在生活中的具体应用,感受智能识别对生活和学习的作用,产生并保持学习的兴趣。 2.在尝试识别未知音乐和图片中文字的过程中,能够根据需要,主动地运用相应的智能识别软件处理问题,并在小组中进行知识分享与创新创造。 3.通过对智能识别和具体的应用的深入了解,提高探究能力,保持学习兴趣。 【教学重点与难点】 重点:了解人工智能在生活中的一些具体的应用。 难点:学会使用音乐识别软件和OCR文字识别软件,能说出其优点和不足。 【教学方法与手段】 方法:通过视频激发学生的学习兴趣,教学过程中采用任务驱动教学方法,将自主探究和小组合作学习形结合,重点培养学生对人工智能的兴趣和探究热情。 手段:多媒体教学网络、教师演示与学生操作相结合。 【课时安排】 安排1课时。

【教学过程】 一、导入 1. 同学们,你们打电话时,一般如何拨号呢? 学生回答。 2. 数字拨号看来是最常用的方式,接下来老师用的方法和你们的有点不一样哦。教师使 用手机里的语音识别功能进行拨号并通话。 3. 现在我们的身边有很多与人工智能相关的应用,它们改善了我们的生活质量,今天就让我们一起来了解一下吧! 板书:人工智能的应用 【设计意图】通过一个简单的实际应用操作,将抽象的语音识别技术变得具体化、生活化,让学生明白人工智能也并非是高不可攀的,它就在我们身边。从而调动学生的积极性,增强学生的参与性。 二、新授 1. 语音识别技术。 (1)刚才我们使用语音来帮助我们拨号,使用的就是人工智能中的语音识别技术。语音识别技术,也被称为自动语音识别(Automatic Speech Recognition,简称ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。 2. 体验QQ音乐的听歌识曲功能。 (1)播放一段音乐,让学生猜猜叫什么名字? 学生思考、汇报。 同学们,你们有什么好方法可以快速获知这首歌的名字吗? 学生简单交流、汇报。 (2)体验QQ音乐的听歌识曲功能。 下载QQ音乐软件,利用其中的语音识别功能快速准确识别未知的音乐,感受其神奇的功能。

相关文档
最新文档