弹性力学复习思考问题

弹性力学复习思考问题
弹性力学复习思考问题

弹性力学各章复习思考题及应掌握内容

第一章绪言

1.何谓体力和面力? 它们的因次和方向如何?

2,标出物体内某点P 的应力状态,即正六面体上正应力和剪应力.何谓正面和负面? 正负

面上应力如何确定正负号?

3.写出六个应力分量和应变分量的符号,何谓剪应变?正负号如何确定?

4.弹性力学中的基本假定是什么?其含义是什么?

第二章平面问题的基本理论

1.平面应力问题和平面应变问题的条件和特点是什么?试举例说明之.

2.标出作用在微元体上的应力分量,写出平面问题中的平衡微分方程,其实质是什么?

3.平面问题的几何方程有几个?如何表示?其实质是什么?

4。写出平面应力问题的物理方程,如何求出平面应变问题的物理方程?

5.弹性力学问题分为几类边界条件? 应力边界条件和位移边界条件是如何表示的?当边界垂

直于某一坐标轴时其应力边界条件如何简化?

6.何谓圣维南原理?试用矩形板中心受拉的受力情况加以说明之.

7.试说明解答弹性力学问题按基本未知量划分的三种基本方法,其中哪种方法最常用?按应

力求解平面问题的基本思路是什么?

8.形变协调方程(应变相容方程)如何表示?如不满足时会出观什么现象?

9.在平面应力问题中,用应力表示的相容方程如何表示?在常体力情况下应力相容方程如

何简化?

10.在平面应力问题中,用应力求解x σ,y σ,xy τ是利用 (1)平衡微分方程

(二个)(2)应力相容方程(一个)(3)边界条件及位移单植条件 求出.

11.应力函数?(x ,y)表示的相容方程是什么?其成立的条件是什么?

12.如何由应力函数求得应力分量?

13.按应力求解平面问题时的步骤如何?

第三章平面问题的直角坐标解答

1.何谓逆解法,何谓半逆解法?试举例说明.

2.逆解法,半送解法求解平面应力问题时的计算步骤。

3.用逆解法求平面问题时常用多项式,其中最常用的有—次式,二次式和三次多项式.

4.一次多项式有什么特点?

5。二次多项式,三次多项式能解决哪些重要的实际问题?

6.如何应用逆解法求出矩形纯弯曲时的应力分量和位移分量?

7。如何应用半逆解法求出简支梁受均布荷栽时的应力分曼?其结果与材抖力学所得结果有何

异同.

8.如何应用因次分析法求解锲形体受重力和液压力时的应力分量?

第四章平面问题的极坐标解答

1.极坐标中的平衡微分方程,物理方程和几何方程.

2.极坐标中的应力函数与相客方程如何导出.

3.轴对称问题的特点是什么?轴对称应力和轴对称位移公式如何计算?

4.如何求出圆环或圆筒受均布压力作用下的应力分量?

5.何为位移的单值条件?如何用于圆环受均布压力的问题?

6.在解圆孔的孔边应力集中时作了哪些假定?如何求解带孔矩形板在四边受拉荷栽作用下的应力分量?

7.如何求解锲形体在锲顶受集中力时的应力分量?

8.如何求解半平面体在边界上受法向集中力时的应力和位移?

第六章用有限单元法解平面问题

1.有限元法解平面问题时分为哪三个主要过程?如何将连续弹性体变换为离散结构单元分析和整体分析的主要任务是什么?

2.何谓结点力{ }e和结点荷载{F}e,两者有何关系?

3.三角形的位移模式是怎样确定的? 它必须满足那三个条件?

4.何谓形函数Ni(i,j,m),它有何特性?

5.何谓形函数矩阵[N],它表示什么关系?

6.名词解释:单元刚度矩阵[k]e;整体刚度矩阵[K];应力转换矩阵[S];弹性矩阵[D];几

何矩阵[B];虚功方程.

7.如何由虚功方程导出单元的刚度矩阵?

8.荷栽如何向结点移置? (1)集中荷我(2)分布体力(3)分布面力

9.有限单元法的计算步骤如何?

第七章空间问题基本公式及解答

1.标出作用在微元体上的应力分量,空间问题中的平衡微分方程。

2.物体内任一点的应力状态的表达。何谓主应力?最大、最小剪应力及正应力大小和所在平面。

3.几何方程及物理方程的表达形式

4.按位移求解空间问题公式及其推导。

5.按应力求解空间问题公式及其推导。

6.了解按位移或应力求解空间问题的思路。

弹性力学重点复习题及其答案答辩

弹性力学重点复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。

弹性力学空间问题

第十章弹性力学空间问题知识点 空间柱坐标系 空间轴对称问题的基本方程空间球对称问题的基本方程布西内斯科解 分布载荷作用区域外的沉陷弹性球体变形分析 热应力的弹性力学分析方法坝体热应力 质点的运动速度与瞬时应力膨胀波与畸变波柱坐标基本方程 球坐标的基本方程 位移表示的平衡微分方程乐普位移函数 载荷作用区域内的沉陷球体接触压力分析 受热厚壁管道 弹性应力波及波动方程应力波的相向运动 一、内容介绍 对于弹性力学空间问题以及一些专门问题,其求解是相当复杂的。 本章的主要任务是介绍弹性力学的一些专题问题。通过学习,一方面探讨弹性力学空间问题求解的方法,这对于引导大家今后解决某些复杂的空间问题,将会有所帮助。另一方面,介绍的弹性力学专题均为目前工程上普遍应用的一些基本问题,这些专题的讨论有助于其它课程基本问题的学习,例如土建工程的地基基础沉陷、机械工程的齿轮接触应力等。 本章首先介绍空间极坐标和球坐标问题的基本方程。然后讨论布希涅斯克问题,就是半无限空间作用集中力的应力和沉陷。通过布希涅斯克问题的求解,进一步推导半无限空间作用均匀分布力的应力和沉陷、以及弹性接触问题。 另一方面,本章将介绍弹性波、热应力等问题的基本概念。 二、重点 1、空间极坐标和球坐标问题; 2、布希涅斯克问题; 3、半无限空间作 用均匀分布力的应力和沉陷;弹性接触问题;4、弹性波;5、热应力。

§10.1 柱坐标表示的弹性力学基本方程 学习思路: 对于弹性力学问题,坐标系的选择本身与问题的求解无关。但是,对于某些问题,特别是空间问题,不同的坐标系对于问题的基本方程、特别是边界条件的描述关系密切。某些坐标系可以使得一些特殊问题的边界条件描述简化。因此,坐标系的选取直接影响问题求解的难易程度。 例如对于弹性力学的轴对称或者球对称问题,如果应用直角坐标问题可能得不到解答,而分别采用柱坐标和球坐标求解将更为方便。 本节讨论有关空间柱坐标形式的基本方程。特别是关于空间轴对称问题的基本方程。 学习要点: 1、空间柱坐标系; 2、柱坐标基本方程; 3、空间轴对称问题的基本方程。 1、空间柱坐标系 在直角坐标系下,空间任意一点M的位置是用3个坐标(x,y,z)表示的,而在柱坐标系下,空间一点M的位置坐标用(ρ,?,z)表示。 直角坐标与柱坐标的关系为:x =ρ cos ?,y =ρ sin ? ,z = z 柱坐标下的位移分量为:uρ,u? , w 柱坐标下的应力分量为:σρ,σ? ,σz,τρ?,τ? z,τzρ 柱坐标下的应变分量为:ερ,ε? ,εz,γρ?,γ? z,γzρ 以下讨论柱坐标系的弹性力学基本方程。 2、柱坐标基本方程

弹性力学复习问答题

一、填空题(每空1分,共20分) 1.国际单位制的英文简称是SI ,国际计量大会的英文简称是CGPM ,国际 计量局的英文简称是BIPM ,国际法制计量组织的英文简称是OIML ,国际标准化组织的英文简称是ISO 。 2.“世界计量日”是每年的5月20日(日期)。 3.在基本国际计量单位中,表示热力学温度的单位是开尔文,发光强度的单位是坎德拉。 4.原子时秒长的定义是:铯133原子(133Cs)基态的两个超精细能级之间跃迁所对应的辐射 的9192631770个周期的持续的时间。。 5.计量基准按层次等级一般分为国家基准、副基准和工作基准三种。 6.计量器具按照用途可分为计量基准、计量标准和工作计量器具。 7.检定的步骤是:1)外观检查;2)正常性检查;3)计量特性的检定;4)对检定结果的 数据进行处理和分析;5)检定结果的处理。 8.周期检定是指按时间间隔和规定程序,对计量器具定期进行的一种后续检定。 9.计量标准考核的目的是确认其是否具备开展量值传递的资格。 10.测量误差从总体上讲有测量设备、测量方法、测量环境、测量人员和测量对象。 11.测量范围是指能保证测量准确度的示值范围。 12.检定系统框图分三部分:计量基准器具、计量标准器具、工作计量器具。 13.法定计量单位就是国家以法令的形式规定允许使用的计量单位。 14.社会公用计量标准器具是指经过政府计量行政部门考核、批准,作为统一本地区量值的 依据,在社会上实施计量监督、具有公正作用的计量标准。 15.我国《计量法》规定,国务院计量行政部门负责建立各种基准器具,作为统一全国量值 的最高依据。 16.进口计量器具,必须经省级以上人民政府计量行政部门检定合格后,方可销售。 17.作为统一全国量值最高依据的计量器具是计量基准。 18.国际上规定的表示倍数和分数单位的 2 0 个词头,称为词头。 19.企事业单位建立本单位各项最高计量标准,须向与其主管部门同级的人民政府计量行政 部门申请考核。 20.计量纠纷当事人对仲裁检定不服的,可以在接到仲裁检定通知书之日起十五日内向上一 级人民政府计量行政部门申诉。。

弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题? 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz、、zx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系? 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方 面主要反映的是形变分量与应力分量之间的关系,也就是平 面问题中的物理方程。 7.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明 答:按照边界条件的不同,弹性力学问题可分为两类边界问题:

弹性力学课后习题详解

第一章习题 1-1 试举例证明,什么是均匀的各向异性体,什么是非均匀的各向同性体,什么是非均匀的各向异性体。 1.均匀的各向异性体: 如木材或竹材组成的构件。整个物体由一种材料组成,故为均匀的。材料力学性质沿纤维方向和垂直纤维方向不同,故为各向异性的。 2.非均匀的各向同性体: 实际研究中,以非均匀各向同性体作为力学研究对象是很少见的,或者说非均匀各向同性体没有多少可讨论的价值,因为讨论各向同性体的前提通常都是均匀性。设想物体非均匀(即点点材性不同),即使各点单独考察都是各向同性的,也因各点的各向同性的材料常数不同而很难加以讨论。 实际工程中的确有这种情况。如泌水的水泥块体,密度由上到下逐渐加大,非均匀。但任取一点考察都是各向同性的。 再考察素混凝土构件,由石子、砂、水泥均组成。如果忽略颗粒尺寸的影响,则为均匀的,同时也必然是各向同性的。反之,如果构件尺寸较小,粗骨料颗粒尺寸不允许忽略,则为非均匀的,同时在考察某点的各方向材性时也不能忽略粗骨料颗粒尺寸,因此也必然是各向异性体。因此,将混凝土构件作为非均匀各向同性体是很勉强的。 3.非均匀的各向异性体: 如钢筋混凝土构件、层状复合材料构件。物体由不同材料组成,故为非均匀。材料力学性质沿纤维方向和垂直纤维方向不同,故为各向异性的。 1-2一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体? 理想弹性体指:连续的、均匀的、各向同性的、完全(线)弹性的物体。 一般的混凝土构件(只要颗粒尺寸相对构件尺寸足够小)可在开裂前可作为理想弹性体,但开裂后有明显塑性形式,不能视为理想弹性体。 一般的钢筋混凝土构件,属于非均匀的各向异性体,不是理想弹性体。 一般的岩质地基,通常有塑性和蠕变性质,有的还有节理、裂隙和断层,一般不能视为理想弹性体。在岩石力学中有专门研究。 一般的土质地基,虽然是连续的、均匀的、各向同性的,但通常具有蠕变性质,变形与荷载历史有关,应力-应变关系不符合虎克定律,不能作为理想弹性体。在土力学中有专门研究。 1-3 五个基本假定在建立弹性力学基本方程时有什么用途? 连续性假定使变量为坐标的连续函数。完全(线)弹性假定使应力应变关系明确为虎克定律。均匀性假定使材料常数各点一样,可取任一点分析。各向同性使材料常数各方向一样,坐标轴方位的任意选取不影响方程的唯一性。小变形假定使几何方程为线性,

弹性力学试题参考答案与弹性力学复习题

弹性力学复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和

混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz 、、zx 。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之 间的关系,也就是平面问题中的物理方程。 7.按照边界条件的不同,弹性力学平面问题分为那几类试作简要说明 答:按照边界条件的不同,弹性力学平面问题可分为两类: (1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在 yx xy y x ττσσ=、、三个应力分量。 (2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力

弹性力学学习心得

弹性力学学习心得 大学时期就学习过弹性力学这门学科,当时的课本是徐芝纶教授的《简明弹性力学》,书的内容很丰富,但是由于课时有限加上我们自身能力的限制,本科期间只学习了前四章内容,学的比较粗略,理解的也不是很多,研一的这学期又有了一次学习的机会,通过杨老师耐心细致的讲解,我觉得弹性力学是一门十分有用并且基础的学科,值得我们去研究学习。 弹性力学与材料力学、结构力学的研究对象和研究方法上存在着一些差异,但是他们之间的界限却又不是那么明显。以弹性力学的平面问题为例,由弹性力学中平面问题的三套基本方程(平衡方程、几何方程和物理方程)和两种边界条件(应力边界、位移边界和混合)联立,就得到了求解两类平面问题(平面应力和平面应变)的一些基本方程。但是要由这些基本方程求得解析解,又是一个复杂而困难的问题。此时,引入结构力学中的力法和位移法,可以使得某些比较复杂的本来是无法求解的问题,得到解答。其中,位移法是以位移分量为基本未知函数,从基本方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和相应的边界条件,求出位移分量后,再求出形变分量和应力分量的方法。由于位移法能更方便地处理方程中的边界条件,因此,课本中多用位移法来进行求解。在这个章节的学习中,要先复习、回忆结构力学中关于力法、位移法的知识概念,再总结弹性力学按位移求解平面应力问题的步骤和方法。 弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。 弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 通过对弹性力学的二次学习,加上杨老师详尽而又有条理的讲授,我相信将对之后塑性力学和有限元法甚至以后的学习都会有很大帮助。

弹性力学复习题

弹性力学复习题 一、简答题 1、弹性力学有哪些基本假定? 2、弹性力学基本方程有哪些? 3、举例说明什么是平面应力问题?什么是平面应变问题? 4、什么是圣维南原理? 5、什么是弹性力学问题的解? 6、什么是逆解法?什么是半逆解法? 7、用有限元进行结构分析的基本步骤是什么? 8、什么是单元的形函数,其物理意义是什么? 9、单元刚度系数k ij 的物理意义是什么? 10三节点三角形单元内部应变分量、应力分量有何特点? 11、离散化过程中应注意哪些因素? 二、问答题 1、简述有限元法解题的基本步骤。 2、总体刚度矩阵是如何形成的,具有哪些性质? 三、计算题 1、如图所示,楔形体顶角为2α,对称轴为x ,其侧面上承受均布剪力q 的作用,试写出 其应力边界条件。 2、设有单位厚度矩形截面柱,密度为ρ ,在柱的一侧受均布荷载q 作用,如图所示。试 写出其全部边界条件。 3、试由下式求出应变分量 21223(,)(,)(,)(22)u f x y Az Dyz αy βz a v f x y Bz Dxz αx γz b w f x y z Ax By C βx γy c =+++-+=+---+=-+++++ 式中,A 、B 、C 、D 、α、β、γ、a 、b 、c ,均为常数。

4、如图示,设有矩形截面悬臂梁,在自由端受有集中荷载P ,体力不计,若取22126,0,()4 x y xy Pxy P h σστy h h ===-,试证明该应力分量就是弹性力学问题的解。 5、受端部载荷作用的单位厚度悬臂梁如图所示,若取应力函数23υAxy Bxy Cxy =++,确定各系数及应力分量(1h <<,不计体力)。 6、图所示三角形薄板,厚度为1,若三个结点坐标分别为i (a ,0),j (0,a ),m (0,0),试求其型形函数矩阵N 。 7、求所示三角形单元的等效结点荷载向量P e 。 8、当单元采用线性位移模式时,试列出图示各单元的等效节点载荷列阵。

北航弹性力学复习整理

370511班弹性力学复习整理 一、基本概念 弹性力学与材料力学的区别(研究对象、研究方法、应力应变定义应力符号定义等) 材料力学弹性力学 研究对象杆状构件在拉、压、剪、弯、 扭状态下的应力与位移一般研究平面问题,主要是板、壳、实体结构等的应力、变形和位移分析 研究方法在弹性力学基本假设的基础 上,还加入了平行截面假设, 研究方法更偏向实际经验,相 对缺少逻辑的严密性 五大基本假设: 连续性假设 完全(线)弹性假设 均匀性假设 各项同性假设 小变形假设 在此基础上,完全使用数学逻 辑方法进行推理,有严密的体 系,故又称弹性数学 应力应变定义 A F A F Q A N A? ? = ? ? = → ? → ?0 lim , limτ σ β α γ ε+ = =, dx du x 其中,γ为微元体直角改变量 j ij i S n e S F→ → → → ? → = ? ? =σ σ σ ) ( ) (, lim ) ( 2 1 , ,i j j i ij u u+ = ε 应力符号定义正应力:拉为正,压为负 剪应力:使微元顺时针旋转趋 势为“+”,逆时针旋转趋势为 “—” 截面法向方向符号与应力方 向符号相同为“+”;相反为 “—” 弹性力学基本原理 1、迭加原理:某物体受两组载荷共同作用时的应力或位移场就等于每组载荷单独作用时的应力或位移场之和,且与加载顺序无关。

2、解的唯一性定理(基尔霍夫唯一性定理):线性弹性问题的解是唯一的 3、圣维南原理,两种表述: 局部影响原理:由作用在物体局部表面上的自平衡力系(合力与合力矩为零)所引起的应力和应变,在远离作用区(距离远大于该局部作用区的线性尺寸)的地方将衰减到可以忽略不计的程度。(局部平衡力系对远离作用区域影响可忽略) 静力等效原理:若把作用在物体局部表面上的外力,用另一组与它静力等效(合力与合力矩与它相等)的力系来代替,则这种等效处理对物体内部应力应变状态的影响将随远离该局部作用区的距离增加而迅速衰减。 应力不变量与应变不变量 (这部分可能不会以概念题的形式出,但个人认为比较重要,而且由于推导过程比较复杂,大家可能往往忽略。至少说,这个结果是值得记住的) 应力不变量是在推导主应力方向时得出的一组不随坐标改变而改变的有量纲量,其一般公式为: 1112233 ii σσσσ=++I = 111213 3212223123 313233 i j k i j k e σσσσσσσσσσσσ==I

弹性力学复习复习过程

弹性力学复习指导 一、问答题 1. 试叙述弹性力学的基本假设及这些基本假定在建立弹性力学基本方程时的作用。 (1)连续性,所有的物理量均可以用连续函数,从而可以应用数学分析的工具(2)完全弹性,物体中的应力与应变之间的物理关系可以用胡克定律来表示(3)均匀性,物体的弹性常数等不随位置坐标而变化(4)各向同性,弹性常数等也不随方向而变化(5)小变形假定,简化几何方程,简化平衡微分方程 2. 叙述平面应力问题在结构形状、所受外力和约束有何特点。 答:平面应力问题一般对于等厚度薄板(z方向尺寸远小于板面尺寸的等厚度薄板)。外力平行于板面作用在板边,且沿板厚不变,版面上无面力,z方向的分力为0。约束只作用于板边,其方向平行于中面(x0y面),且沿厚度(z向)不变,只有作用于板边的x,y向的边界约束存在。 3. 叙述平面应变问题在结构形状、所受外力和约束有何特点。 答:平面应变问题一般对于常截面长柱体(z方向尺寸远大于截面尺寸的等截面柱体)。外力垂直柱体轴线,且沿长度方向不变,z方向分力为0。约束只作用于柱面,其方向平行于中面(x0y面),且沿厚度(z向)不变,只有作用于板边的x,y向的边界约束存在。4.试叙述在大边界上不能应用圣维南原理。 答:圣维南原理是基于静力等效原理,当将面力的等效变换范围应用到大边界上,则必然使整个物体的应力状态都改变,所以大边界不能应用静力等效,在大边界上不能应用圣维南原理。 5. 试叙述弹性力学中解的叠加定理。 答:在线弹性和小变形假定下,作用于弹性体上几组荷载产生的总效应(应力和变形),等于每组荷载产生的效应之和,且与加载顺序无关(p135) 6. 试叙述弹性力学中虚位移原理。 答:假定处于平衡状态的弹性体在虚位移过程中,没有温度的改变,也没有速度的改变,既没有热能和动能的改变,则按照能量守恒定理,形变势能的增加,等于外力势能的减少,也就等于外力所做的功,即所谓虚功。(p135) 7. 有限元方法中,每个单元都是一个连续体。位移模式的建立,解决了由结点位移求出单元中的位移函数的问题。位移模式是有限元单元法的基础工作,当单元趋于很小时,为使有限元法的解答逼近于真解,亦即为了保证有限元法的收敛性,位移模式应满足哪些条件?答:(1)位移模式必须能反映单元的刚体位移。(2)位移模式必须能反映单元的常量应变(3)位移模式必须能反映位移的连续性(p151) 8. 弹性力学问题的基本解法中,位移法,应力法各以什么参数作为未知量,各需满足什么条件? 答:

弹性力学空间问题

弹性力学空间问题知识点 空间柱坐标系 空间轴对称问题的基本方程空间球对称问题的基本方程布西内斯科解 分布载荷作用区域外的沉陷弹性球体变形分析 热应力的弹性力学分析方法坝体热应力 质点的运动速度与瞬时应力膨胀波与畸变波柱坐标基本方程 球坐标的基本方程 位移表示的平衡微分方程乐普位移函数 载荷作用区域内的沉陷球体接触压力分析 受热厚壁管道 弹性应力波及波动方程应力波的相向运动 一、内容介绍 对于弹性力学空间问题以及一些专门问题,其求解是相当复杂的。 本章的主要任务是介绍弹性力学的一些专题问题。通过学习,一方面探讨弹性力学空间问题求解的方法,这对于引导大家今后解决某些复杂的空间问题,将会有所帮助。另一方面,介绍的弹性力学专题均为目前工程上普遍应用的一些基本问题,这些专题的讨论有助于其它课程基本问题的学习,例如土建工程的地基基础沉陷、机械工程的齿轮接触应力等。 本章首先介绍空间极坐标和球坐标问题的基本方程。然后讨论布希涅斯克问题,就是半无限空间作用集中力的应力和沉陷。通过布希涅斯克问题的求解,进一步推导半无限空间作用均匀分布力的应力和沉陷、以及弹性接触问题。 另一方面,本章将介绍弹性波、热应力等问题的基本概念。 二、重点 1、空间极坐标和球坐标问题; 2、布希涅斯克问题; 3、半无限空间作 用均匀分布力的应力和沉陷;弹性接触问题;4、弹性波;5、热应力。 §10.1 柱坐标表示的弹性力学基本方程 学习思路: 对于弹性力学问题,坐标系的选择本身与问题的求解无关。但是,对于某些问题,特别是空间问题,不同的坐标系对于问题的基本方程、特别是边界条件的描述关系密切。某些坐标系可以使得一些特殊问题的边界条件描述简化。因此,

弹性力学总结

弹性力学关于应力变分法问题 一、起源及发展 1687年,Newton 在《自然哲学的数学原理》中提出第一个变分问题——定轴转动阻力最小的旋转曲面形状问题; 1696年,Bernoulli 提出了著名的最速降线问题;到18世纪,经过Euler ,Lagrange 等人的努力,逐渐形成变分法。 古典变分法的基本内容是确定泛函的极值和极值点,它为许多数学、物理、科技、工程问题提供了强有力地数学工具。现代理论证明,微分方程(组)中的变分法是把微分方程(组)化归为其对应泛函的临界点(即化为变分问题),以证明其解的存在性及解的个数。讨论对应泛函临界点的存在性及其个数的基本方法是Morse 理论与极小极大理论(Minimax Theory )。变分法有着深刻的物理背景,某种意义上,自然界一切物质运动均可以用某种形式的数理方程表示,一般数理方程又与一定的泛函相对应,所以一切物质运动规律都遵从“变分原理”。 由于弹性力学变分解法,实质上就是数学中的变分法应用于解弹性力学问题,虽然在讨论的近似解法中使用变分计算均甚简单(类似微分),但“变分”的概念却极为重要,它关系到我们队一系列力学变分原理中“虚”的概念的建立与理解。以下,就应力变分法进行讨论。 二、定义及应用 (1)、应力变分方程 设有任一弹性体,在外力的作用下处于平衡。命ij σ为实际存在的应变分量,它们满足平衡微分方程和应力边界条件,也满足相容方程,其相应的位移还满足位移边界条件。现在,假想体力和应变边界条件上给定的面力不变而应力分量发 生了微小的改变ij δσ,即所谓虚应力或应力的变分,使应力分量成为ij ij δσσ+ 假定他们只满足平衡微分方程和应力边界条件。 既然两组应力分量都满足同样体力和面力作用下的平衡微分方程和应力边界条件,应力分量的变化必然满足无体力时的平衡微分方程。即

弹性力学总结

弹性力学总结

弹性力学关于应力变分法问题 一、起源及发展 1687年,Newton 在《自然哲学的数学原理》中提出第一个变分问题——定 轴转动阻力最小的旋转曲面形状问题; 1696年,Bernoulli 提出了著名的最速降 线问题;到18世纪,经过Euler ,Lagrange 等人的努力,逐渐形成变分法。 古典变分法的基本内容是确定泛函的极值和极值点,它为许多数学、物理、科 技、工程问题提供了强有力地数学工具。现代理论证明,微分方程(组)中的 变分法是把微分方程(组)化归为其对应泛函的临界点(即化为变分问题),以 证明其解的存在性及解的个数。讨论对应泛函临界点的存在性及其个数的基本 方法是Morse 理论与极小极大理论(Minimax Theory )。变分法有着深刻的物理 背景,某种意义上,自然界一切物质运动均可以用某种形式的数理方程表示, 一般数理方程又与一定的泛函相对应,所以一切物质运动规律都遵从“变分原 理”。 由于弹性力学变分解法,实质上就是数学中的变分法应用于解弹性力学问 题,虽然在讨论的近似解法中使用变分计算均甚简单(类似微分),但“变分” 的概念却极为重要,它关系到我们队一系列力学变分原理中“虚”的概念的建 立与理解。以下,就应力变分法进行讨论。 二、定义及应用 (1)、应力变分方程 设有任一弹性体,在外力的作用下处于平衡。命ij σ为实际存在的应变分量, 它们满足平衡微分方程和应力边界条件,也满足相容方程,其相应的位移还满 足位移边界条件。现在,假想体力和应变边界条件上给定的面力不变而应力分 量发生了微小的改变ij δσ,即所谓虚应力或应力的变分,使应力分量成为 ij ij δσσ+ 假定他们只满足平衡微分方程和应力边界条件。 既然两组应力分量都满足同样体力和面力作用下的平衡微分方程和应力边 界条件,应力分量的变化必然满足无体力时的平衡微分方程。即

弹性力学复习题(水工)要点

弹性力学复习题(06水工本科) 一、选择题 1. 下列材料中,()属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。 2 关于弹性力学的正确认识是()。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 3. 弹性力学与材料力学的主要不同之处在于()。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 4. 所谓“完全弹性体”是指()。 A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。 5. 所谓“应力状态”是指()。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。 6. 变形协调方程说明()。 A. 几何方程是根据运动学关系确定的,因此对于弹性体的变形描述是不正确的; B. 微分单元体的变形必须受到变形协调条件的约束; C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件; D. 变形是由应变分量和转动分量共同组成的。 7. 下列关于弹性力学基本方程描述正确的是()。 A. 几何方程适用小变形条件; B. 物理方程与材料性质无关; C. 平衡微分方程是确定弹性体平衡的唯一条件; D. 变形协调方程是确定弹性体位移单值连续的唯一条件; 8、弹性力学建立的基本方程多是偏微分方程,最后需结合()求解这些微分方程,以

弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟) 一、填空题(每小题4分) 1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, M dxdy D =?? 2?的物理意义是 杆端截面上剪应力对转轴的矩等于杆 截面内的扭矩M 。 4.平面问题的应力函数解法中,Airy 应力函数?在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。 5.弹性力学平衡微分方程、几何方程的张量表示为: 0,=+i j ij X σ ,)(2 1,,i j j i ij u u +=ε。 二、简述题(每小题6分) 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理。 2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数?的分离变量形式。 题二(2)图 (a )???=++= )(),(),(222θθ??f r r cy bxy ax y x (b )? ??=+++= )(),(),(3 3223θθ??f r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。试求薄板面积的改变量S ?。

弹性力学复习思考问题

弹性力学各章复习思考题及应掌握内容 第一章绪言 1.何谓体力和面力? 它们的因次和方向如何? 2,标出物体内某点P的应力状态,即正六面体上正应力和剪应力.何谓正面和负面? 正负面上应力如何确定正负号? 3.写出六个应力分量和应变分量的符号,何谓剪应变?正负号如何确定? 4.弹性力学中的基本假定是什么?其含义是什么? 第二章平面问题的基本理论 1.平面应力问题和平面应变问题的条件和特点是什么?试举例说明之. 2.标出作用在微元体上的应力分量,写出平面问题中的平衡微分方程,其实质是什么? 3.平面问题的几何方程有几个?如何表示?其实质是什么? 4。写出平面应力问题的物理方程,如何求出平面应变问题的物理方程? 5.弹性力学问题分为几类边界条件? 应力边界条件和位移边界条件是如何表示的?当边界垂直于某一坐标轴时其应力边界条件如何简化? 6.何谓圣维南原理?试用矩形板中心受拉的受力情况加以说明之.7.试说明解答弹性力学问题按基本未知量划分的三种基本方法,其中哪种方法最常用?按应力求解平面问题的基本思路是什么? 8.形变协调方程(应变相容方程)如何表示?如不满足时会出观什么现象? 9.在平面应力问题中,用应力表示的相容方程如何表示?在常体力情况下应力相容方程如何简化? 10.在平面应力问题中,用应力求解,,是利用 (1)平衡微分方程 (二个)(2)应力相容方程(一个)(3)边界条件及位移单植条件 求出. 11.应力函数(x,y)表示的相容方程是什么?其成立的条件是什么? 12.如何由应力函数求得应力分量? 13.按应力求解平面问题时的步骤如何? 第三章平面问题的直角坐标解答

1.何谓逆解法,何谓半逆解法?试举例说明. 2.逆解法,半送解法求解平面应力问题时的计算步骤。 3.用逆解法求平面问题时常用多项式,其中最常用的有—次式,二次式和三次多项式. 4.一次多项式有什么特点? 5。二次多项式,三次多项式能解决哪些重要的实际问题? 6.如何应用逆解法求出矩形纯弯曲时的应力分量和位移分量? 7。如何应用半逆解法求出简支梁受均布荷栽时的应力分曼?其结果与材抖力学所得结果有何异同. 8.如何应用因次分析法求解锲形体受重力和液压力时的应力分量? 第四章平面问题的极坐标解答 1.极坐标中的平衡微分方程,物理方程和几何方程. 2.极坐标中的应力函数与相客方程如何导出. 3.轴对称问题的特点是什么?轴对称应力和轴对称位移公式如何计算? 4.如何求出圆环或圆筒受均布压力作用下的应力分量? 5.何为位移的单值条件?如何用于圆环受均布压力的问题? 6.在解圆孔的孔边应力集中时作了哪些假定?如何求解带孔矩形板在四边受拉荷栽作用下的应力分量? 7.如何求解锲形体在锲顶受集中力时的应力分量? 8.如何求解半平面体在边界上受法向集中力时的应力和位移? 第六章用有限单元法解平面问题 1.有限元法解平面问题时分为哪三个主要过程?如何将连续弹性体变换为离散结构单元分析和整体分析的主要任务是什么? 2.何谓结点力{ } 和结点荷载{F} ,两者有何关系? 3.三角形的位移模式是怎样确定的? 它必须满足那三个条件? 4.何谓形函数Ni(i,j,m),它有何特性? 5.何谓形函数矩阵[N],它表示什么关系? 6.名词解释:单元刚度矩阵[k];整体刚度矩阵[K];应力转换矩阵[S];弹性矩阵[D];几何矩阵[B];虚功方程. 7.如何由虚功方程导出单元的刚度矩阵?

弹性力学复习重点 试题及答案【整理版】讲解-共10页

弹性力学2019 期末考试复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题? 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具 有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系? 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方 面主要反映的是形变分量与应力分量之间的关系,也就是平 面问题中的物理方程。 7.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明 答:按照边界条件的不同,弹性力学问题可分为两类边界问题:(1)平面应力问题:很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存 在yx xy y x τ τ σ σ= 、 、三个应力分量。 (2)平面应变问题:很长的柱形体,在柱面上受有平行于横截

弹性力学基础知识归纳知识讲解

弹性力学基础知识归 纳

一.填空题 1.最小势能原理等价于平衡微分方程和应力边界条件 2.一组可能的应力分量应满足平衡微分方程和相容方程。二.简答题 1.简述圣维南原理并说明它在弹性力学中的作用。 如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。 作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。 (2)将次要的位移边界条件做应力边界条件处理。 2.写出弹性力学的平面问题的基本方程。应用这些方程时,应注意什么问题? (1).平衡微分方程:决定应力分量的问题是超静定的。 (2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。 (3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。但是形变分量完全确定时,位移分量不完全确定。 3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。

4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号? 由六个分量决定。在确定方向的时候,正面上的应力沿正方向为正,负方向为负。负面上的应力沿负方向为正,正方向为负。 5.什么叫平面应力问题和平面应变问题?举出工程实例。平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。例如工程中的深梁和平板坝的平板支墩。 平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。例如 6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。 (1)完全弹性假定。 (2)均匀性假定。 (3)连续性假定。 (4)各向同性假定。 (5)小变形假定。

相关文档
最新文档