翼型航模DIY基础知识

翼型航模DIY基础知识
翼型航模DIY基础知识

A

翼型航模DIY基础知识

机翼

机翼是模型飞机产生升力的主要部件。模型飞机性能的好坏往往决定于机翼的好坏,良好的机翼应该能产生很大的升力和很小的阻力,并有足够的强度和刚性,不容易变形而且容易制作。决定机翼产生升力大小的因素很多,与机翼面积、速度等直接有关,不过这些因素往往不能够或不便于改变,譬如空气密度,我们不能改变;机翼两积、通常受到比赛规则的限制;飞行速度不容易控制,而且对竞时的模型飞机来说,速度愈小愈好。这样一来,要想增大升力只能从增大升力系数着想了。在减小机翼阻力方面也是这样,主要是设法减小机翼产生的阻力系数。决定机翼升力系数及阻力系数的是机翼截面形状 (即翼型)、机翼平面形状和当时的迎角。好的翼型能够在同样的迎角下有较大的升力系数和较小的阻力系数,这两种系数的比值(称升阻比)可达到18以上。

一、翼型

翼型就是机翼的截面形

状。现代模型飞机所用的翼型

一般可分为六类:平凸型、对

称型、凹凸型、双凸型、S型和

特种型,如图3-1所示。这六

种翼型各有各的特点,每种翼

型一般能符合某几种模型飞机

的要求。

翼型各部分的名称如图3-2所示。其中影响翼型性能最大的是中弧线(或中线)的形状、翼型的厚度和翼型厚度的分布。中弧

线是翼型上弧线与下

弧线之间的距离中点

的连线。如果中弧线是

一根直线与翼弦重合,

那就表示这个翼型上

表面和下表面的弯曲

情况完全一样,这种翼

型称为对称翼型。普通

翼型中弧线总是向上

弯的,S翼型的中弧线

成横放的S形。

要表示翼型的厚度、中弧线的弯曲度和翼型最高点在什么地方等通常不用长度计算,因为各种大小不同的飞机都可以用同样的翼型。翼型形状如用具体长度表示,在设计计算时很不方便,现在的翼型资料对这些长度都用百分数表示,不用厘米或米来计算,基准长度是翼弦,例如翼型厚度是1.2厘米,弦长10厘米,那么翼型厚度用(1.2/10)来表示,即翼型厚度是翼弦的12%。这样的表示方法很方便,不管用在大飞机或小飞机上,这种翼型的厚度始终是12%。大家只要牢记基准长度是弦长便可以很容易算出实际的翼型厚度来,此外计算前后距离也用百分数,也以弦长为基准,而且都是从前缘做出发点。例如,翼型最高点在30%弦长处,那就表示翼型最高的地方离前缘的距离等于全翼弦的30%。

下面我们分别把翼型的画法、性能的表示法和性能的计算等问题加以讨论。

(一)翼型的画法

适合于模型飞机上使用的翼型现在巳有一百多种,每种翼型的形状都不相同。幸而每种翼型的形状都

用同一办法 (外形坐标表)表示,所以我们只要把翼型外形坐标表找到,这种翼型的形状便完全决定了。

某翼型坐标见表3-1。

所谓翼型坐标表是从翼型上下弧线选出一定的点,把这些点的坐标用弦长百分数表示所列成的表。坐标的原点是前缘,计算百分数的基准长度是弦长,横坐标是翼弦;表3-1就是这样的表格,表格第一行(X)表示到前缘的距离,第二行(Y u)对应于第一行距离的翼型上弧线上的一点到翼弦的距离;第三行(Y d)是下弧线上一点到翼弦的距离,把所有这些点都在图上标出以后,用圆滑的线将各点连接起来便可以得到正确的翼型形状。

画翼型前,要首先决定翼弦的长度。将弦长乘上表中的数字再除100就可以得出所需要的实际长度。

(1) 首光在纸上面一直线代表翼弦。在线上量出翼弦的长度,例如15厘米,如图3-3l(a)所示。

(2) 在翼弦上接表3-1中第一行量出距离。如第一行的30表示离前缘的距离是(30/100)15即4.5厘米。在翼弦上离前缘4.5厘米的地方轻轻地点上一点,依此类惟。通过所有这些点画出垂直翼弦的线,如图3-3(b) 所示。

(3) 按表3-1中第二、第三

行的数值将上弧与下弧的距离

算出来。例如,在离前缘4.5厘

米的地方表中数字是11.65,上

弧到翼弦的实际距离是11.65

15/100=1.76厘米。表中第三

行是-0.38,即下弧到翼弦距离

是-0.3815/100=-0.057厘米

(负值表示这一点在翼弦下方)。

根据计算出来的数值便可以在

刚才画好的垂直线上(离前缘

4.5厘米的那一根)点出两点:

一点在翼弦上面离翼弦l.76厘

米,另一点在翼弦下面,离翼弦

0.057厘米,用同样的方法将各

不同距离的上下弧各点都标出

来,如图3-31(c)所示。

(4)将点出来的各点连成圆滑的曲线便可以得到翼型的形状,如图3-3(d)所示。

如果我们点出来的点不能连成连续圆滑的曲线时表示有错误:或者距离没有算好;或量最得不准确,正负号没有注意。画出后的翼型最好与书中同一种翼型的形状对照一下,这样往往可以及时改正错误。

有其应掌握如何使用AutoCAD来画出翼型(详见“航空模型”),并在使用激光切割机时,对翼型实际加工厚的翼型进行修正。

(二)翼型的名称和牌号

翼型的种类很多,形状各异,所以每种翼型都有一定名称或牌号。以前的翼型多数是用发明者或研究机关的名称来命名,如:茹科夫斯基翼型、哥廷根翼型等。模型飞机用的翼型也往往用发明者的名字表示,加汉斯汉申翼型、古布菲翼型等。

航模爱好者常用翼型的来源不外乎两个方面:

(1) 一些国家的航空研究机构经过风洞试验的翼型。这些翼型资料往往还附有特性曲线。

(2) 航模爱好者自己设计和改进的翼型。这类翼型一般都是经过模型飞机的实际飞行并证明性能较好的,当然也有一些是经过风洞试验的翼型。

航模爱好者自己设计的翼型常常用集体的名称或设计者的名字再加上它的序号来表示。例如:BH-l0,其中“BH ”是“北航”(原北京航空学院)汉语拼音的缩写字母,数字“10”是所试验的第10种翼型。 在航模爱好者设计的翼型中,要着重介绍的是“B ”系翼型(或称“Б”系翼型)。它是匈牙利著名的航模爱好者班尼狄克设计的

翼型,采用4~5位数字来表

示翼型的几何特性。例如,

在翼型B-12307-b 或(Б

-12307-b)和B-6556-d 中:

第一、第二位数字表示

翼型的最大相对厚度,前一种翼型的12表示厚度为12%弦长,后一种翼型的6,表示是6%弦长。 中间两位数字表示翼型

中弧线最高点距前缘的距离、30和55各表示等于30%和50%弦长。 最后一位数字表示中弧

线最大弯度。7和6各表示等于7%和6%弦长。

在B 系翼型数字后面往往附有一个小写的拉丁字母,用来表示中弧线的类型,它的含义是: a 一中弧线是圆弧曲线;

b -中弧线是椭圆曲线;

c -中弧线由椭圆曲线和双曲线组合而成;

d -中弧线为任意曲线;

e -翼型上、下弧线在尾部重合为一条线;

f -翼型后缘部分很厚,最后突然变尖:;用这种翼型的机翼,后缘的强度和刚度一定要注意加强。 因为在翼型厚废和中弧线弯度相同的条件下,可设计出很多翼型、因此,在后面这个小写字母的后面还可加上分母数字。例如B-835-b ,B-8356-b/2及B-8356-b/3等,它们用来表示设计的先后次序。 航空研究机构试验的翼型有些也可以用在模型飞机上。这些经某些国家航空研究机构试验而得的翼型,都采用研究单位名称的缩写字为“姓”,并用表示试验系列或编号的数码或字母作为“名”。例加Clark-Y (克拉克-Y)(美国);哥廷根499或Go-499 (德固);MVA-321 (德国);ЦАГИ-731 (前苏联)。

这里要着重介绍美国国家航空航天局的前身NACA 研究的一系列翼型。他们研究过的翼型很多,也采用数字表示翼型的几何特性,在模型飞机上常用的NACA 翼型分两个系列,即4位数字翼型和5位数字翼型。现以4位数字

翼型NACA -6409、

NACA-23012为例,

将有关数字的含义说明如下: 第一位数字表示中弧线最大弧高,6就是6%

翼弦长度; 班尼狄克翼型代号的几何特性含义

第一、二位数字表示翼型的最大相对厚度为12%弦长。第一、二位数字表示翼型的最大相对厚度为6%弦长。中间二位数字表示翼型中弧线最高点距前缘的距离为30%弦长。中间二位数字表示翼型中弧线最高点距前缘的距离为55%弦长。最后一位字母表示中弧线的类型,b为椭圆曲线。

最后一位数字表示中弧线最大弯度是7%的弦长。最后一位字母表示中弧线的类型,d为任意曲线。最后一位数字表示中弧线最大弯度是7%的弦长。NACA 翼型代号的几何特性含义第3、4位数字表示翼型的最大相对厚度为9%弦长。第2位数字表示翼型中弧线最高点距前缘的距离为40%弦长。第1位数字表示翼型中弧线最大弧高为6%弦长。

第二位数字表示中弧线最大弧高的位置,4表示往40%翼弦长度 (从前缘向后量);

第三、第四位数字表示翼型最大厚度,09即9%翼弦长度,这类翼型最大厚度都在30%的地方,4位数字翼型都这样,所以不再标出来。

根据这个规律可以知道,NACA一6412翼型与NACA-6409翼型基本上相同(中弧线完全相同),只是前者的最大相对厚度不是9%,而是12%。

如果第一、第二两位数字是0,表示这类翼型是对称翼型。如NACA-0009表示是最大相对厚度9%的对称翼型。

NACA翼型不但在真飞机上使用很广,在模型飞机上也常常采用。如NACA-6409、NACA一6412、NACA 一0018、NAC4一23012等都是常用的模型翼型。

除此之外,在模型飞机上还采用了一些对现有翼型加以改进而得的“新”翼型。例如1/2NACA(6406+6409) 或写作NACA-6407.5,这是将两个中弧线相同但厚度不同的翼型相加,取其最大相对厚度平均值而得到的“新翼型”。

MVA-301-75,即保持MVA-301翼型中弧线不变而把厚度改薄到原来的75%。

克拉克-Y-6%,是将最大相对厚度为11.7%的克拉克-Y翼型减薄到6%的“新翼型”。实际上这些翼型的中弧线也改变了。

(三)翼型性能的表示法

翼型的性能就是指翼型在各种不同迎角时所产生的升力系数、阻力系数和压力中心的位置。表示这三种数据的方法很多,有的用表格的形式,有的用曲线的形式,其中以后者最普遍,使用也最方便。

l. 升阻特性

表示翼型性能的曲线有很多种。最常见的是所谓升力系数曲线、阻力系数曲线和极曲线(亦称李林达曲线)。升力系数曲线在第二章巳提过,这种曲线的横坐标表示迎角,纵坐标表示升力系数C L,如图3-4所示。从曲线上可以直接查到不同迎角时的升力系数,机翼的零升力迎角(用o表示,通常是负值),临

界迎角 c r和最大升力系数C Lmax。

阻力系数曲线与升力系数曲线相似。横坐标是

迎角,纵坐标是翼型的阻力系数C D。这个曲线表示

在不同迎角时翼型产生阻力系数的大小。

还有一种翼型的性能曲线称为极曲线。极曲线

与以上两种曲线不同,这种曲线的横坐标表示翼型

的阻力系数,纵坐标表示升力系数,在曲线上标出

迎角的大小,如图3-5所示。利用这种曲线可以很

迅速地同时查到一定迎角下的升力系数和阻力系

数。譬如从图上可查到这种翼型在迎角6时的升力系数

是0.80,阻力系数是0.078(相当于雷诺数84000的曲线)。

从这曲线上还可以看到翼型的最大升力系数(相当于曲线

最高点的升力系数)和临界迎角(对应于最大升力系数的

迎角)。在图3-5中,临界迎角是10.4,最大升力系数

是1.0左右,阻力系数是0.12。

极曲线还有一个方便的地方,就是可以直接查到有利

迎角。所谓有利迎角就是升力系数与阻力系数的比值力最大时的迎角。模型飞机用这个迎角飞行时,可以保证在同一高度滑翔得最远。

从坐标原点做切线与曲线相切,切点所对应的迎角就是有利迎角。图3-5中所示曲线的有利迎角为2-3,这时所对应的升力系数为0.55,它与阻力系数0.05的比值 (0.55/0.05=11)就是翼型的最大升阻比。在其他迎角下这个翼型的升阻比都比这个数值小。

有时将机翼极曲线与升力系数曲线画在一起。横坐标同时表示迎角和阻力系数,纵坐标则只表示升力系数。这种曲线上的极曲线一般不标明迎角。需要知道迎角时可通过升力系数曲线决定,如图3-6所示。例如在升力系数是1.2时迎角是6。这样极曲线上对应于升力系数1.2的那一点的迎角也是6。

另外还有一种不常见的曲线,就是升阻比曲线(图3-4的C L/C D曲线)。这种曲线是根据不同迎角时机

翼产生的升阻比的大小画出的。

每种翼型都可以通过试验的方法找出它的极

曲线或升力系数曲线来,这些曲线通称翼型性能曲

线。不同翼型的曲线也不同,所以每一曲线上都应

注明是哪一种翼型,如B-6358或MVA一301等。

此外,最好写上试验时的雷诺数,以便查阅。雷诺

数相差很大的资料不能随便通用。

如果在曲线旁边写有=字样,表示这些曲

线是翼型数据不是实际机翼数据,称为展弦比,

表示机翼的长度(翼展)和翼弦长度之比,机翼翼尖

的气流会影响到整个机翼的情况,所以要准确地测

量出翼型的性能,应把机翼做得无限长(即=),

实际上不可能这样做;但可在风洞中用隔板把两翼

尖顶住(相当干两个很大的垂直面装作翼尖上),试验出的结果与翼展无限长的机翼基本相同。在利用已有资料时,必须注意资料上的展弦比是否和自己模型机翼上用的相同,如果不同便要用后面介绍的方法进行换算。

2. 力炬特性(07.11.19讲课到此)

除了升力、阻力特性外,还需要知道的翼型数据时压力中心的位置,即合力作用点的位置。一般假设

这个作用点在翼弦上(实际情况是

稍微高一点儿),所以阻力也作用在

翼弦上。

一般的翼型当迎角增大时压力

中心向前移,迎角减小时压力中心

向后移,只有S翼型例外,对称翼

型的迎角变化不大时,压力中心可

以说是不动的。如图3-7所示为翼

型压力中心随迎角变化的情况。

从图上可以看到,要表示各种

不同迎角时压力中心的位置,还需

要有另一条曲线,就是迎角与压力

中心位置的变化曲线。后来从理论和实际中找出了另一个更好的办法,所以现代翼型资料中已看不到这种压力中心曲线了。

知道压力中心位置的主要目的,是用来计算机翼升力对整架模型飞机的重心所产生的力矩。将升力乘上压力中心到重心的距离便可求出升力产生的力矩。但是压力中心位置随迎角的改变而改变,计算很麻烦。后来研究结果发现机翼升力对于离前缘约l/4翼弦距离的一点所产生的力矩不随迎角改变而改变。如以这一点作为支点,升力产生的力矩是个常数,这一点通常称为机翼焦点。升力对这一点产生的力矩称为焦点

力矩。在很多翼型资料上都写有焦点力矩系数的大小。知道焦点力矩系数便可以根据下式算出焦点力矩M 0

02021Z C M S V M ρ= (3-1) 式中:p 一空气密度,单位:千克/米3;

v 一飞行速度,单位米/秒;

s 一机翼面积,单位:米2;

r 一翼弦长度,单位:米;

M Z0一焦点力矩系数。

根据机翼升力对焦点产生的力矩大小不随迎角改变而改变的性质,可以设想,升力作用在焦点上,升力的力矩可用焦点力矩代替。这样一来,要计算升力对模型飞机重心产生的力矩就很方便了。只要知道机翼焦点距模型飞机重心的距离和在该迎角下升力系数与阻力系数的大小、翼型的焦点力矩系数等,便可以直接算出力矩而不用管压力中心(即升力作用点)作用

在什么地方。

例如,已知一机翼在迎角6时,升力系数是1.0,

阻力系数0.025,焦点力矩系数-0.13(负号表示力矩

具有使模型飞机低头的趋势)。重心距机翼焦点的前后

距离是6厘米,上下距离8厘米,如图3-8所示。模

型飞机飞行速度5米/秒,翼弦平均长度15厘米,机

翼面积3000厘米2。求出机翼升力和阻力对模型飞机

重心所产生的力矩。

从图3-8可看到,对重心产生的力矩一共有三个:

一个是假设升力作用在机翼焦点上对重心产生的力

矩;一个是阻力对重心产生力矩,还有一个是焦点力矩。计算方法如下:

由于升力产生的力矩

100/60.110000/30005226.12121221?????==x SC V M L ρ

=0.276牛·米 (抬头力矩)

由于阻力产生的力矩

100/8025.010000/30005226.12121222?????==y SC V M D ρ

=0.0092牛·米 (抬头力矩) 焦点力矩

()13.0100/1510000/30005226.121212020-?????==Z C M S V M ρ

=-0.0897牛·米 (低头力矩)

总的机翼对重心产生的力矩是

M=M 1+M 2+M 0=0.276+0.0092-0.0897=0.196牛·米

在计算时必须注意计量单位,否则会得出错误的结果。

不同翼型的焦点力矩系数不相同。绝大部分翼型的焦点力矩系数是负值,但S 翼型的是正值,对称翼型是0(即压力中心就在翼型焦点上而且不移动)。焦点力矩系数负值愈大,表示压力中心移动愈大。 焦点的位置本来不一定正好在距前缘1/4翼弦长度的地方,不过用于模型飞机的计算很方便,并且已经相当准确。翼型焦点力矩系数的大小也不是完全不变,只是一般来说不变,所以很多翼型资料都只写一个数值,如NACA-6412翼型M Z0=-0.13。但有些特别“讲究”的资料,也有给出不同迎角下不同焦点力矩系数的。

在以后考虑模型飞机的飞行问题时,都把升力看成作用在焦点上。但是应注意,全机的焦点位置因为受尾翼作用的影响,与单独机翼的焦点位置是不相同的。后面讨论全架模型飞机稳定性问题时再做进一步

研究。

(四)翼型性能的估计及选用

模型飞机一般可按竞赛要求分三大类型:留空时间、飞行速度和飞行特技。后两种模型飞机所用的翼型通常是对称翼型或双凸翼型,选择翼型的要求比较简单,

所以不做讨论。这里所说的翼型性能主要针对竞赛留空时

间的模型飞机来考虑。

l. 根据翼型极曲线选择翼型

从翼型的极曲线可以看出翼型的好坏和特点。一般来

说,翼型的阻力系数愈小愈好,也就是说极曲线愈向纵轴

靠近愈好。如图3-9中所示的几种翼型极曲线,B-8306翼

型的阻力较小。不过这还不够,对于竞时模型飞机来说,

小迎角时阻力小并不说明翼型有什么好处。竞时模型飞机

要求下沉速度愈慢愈好,即要求升阻比愈大愈好。这时机

翼所用的迎角不是小迎角而是比有利迎角还大一些的迎

角。大多数翼型,最大升阻比 (用符号K max表示) 愈大,

有利迎角就愈大,产生的升力系数也愈大,飞行速度便可

以减慢。从曲线上看,通过原点与极曲线相切的直线愈陡

愈好,因为切线与横轴所成的夹角愈大,表示升阻比愈大。例如,图3-9中的B-8306翼型的最大升阻比较B-6358的大,所以一般说来前一种翼型比后一种好。选择翼型时可以把最大的升阻比选出来,然后再考虑其他因素。

如果从极曲线上发现两种翼型的最大升阻比相同,例如,图3-9中的B-10355与B-6358翼型几乎可用同一条线相切,则选用对应最大升阻比的升力系数较大的翼型。因为决定模型飞行性能的是整架模型飞机的升阻比,而翼型阻力只占整架模型阻力的1/3左右。虽然B-10355翼型的升力系数及阻力系数都不大,但加上机身等部件的阻力系数以后,总的升阻比便会大为降低,与此相反,对升力系数及阻力系数都较大的B-6358翼型,加上其他阻力后影响会较少。例如,一架模型飞机其他部分总的阻力系数是0.08,现比较一下采用B-6358翼型或B-10355翼型时整架模型飞机的升阻比。

首先从图3-9上查出,在有利迎角时,B-6358翼型的C L=1.6,C D=0.038;B-10355翼型C L=0.8,C D=0.02。计算总的升阻比时只要把其他阻力系数与翼型阻力系数相加,再相比即可

B-6358: K max=1.6/(0.038+0.08)=1.60/0.1l8=13.6

B-10355:K max =0.80/(0.02+0.08)=0.80/0.10=8.0

通过计算可以很明显地看出,虽然两种翼型最大升阻比很接近,而且B-10355还靠近纵轴,最小阻力系数比较小,但如用在竞时模型飞机上,加上其他的阻力系数以后,还是最大升阻比具有较大升力系数的B-6358翼型要好得多。

此外,极曲线当中部分愈垂直愈好(图3-9中的B-8306比B-10355好)。这样的极曲线表示机翼在很大的迎角范围下阻力系数增加很小,模型飞机用这样的翼型特别容易调整。图3-9中的B-10355翼型则很难调整到正好在合适的迎角下飞行,升力系数有一点小小的变化便会引起升阻比较大的改变。这就是航模爱好者们通常听说的“过分灵敏”。

2. 根据翼型的几何形状选择翼型

对于模型飞机来说,单纯根据风洞试验结果来选择翼型未必能得到完全正确的结论,因为根据风洞试验数据确定的性能只是相当于气流平静的条件,而模型飞机的实际飞行条件不可能那么“平静”,会遇到风,也会遇到上升气流和下降气流。气流的紊乱程度影响模型飞机的实际飞行结果,有时与根据风洞试验数据做出的选择有很大出入。例如,根据风洞试验数据,G O-417a翼型的性能比N-60翼型好,但是只要有

风,G O-4l7a翼型的性能便会急剧下降。

此外,有很多适合模型飞机采用的翼型并没有进行过风洞试验,我们只能知道翼型的形状,而不知道翼型的极曲线。因此最好能够根据翼型的外形特点来估计翼型的主要特性。

在估计翼型性能前,首先把翼型画好,而且最好画大一些(弦长150毫米以上)。利用小圆规,在翼型内做很多小圆与上下弧相切,这些小圆的连接起来就是翼型的中弧线。画出中弧线以后,便可以量出中弧线的最大弯度、弧位(中弧线最高点距前缘的距离)和中弧线形状等。在所有小圆中,最大的直径表示翼型的最大厚度,如图3-10所示。

利用作图法还可以把零升力迎角估计出来。首先把翼型及中弧线画好,从前缘向后量出40%弦长的地方,在翼弦上得一点。从这点作垂直于翼弦的直线与中弧线相交于一点,如图3-11所示的B点。将这点与A点连一直线,这条直线便称为零升力弦。气流从这个方向吹过来,翼型将不产生升力。这条直线与翼弦所成的角度就是零升力迎角。用0表示。

实际上用这个方法决定零升力迎角不很准确,只有在找不到资料时才这样做。当机翼的雷诺数超过翼型的临界雷诺数时(即模型飞机飞得很快,弦长在150毫米以上),每种翼型零升力迎角是不变的;但如低于临界雷诺数,雷诺数越小、越接近于零。从图3-12知道零升力迎角后,便可以估计不同迎角时产生的升力系数。其计算方法后面会介绍。

总的来说,对于竞时模型飞机,选择怎样的翼型才能获得

良好的飞行性能呢?经过广大航模爱好者的试验和研究,对它

的外形特点得出如下看法。

(1)中弧线的形状

一般是椭圆形或抛物线形的一部分。中弧线弯度越大,在

相同迎角时产生的升力系数越大,但阻力也稍微增大。竞时模

型飞机翼型用弯度大的翼型(即凹翼型)较好。一般中弧线弯度

应为4%~8%(如B-5356翼型是6%,NACA-6409翼型也是6%)。中

弧线弯度太大时,阻力增大很多,压力中心移动很多,所以不

很适宜。至于中弧线最高点位置,一般是在25%~50%之间。但中

弧线弯度增大会使压力中心移动较多,合力位置在不同迎角时

变化很大,因此对弹射模型飞机很不适宜。要求稳定性好的模

型,其翼型中弧线越接近直线越好。无尾飞机或飞翼用的翼型

中弧线应为横放的S形。必须注意,这种翼型的中弧线呈S形,不等于说翼型外形也像横放的S形,要仔细观察甚至画出中弧线后才能认出来。

(2)翼型上弧线的形状

翼型上弧线的形状及上弧线最高点的位置对于气流流过翼型的情况有很大影响,在Re=20000~100000范围内,翼型上弧线最高点位置最好离前缘25%~30%翼弦。上弧线高度可以为9%~10%弦长。有人认为,从翼型前缘到上弧线最高点这一部分上弧线的形状最好是一段近似于直线的曲线,但这个理论尚未得到证实。

(3)翼型下弧线的形状

翼型下弧线的形状不及上弧线那么重要,但如果设计得不好,对翼型的性能也会有不良影响。翼型下弧线最高点位置最好在离前缘50%~60%翼弦处。翼型下弧线最高点到弦线的距离(高度)最好在5%~7%弦长之间。如果小于这个数值,在平静气流中的滑翔性能不够理想;如果大于这个数值,在有风和有上升气流时的滑翔性能会变差。从翼型前缘到翼型下弧线最高点的这一段曲线形状,对于凹凸翼型,最好也是近乎直线,但稍微向下凸起的曲线。从翼型下弧线最高点到后缘这一段弧线最好是逐渐向上弧线接近,最后和上弧线重合。

(4)前缘半径

模型飞机翼型前缘部分的形状对于机翼上表面边界层的状态有很大的影响。如果前缘比较“尖锐”,就很容易在机翼上边面获得湍流边界层。但事物总是一分为二的,前缘太尖,又会使机翼只能在很窄的迎角范围内具有较好的性能。经过一些试验后,有人提出一个数据范围,见表3-2。

综合上面所提到的各点,适合牵引、

橡筋和活塞式发动机自由飞等竞时模型飞

机的翼型,如图3-13所示。应当指出,这

仅是对竞时模型飞机翼型的一般要求。符

合上述几何参数的翼型,一般都能获得好

的性能。但并不等于说,凡是不符合这些

要求的翼型就一定不好,也许经过迸一步的研究,可能会得出更合理的设计要求。此外,随着模型的类型及尺寸不同,所选的翼型几何参数也有所不同。一般牵引·橡筋及活塞式发动机自由飞模型机翼翼型的参考数据见表3-3。

最后还必须指出:为模型飞机设计或选择性能优良的翼型只是提高飞行成绩的一个必要条件,但还不完备,因为性能优异的翼型本身只足为获得良好飞行成绩提供一种可能性,而要把这种可能性变成现实,还要求合理地设计和精细地制作模型飞机,并且认真地进行试飞调整。只有这样,才能充分发挥高性能翼型的优点,获得优异的成绩。

(五)提高翼型性能的一些途径

要提高模型飞机翼型性能就要设法使翼型上表面的边界层从层流变为湍流以便延迟气流分离,增大最大升力系数和升阻比。边界层的转变与雷诺数、机翼的翼型形状、机翼上表面的粗糙程度,以及气流本身紊乱程度有关。由于雷诺数低是模型飞机固有的特点,所以各种提高翼型性能的办法围绕如下几个方面进行。

l. 低雷诺数下边界层的人工扰乱

用增加流过机翼上表面气流紊乱程度来促使边界层从层流转变为湍流的方法是一种提高机翼性能简便有效的途径。目前采用的办法有三种。

(1) 在机翼上表面前缘部分贴上细砂纸或粘上细木屑

表3-4是用这种方法进行试验的结果。从这个试验可以看到不但升力系数有所增大,阻力系数也有所减小;在迎角9.3时机翼的最大升阻比从7.3提高到9.0。问题是到底粗糙部分应贴到哪里为止?粗糙的程度如何?对于每个具体的翼型都需要进行试验才能获得良好的结果,弄得不好反而会增加阻力和质量,而

未必能提高性能。

(2) 在机翼上表面近前缘部分粘上一条细木条或粗的扰流线

日本航模爱好者曾经对上弧线为圆弧形的翼型用改变扰流线直径和位置的方法进行了系统的试验,试验结果见表3-5。从这个试验的结果可以看到,对这种翼型来说扰流线直径以0.2毫米为最好。当位置在30%时,最大升阻比从8.8提高到10.5。这个例子还充分说明当扰流线用得不合适 (譬如太粗),升阻比反而大为降低,甚至只有原来的一半(从8.8减到4.9)。过粗的扰流线不但没有把边界层从层流变为湍流,

航模的组装过程

一、航模的组装过程 1.先将四个舵机分别装在航模飞机的各个部位(机身两个,主机翼两个), 2.将主机翼上的各个零件组装好。在组装拉杆时,不要见其固定死,以便后续的调试。 3.接着是把尾翼(方向舵与升降翼)装上,注意升降翼要与方向舵垂直。 4.将主翼和尾翼装在机身上,保持主翼和升降翼在一个平面上,然后固定尾翼,并把拉杆装上。 5.将发动机固定在机身上。 6.将电条的三个插孔依次与发动机的三个插头相连。注意:在调试飞机当中如果螺旋桨倒转,将两边的插头交换位置即可。 7.依次将舵机的接口、发动机的接口接在接收器上,然后将所有的接线装入机身内,接收器的一根天线从机身前端伸出,另一根从侧面伸出。注意:各接口对应的接法为:1号——右侧副翼;2号——升降舵;3号——发动机;4号——方向舵;6号——左侧副翼;其余不接。 8.将主翼装到机身上,注意与机身垂直,与升降翼在一个平面内。 9.将螺旋桨装在发动机上,将固定螺旋桨的螺丝上紧。 10.装机检查:校准各个部位的舵机与螺旋桨的工作是否正常,校准完毕后上螺丝固定。 二、试飞的注意事项 1.先开启遥控器,并将油门控制杆调到最低,然后接通飞机电源。注意:开启顺序必须是先开遥控器,后接通飞机电源,切记不能颠倒顺序;在接通飞机电源时,正负极必须接对。 2.飞行前务必做好平衡的测试:启动引擎前对副翼、升降、方向系统做好调试,确认正常工作后方可试飞。 3.观测场地的气候条件(关键是风向,在有风时切记要逆风起飞降落)。

4.在控制飞机飞行时,要让飞机在操作人员的视线前方。(其他人员要站在操作手的后方,切记不得妨碍操作手的视线) 5.在飞行过程中,根据飞机的飞行状态对遥控器进行校准。(校准标准:飞机平飞后,在不控制遥控器的情况下,飞机能够平稳飞行) 6.飞行时间一般为10分钟左右,就可以开始准备降落。 7.飞机降落后,切记要先断开飞机电源,再关闭遥控器。 三、飞机电池的充电与保存 1.设定充电电压与电流时要注意:电流为4A,电压为,3S标准。切记电池不能过充(即充电电流和电压不得超过4A,)和过耗。 2.保存电池时,电池电量在70%——80%之间,即电压在——4V之间。

航模相关书籍

电子版图书详细目录: 《10类航模飞机制作》 作者:边莫行编页数:113 科学普及出版社,1988 《21世纪学校科技活动创新设计与探索全书》 作者:朴哲松等主编页数:3145页内蒙古少年儿童出版社,1999 《1954年国际航空模型竞赛》 作者:(苏)巴巴耶夫(Н.Бабаев)等著黄永良,程乾译页数:103页人民体育出版社,1956 《1978年全国航海模型比赛中学科技特辑》 作者:《中学科技》编辑部编辑国家体委军体局审定页数:111页上海教育出版社,1979 《1978年全国航空模型比赛》 作者:《中学科技》编辑部编辑页数:198页上海教育出版社,1979 《产品模型制作》 作者:谢大康编著页数:178页化学工业出版社,2003 《车模精品鉴赏手册》 作者:蔡葵编著页数:161 福建科学技术出版社,2003 《初级无线电操纵模型飞机第二版》 作者:陶考德编著页数:119页人民体育出版社,1962 《初级无线电操纵模型飞机》 作者:陶考德编著页数:90页人民体育出版社,1958 《船舰模型的无线电远距离控制》 作者:(苏)布鲁因斯马(А.Х.Бруинсма)著页数:62页国防工业出版社,1958 《创纪录模型飞机》 作者:(苏)考斯钦科,(苏)密基尔吐莫夫著中央国防体育俱乐部编页数:1册人民体育出版社,1956 《弹射滑翔》 作者:体育运动委员会航空运动司编著页数:39 人民体育出版社,1960 《弹射模型飞机》 作者:周嵚著页数:36 青年出版社,1952 《电动模型车》 作者:冯立编著页数:97 万里书店,1978 《电动模型制作》 作者:伯章编著页数:112页上海人民出版社,1975 《电动起重机模型》 作者:伯章编著页数:78 少年儿童出版社,1961 《飞机模型制造法》 作者:(苏)考斯钦克) 页数:1册开明书店,1952 《飞机模型制造法》 作者:毕云编译页数:1册中国文化事业社,1952 《飞机潜艇及其他模型制作法》 作者:(苏)阿柏拉摩尔著符其珣译页数:95页开明书店,1949 《光电控制模型》 作者:谢耀德译页数:130 华联出版社,1978 《航海模型》

航模知识题参考答案汇总

航模基础知识题参考答案 一、选择题 1. 航模包括 ( A ) A)航空模型航天模型B)航空模型航天模型及车模船模 C)航空模型航天模型和船模 D)航空模型 2. 相同上反角以下布局稳定性最大的是(A ) A)上单翼 B) 中单翼 C)下单翼D) A和C 3. 电动航模最常采用哪种电池提供动力( B ) A) 镍氢电池 B) 锂电池C) 铅蓄电池 D) 干电池 4.垂尾的作用是什么( A ) A)控制航向 B) 减小阻力 C) 增加阻力 D) 控制飞机俯仰5.下列那种形式的飞机最省电( D ) A) 涵道飞机 B) 3D飞机 C)腰推飞机 D)滑翔机 6.常见的飞机的可靠转向方式是什么?( C ) A. 副翼 B.方向舵 C.副翼+升降舵 D.差速 7.锂电池1S在充满电的情况下正常电压是多少( C ) A)1.2V B)3.8V C)4.2V D)12V 8.常规飞机的升力中心大概在哪个位置( A ) A) 机翼前三分之一平均弦长处 B) 机翼后缘处 C) 机身二分之一处D) 机翼前缘处 9 .电子调速器需要与哪些设备连接( D ) A)电池 B)电机 C) 接收机 D) ABC

10. 在航模飞行之前,正确的操作是( A ) A) 先打开遥控再接通动力电源 B) 先接通动力电源再打开遥控 C) 同时打开遥控接通动力电源 D) 都不对 11.当航模出现意外炸机时对于设备的操作正确的是( A ) A) 先拔掉电源B) 先关掉遥控 C) 先检查飞机 D) 先收完油门 12.常用锂电池飞行电压一般不得低于( B ) A)2.8V B)3.7V C) 4.0V D)4.2V 13.下列那种设计适用于高速飞机( D )。 A) 直翼飞机B)下单翼飞机 C) 双凸翼形的飞机 D) 后掠角大的飞机 14.翼尖涡流产生的原因是什么( B ) A)飞机飞行速度过快 B)机翼上下表面的压力差 C)螺旋桨气流影响 D)机翼上下表面的粗糙度差距 15.襟翼的基本效用是什么?( B ) A) 减速 B) 增加升力 C)增加稳定性 D) 增加机动性 16.下了说法正确的是( A ) A)无刷电机配备无刷电子调速器 B)有刷电机配备无刷电子调速器 C)无刷电机配备有刷电子调速器 D)都可以混合使用 17.现在你在用KT板作为材料制作一架飞机,在综合考虑强度和重量

航模制作教程(DOC)

第一章制作工具的准备 做为一个新入门的模型爱好者,首先遇到的问题就是:做模型需要一些什么工具呢?什么工具是即省钱又好用的呢?在这里我想谈一下自己的经验,希望对您有所帮助。 1.模型剪/钳 刃口由高强度金属制成且成斜口(也称斜口钳),是将模型零件从板子上取下的工具,由于是斜口的,所以不会损坏零件。建议购买国产奥迪的,价格在18元左右。 2.笔刀 将零件剪下后,要将零件上多余的流道削去,就要用到笔刀,建议购买田岛的28元/把(8片刀片)在这里要提醒初学者由于笔刀很锋利,使用笔刀时刀口不要朝向自己,以免造成伤害。 3.锉刀 零件取下之后,还要进行打磨的工作,这时你就需要它。锉刀可以分为钻石粉锉刀(表面上附有廉价的钻石粉)以及螺纹锉刀,前者很适合打磨塑料;后者可以打磨蚀刻片。建议购买有各种形状的套装,一般价格不贵在20~50元左右。锉刀的清理可以用废旧的牙刷刷几下既可。 4.砂纸 在经过锉刀的粗打磨后,就要使用砂纸进行细加工,砂纸分为各种号数,号数越大就越细,建议购买800,1000。1200号水砂纸(在五金店均有售,价格在0。6元/张左右)720 5.胶水 零件打磨完毕以后,就要使用专门的模型胶水进行粘接,在这里笔者强烈建议购买田宫的溜缝胶水(25元/瓶)它流动性相当好,而且粘接强度适中,最重要的是它具有“渗” 的作用,这样就避免了由于胶水涂太多而溢出损坏零件。其他胶水还有模王的瓶装(小瓶10元/瓶大瓶25元/瓶)威龙胶水(8元/瓶现以不多见)等。 6.镊子 模型制作中经常要碰到细小零件,这时你就需要一把好用的镊子,建议购买弯头尖嘴,而且后面有锁扣的那种。 7.补土 一些模型由于开模的原因,在组合后会产生缝隙,这时就需要使用补土来填补。补土有很多种类:水补土,牙膏状补土,AB补土,保丽补土,红补土等,就功能上可以分为填补类:牙膏状补土塑型类:AB补土,保丽补土,红补土表面处理类:水补土。这里只介绍属填补类的牙膏状补土:一般市面上常见的是田宫和郡仕的产品,价格均为25元/支,笔者个人认为田宫的补土较为细腻,容易上手,但有干后收缩大的缺点,但还是建议初学者使用;郡仕补土为胶状,干后硬度大,且收缩小,但较难上手,不太适合初学者。 以上几种就是模型制作中最最基础的工具(不包括涂装工具,将另文介绍),对于初学者来说这仅仅是踏向模型制作之路的第一步,如何使用好这些工具,是模型制作的基本功,也是成为高手的必经之路

乡村学校少年宫手册

乡村学校少年宫基本知识解答 1、乡村学校少年宫的概念 乡村学校少年宫是指依托农村中小学校现有场地、教室和设施,进行修缮并配备必要的设备器材,依靠教师和志愿者进行管理,在课余时间和节假日组织开展普及性课外活动的公益性活动场所。建设乡村学校少年宫,为农村未成年人开展实践活动、提高综合素质创造条件,是改善农村未成年人课外活动场所薄弱状况的重要举措,是加强新形势下农村未成年人思想道德建设的基本途径,是未成年人思想道德建设的基础性、长期性工程。 乡村学校少年宫的建设使用要坚持三个原则: 一是公益性原则。免费为未成年人提供文化服务,组织道德实践活动,不开展任何赢利性的经营活动,不开办收费特长班、培训班,坚决避免成为应试教育的第二课堂。 二是普及性原则。对未成年人普遍进行兴趣爱好和基本技能的培养,结合民族优秀文化和地域文化形成特色。 三是资源整合原则。充分利用学校现有资源、周边公共设施和社会各界力量,实现资源整合,切实服务农村未成年人。 2、乡村学校少年宫的主要特点 “覆盖广、花钱少、抓得住”,这是乡村学校少年宫的主要特点,也是实际推进乡村学校少年宫建设过程中的基本思路和工作要领。 一是“覆盖广”,即场所布局与学校合二为一,做到哪里有学校,哪里就有活动场所,农村孩子们都可以就地、就近、就便参加课外活动。

二是“花钱少”,即充分依托农村学校现有资源,通过修缮、改造、置换、共享等办法,闲置利用、一室多用,教室就是活动室,操场就是活动场,课桌就是活动台,不另起炉灶、不重新建设。同时,善于调动和运用社会力量支持,在设施、技术、人才等方面提供帮助。不仅建设花钱少,运行花钱也少,符合当前农村经济社会发展水平,办得成、做得到。 三是“抓得住”,即工作项目抓得住、服务对象抓得住、农村未成年人思想道德建设工作抓得住。工作项目抓得住,主要指乡村学校少年宫依托学校进行建设,实行学校管理体制,由校长兼任主任,学校老师兼任辅导员和管理人员,“一师两用、一表双用”,实行课外活动制度化管理,有阵地、师资保证,能够确保组织到位、长期开展。服务对象抓得住,主要指乡村学校少年宫面向本校和周边学校学生开展活动,工作对象集中,能够吸引未成年人主动参与,有效解决农村未成年人放学后、节假日无处可去、无事可干的问题,使农村未成年人的课外时间由分散状态转变为有组织状态,为我们进行正面教育引导提供有力抓手。农村未成年人思想道德建设工作抓得住,主要指通过抓乡村学校少年宫这个载体,能够努力改善农村未成年人思想道德建设的基础条件,壮大农村未成年人工作队伍,丰富农村未成年人精神文化生活,切实加强农村“留守儿童”教育管理,推动农村未成年人思想道德建设工作不断深入。 3、乡村学校少年宫的活动内容和功能定位 乡村学校少年宫的活动内容包括三类: 一是开展丰富多彩的文体娱乐活动,以乐促智。要针对未成年人的身心特点,因地制宜,广泛开展未成年人喜闻乐见、乐于参与的歌咏、乐器、舞蹈、绘画等艺术活动,球类、武术、棋艺、跳绳等体育活动,以及滚铁环、猜灯谜、放风筝、舞龙灯等乡土文化特色活动,使文体娱乐活动成为乡村学校少年宫最普遍开展、最基

航模DIY-群基础知识(翼型)

机翼 机翼是模型飞机产生升力的主要部件。模型飞机性能的好坏往往决定于机翼的好坏,良好的机翼应该能产生很大的升力和很小的阻力,并有足够的强度和刚性,不容易变形而且容易制作。决定机翼产生升力大小的因素很多,与机翼面积、速度等直接有关,不过这些因素往往不能够或不便于改变,譬如空气密度,我们不能改变;机翼两积、通常受到比赛规则的限制;飞行速度不容易控制,而且对竞时的模型飞机来说,速度愈小愈好。这样一来,要想增大升力只能从增大升力系数着想了。在减小机翼阻力方面也是这样,主要是设法减小机翼产生的阻力系数。决定机翼升力系数及阻力系数的是机翼截面形状(即翼型)、机翼平面形状和当时的迎角。好的翼型能够在同样的迎角下有较大的升力系数和较小的阻力系数,这两种系数的比值(称升阻比)可达到18以上。 一、翼型 翼型就是机翼的截面形 状。现代模型飞机所用的翼型 一般可分为六类:平凸型、对 称型、凹凸型、双凸型、S型和 特种型,如图3-1所示。这六种 翼型各有各的特点,每种翼型 一般能符合某几种模型飞机的 要求。 翼型各部分的名称如图3-2所示。其中影响翼型性能最大的是中弧线(或中线)的形状、翼型的厚度和翼型厚度的分布。中弧 线是翼型上弧线与下 弧线之间的距离中点 的连线。如果中弧线是 一根直线与翼弦重合, 那就表示这个翼型上 表面和下表面的弯曲 情况完全一样,这种翼 型称为对称翼型。普通 翼型中弧线总是向上 弯的,S翼型的中弧线 成横放的S形。 要表示翼型的厚度、中弧线的弯曲度和翼型最高点在什么地方等通常不用长度计算,因为各种大小不同的飞机都可以用同样的翼型。翼型形状如用具体长度表示,在设计计算时很不方便,现在的翼型资料对这些长度都用百分数表示,不用厘米或米来计算,基准长度是翼弦,例如翼型厚度是1.2厘米,弦长10厘米,那么翼型厚度用(1.2/10)来表示,即翼型厚度是翼弦的12%。这样的表示方法很方便,不管用在大飞机或小飞机上,这种翼型的厚度始终是12%。大家只要牢记基准长度是弦长便可以很容易算出实际的翼型厚度来,此外计算前后距离也用百分数,也以弦长为基准,而且都是从前缘做出发点。例如,翼型最高点在30%弦长处,那就表示翼型最高的地方离前缘的距离等于全翼弦的30%。 下面我们分别把翼型的画法、性能的表示法和性能的计算等问题加以讨论。 (一)翼型的画法 适合于模型飞机上使用的翼型现在巳有一百多种,每种翼型的形状都不相同。幸而每种翼型的形状都用同一办法(外形坐标表)表示,所以我们只要把翼型外形坐标表找到,这种翼型的形状便完全决定了。某翼型坐标见表3-1。

航模制作(图)全过程

最近看到有几架可爱的自製小飞机(翼展大慨只有60CM),珍珠版翼面,370马达直驱(有红色散热片),速度非常快,据说飞起来非常稳定,抗风性又佳,便宜又简易,自己也想DIY 一下,不知各位是否有设计图,或是把照片POST上来,以造福飞友 本帖是关于遥控飞机制作原理方面的知识,如果您需要模型飞机图纸及制作资料,可以在本版块(模型图纸)查找,这里向您提供上万张的遥控飞机制作图纸及大量的制作资料。 主翼使用1mm珍珠板及5x8mm木条製成,机身与安定面為3mm珍珠板,全配重约220~230g 300直驱马达+4025桨(也可使用4040桨,很猛但也很伤电池)+7.4V 1800 mA鋰电 DIY小飞机製作 目前作品概述: 机身长度:35cm 机翼:宽10cm 长45cm 全配重:225g 马达:350 桨:4x2.5 电池:7.4 1800 速度概况:极佳 无动力滑翔降落:平稳

马达是用束带直接绑在木棒上 电池由下方放入 照片二 1. 1mm珍珠版 2.肋版间隔5CM,肋版下面使用双面胶,上面使用速乾型保丽龙胶(可用环氧树脂) 3.下面加3mm炭纤棒,以(可使用木条代替) 4.下缘使用1mm巴尔沙木加双面胶带。

原机的副翼控制是装在上方,我改為下方 这是完成后的图片 看看多重 全配约45g

此机「蚊子60」个人认為不太适合初学者。 製作机身 1.接合部份使用双面胶带 2.使用有顏色的「四*胶带」补强及造型 3.放电池的地方加投影片补强 机身组合完成

1.马达使用束带绑住 2.控製為升降及副翼 3.马达有下偏角 完成了! 1.蚊子机身 2.蚊子机翼 3.蚊子发射机 这样小小一台,走到那里带到那里!又不容易被发现 组合起来的样子

航模无刷电机调速器说明书

航模无刷电机调速器说明书 尊敬的用户:感谢您使用飞盈佳乐有限公司设计、制造的航模无刷马达智能动力控制器(ESC)。因本产品在启动使用时产生的功率强大,错误的使用及操作可能造成人身伤害和设备损坏,我们强烈建议客户在使用本产品前仔细阅读本使用手册,严格按操作规定使用。我们不承担因使用本产品而引起的的任何责任,包括但不限于附带损失或者间接损失的赔偿责任。同时,不承担使用人擅自拆装及修改本产品引起的任何责任和因第三方产品所造成的任何责任。 我们有权不预先通知变更产品,包括外观,性能参数及使用要求;对本产品是否适合使用者特定用途不作任何保证、申明或承诺。 一、航模无刷电机控制器主要特性: ●采用功能强大、高性能MCU处理器,用户可以针对自身需求设置使用功能,充分体现我们产品独具优势的智能特点 ●支持无刷电机无限制最高转速 ●支持定速功能。 ●精心的电路设计,抗干扰性超强 ●启动方式可设置,油门响应速度快,并具有非常平稳的调速线性,兼容固定翼飞机及直升飞机。 ●低压保护阀值可设置 ●内置SBEC,带舵机负载功率大 ●具备多种保护功能:输入电压异常保护/电池低压保护/过热保护/油门信号丢失降功率保护 ●通电安全性能好:接通电源时无论遥控器油门拉杆在任何位置不会立即启动电机 ●过温保护:控制器工作时温度到达120℃时功率输出会自动降低一半,低于120℃时功率输出自动恢复 ●兼容所有遥控器操作设置和支持编程卡设置 ●设置报警音判断通电后工作情况 ●本公司对此产品具备完整知识产权,产品可持续升级更新。并可根据客户的需求量身定制产品。 调速器产品规格 1)OPTO调速器没有内置BEC, 工作时需单独给舵机、接收机供电 2)S BEC调速器,给舵机供电是开关电源模式,输出电压5.5V,舵机可以带4A负载,瞬间2秒可达8A 3)UBEC调速器,给舵机供电是线性电源模式

翼型航模DIY基础知识

翼型航模DIY基础知识

翼型航模DIY基础知识 机翼 机翼是模型飞机产生升力的主要部件。模型飞机性能的好坏往往决定于机翼的好坏,良好的机翼应该能产生很大的升力和很小的阻力,并有足够的强度和刚性,不容易变形而且容易制作。决定机翼产生升力大小的因素很多,与机翼面积、速度等直接有关,不过这些因素往往不能够或不便于改变,譬如空气密度,我们不能改变;机翼两积、通常受到比赛规则的限制;飞行速度不容易控制,而且对竞时的模型飞机来说,速度愈小愈好。这样一来,要想增大升力只能从增大升力系数着想了。在减小机翼阻力方面也是这样,主要是设法减小机翼产生的阻力系数。决定机翼升力系数及阻力系数的是机翼截面形状(即翼型)、机翼平面形状和当时的迎角。好的翼型能够在同样的迎角下有较大的升力系数和较小的阻力系数,这两种系数的比值(称升阻比)可达到18以上。 一、翼型 翼型就是 机翼的截面形 状。现代模型飞 机所用的翼型 一般可分为六类:平凸型、对称型、凹凸型、双凸型、S型和特种型,如图3-1所示。这六种翼型各有各的特

点,每种翼型一般能符合某几种模型飞机的要求。 翼型各 部分的名称 如图3-2所 示。其中影 响翼型性能 最大的是中 弧线(或中线)的形状、翼型的厚度和翼型厚度的分布。中弧线是翼型上弧线与下弧线之间的距离中点的连线。如果中弧线是一根直线与翼弦重合,那就表示这个翼型上表面和下表面的弯曲情况完全一样,这种翼型称为对称翼型。普通翼型中弧线总是向上弯的,S翼型的中弧线成横放的S形。 要表示翼型的厚度、中弧线的弯曲度和翼型最高点在什么地方等通常不用长度计算,因为各种大小不同的飞机都可以用同样的翼型。翼型形状如用具体长度表示,在设计计算时很不方便,现在的翼型资料对这些长度都用百分数表示,不用厘米或米来计算,基准长度是翼弦,例如翼型厚度是1.2厘米,弦长10厘米,那么翼型厚度用(1.2/10)来表示,即翼型厚度是翼弦的12%。这样的表示方法很方便,不管用在大飞机或小飞机上,这种翼型的厚度始终是12%。大家只要牢记基准长度是弦长便可以很容易算出实际的翼型厚度来,此外计算前后距离也

航模飞机设计基础知识

第一步,整体设计 1、确定翼型 我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不小,这种机翼主要用在像真机上。翼梢的处理。由于机翼下面的压力大于机翼上面的压力,在翼梢处,从下到上就形成了涡流,这种涡流在翼梢处产生诱导阻力,使升力和发动机功率都会受到损失。为了减少翼梢涡流的影响,人们采取改变翼梢形状的办法来解决它。 2、确定机翼的面积 模型飞机能不能飞起来,好不好飞,起飞降落速度快不快,翼载荷非常重要。一般讲,滑翔机的翼载荷在35克/平方分米以下,普通固定翼飞机的翼载荷为35-100克/平方分米,像真机的翼载荷在100克/平方分米,甚至更多。还有,普通固定翼飞机的展弦比应在5-6之间。确定副翼的面积机翼的尺寸确定后,就

航空模型发动机完全手册范本

航空模型发动机完全手册 前言 目前,航空模型上采用的动力装置主要有:橡筋条、活塞式发动机、喷气式发动机、电动式发动机和压缩气体发动机等数种。其中活塞式发动机按照混合气着火方法分为:压缩燃烧式(压燃式)、电热式(热火栓式)和电火花点燃式三种。 本书主要介绍在我国使用较广的压燃式发动机。最后在附录中简要介绍一下电热式和电火花点燃式发动机。 活塞式航空模型发动机是一种小型燃机,一般称为小发动机。它的基本组成部分和工作原理,与中学物理书上介绍的燃机(包括柴油机和汽油机)大体相同,也和日常见到的手扶拖拉机、摩托车或汽车上使用的发动机大体相同,不过要简单得多。小发动机的体积虽然很小,并且只有一、二十个零件,但它已经是一种精密机器了,必须很仔细地科学地去学习它和使用它。 航模爱好者在使用小发动机的过程中,要注意理论联系实际,将书本上学到的有关发动机的基本知识,运用到具体实践中去。要学懂小发动机的工作原理、燃料组成、起动步骤和调整方法,学会怎样排除故障,并注意养成正确的操作方法,为今后在农业机械化运动中,或在工矿和科学试验等工作中,更好地学习和运用各种机械设备打下良好的基础。 一构造和原理 (一)小发动机的构造: 图1是轴进气压燃式小发动机的解剖图。现将它的各个零件和功用分别说明如下: 1.气缸和活塞——气缸是燃料和空气的混合气体进行燃烧的地方,也是将燃料燃烧后放出来的热能转换为机械能的地方。气缸呈圆筒形,表面非常光滑,近似镜面。气缸的混合气体燃烧膨胀时,产生很高的压力,作用在活塞顶上,推动活塞向下运动;经过曲轴连杆机构,使曲轴转动并带动螺旋桨旋转,产生拉力使飞机前进。发动机转动时,活塞以很高的速度在气缸中来回运动。气缸壁上开有排气口和转气口等配气孔。活塞在气缸往复运动时,同时控制了排气口和转气口等配气孔的开闭。 气缸和活塞是小发动机上最主要也是最精密的零件,它们之间的配合非常精确,以保证密封和压缩性能。如果使用不当,或让灰沙等脏物进入气缸部,那就会使气缸和活塞很快磨损,影响密封性能,造成发动机转速下降,甚至不能起动等不良后果。 活塞在气缸来回运动时,由于受到曲臂长度的限制,有两个极限位置。活塞能达到的最高位置,即距曲轴旋转中心最远的位置,叫做上止点;最低的位置,叫做下止点(图2)。活塞从上止点移动到下止点(或从下止点移动到上止点)所经过的路程,也就是上止点至下止点之间的距离,叫做活塞行程(冲程)。当活塞在上止点时,由活塞顶面、反活塞的下表面和气缸周围侧壁所包含的容积,叫做燃烧室容积。活塞在下止点时,由活塞、反活塞和气

航模基础知识介绍

航模基础知识介绍一一航模培训理论课 航模概念:在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器”。1什么叫飞机模型 一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。2、什么叫模型飞机 般称能在空中飞行的模型为模型飞机,叫航空模型。 航模飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架、发动机和控制系统六部分组成。 1机翼------- 是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧稳定。 2、尾翼----- 包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰稳 定,垂直尾翼保持模型飞机飞行时的方向稳定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。也有模型飞机使用V型尾翼,需要 混合控制,一般航模遥控器都有此功能。两片向外倾斜的尾翼联合控制方向舵与升降舵。最特殊的情况是机翼采用S翼型的无动力滑翔机,这类机只有垂直尾翼而没有水平尾翼。 3、机身----- 将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架------ 供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面各一个起落架叫前三点式,前部两面各一个起落架,后面一个起落架叫后三点式。 5、发动机------ 它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、 活塞式发动机、涡轮喷气式发动机、电动机。较少使用的有:脉冲喷气发动机(重量大,油耗大)、转子发动机(只有OS的一款)空气发动机(上世纪70年代用于室内模型与活塞 发动机类似。 6、太阳能板及各类电池也可作为模型飞机的动力来源。

航模制作材料工具篇修订稿

航模制作材料工具篇集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

材料工具篇 DIY飞机除了设备,当然还需要一些材料和工具,有很多工具吃唾手可得,比如刀子。可像KT板之类的,恐怕一般家庭都没有吧。 1、KT板 这个是做KT材质飞机的主要材料,用KT做飞机,一是材料好找,二是便宜,三是对图纸手功均要求不高。如果做轻木之类的飞机要求就要高多了。 KT板大陆卖的主要有两种规格:240CM*120CM和240CM*90CM,厚度在4MM-5MM左右。3MM的是很难找的,1MM 的更别想了。颜色通常是白色,也有黑色和红色及其它颜色。价格都不贵,因地而异,我们这里240*90 CM的卖的是7元。搞广告的小公司,或者批发广告材料的地方一般都有卖的。 DIY KT机,一般使用5MM的居多,但对于重量要求较高的飞机,比如F3P,就要求使用3MM的了。机翼部分由于需要弯折,3MM的也大有用处,由于3MM的不好找,可以使用热切割5MM板。 2、粘胶类 由于KT板的材质的原因,502,AB胶统统不能用于粘接KT板,万能胶好像也不行。最好的是泡沫胶。10元 1KG,黄黄的。超便宜而且比较快。涂抹粘接面等10分钟左右就可以进行粘接。这个初粘性相当好。粘牢了比KT板还牢固。不过这个家伙不好买,我逛遍整个我们这个小县城,才找到。网上有5元左右的泡沫快干胶,不过只是很小一瓶。从性价比来说,贵了一点。小布丁说851好用,我也没找到过。还有人说有种树脂型的AB胶也可以,不过慢,我也没找到过。还有就是要记得买热熔胶枪加胶棒,TAOBAO上低至元一把,20W的。我买是18元的60W的。粘KT板要想快就得用这个。不过热熔胶重,我称了一下,一支大概就有20g。 3、切割设备 把KT板切开需要切割设备,常用的是美工刀,便宜的2元一把,贵的不过10来元。当然也可以用其它的刀子,只要好用。原则是要薄,要快。 另外可以做个热切割,这个切割泡沫时特别有用。方法搜下论坛,有用电铭铁,有用电脑电源加吉它弦做的。我是用电源适配器加吉它2弦做的(吉它2弦的价格一般都是2元)。 4、碳素杆 这个主要是做机加强用的,去渔具店买吧,我是在渔具店一下用20元买的15根,粗细都有。粗得可以做尾杆,细的做机翼加强和连杆。要这个不要竹签,是因为它强度高,而且轻。当然如果没有,恰当使用竹子也不错。 做机篇 设备回来了,可以做机了。刚入魔,大部人刚开始都认为,做飞机不难,飞飞机也不难。两个月前,我也是这么想的。实际上,都不是你认为的那么简单,当然也不是你想像中的那么难。

航模社团教案

航模制作教案 航模制作属于手、脑并用的综合性劳动教育技术。本项目所使用的材料是木条、木板和木片,其比例是依据飞机的比例缩小而制作的。以其知识性、实践性、趣味性深受参训学生的喜爱。 学情分析 本活动主要针对初一、初二学生。处于这个年龄段的学生正值喜欢探索事物,勇于挑战,愿意动手,他们同时也具备了一定的知识能力,但缺少展现自我和动手制作的机会。另外,随着人类航天事业的发展,越来越多的学生开始感兴趣于航天事业,针对学生这些特点,我们开设这项活动。 活动目标 ⑴简要介绍飞机发展史和认真分析飞机基本构造。 ⑵通过测量分析图形增强学生的识图能力,在动手操作中锻炼其动手能力,通过放飞,培养学生发现问题和解决问题的能力。 ⑶激发兴趣,培养合作精神。 活动方式 教、学相互交流探讨,学生分组合作。 活动重点、难点 重点:机翼的打磨及固定位置 难点:机翼打磨的程度 活动材料、工具 木条、木板、木片、锯、铅笔、锉、钢尺、砂纸、美工刀、101胶水。 材料工具图 活动过程组织设计

情境导入→了解原理→动手制作→放飞→总结 一、情境导入 教师讲解飞机发明人(莱特兄弟)的小故事,然后请学生谈谈感想? 教师思考:利用古人发明飞机的故事,激发学生在当前情况下,想要创作的激情,培养他们的挑战精神,使他们在目标驱动下更好的进行学习。二、了解原理 教师引导学生观察鸟飞行图,请学生分析其结构特征。然后再引导学生观察航模示意图,并分析其机构,两者对比分析,更明确飞机的基本组成部分:机身、机翼、尾翼(包括水平尾翼和垂直尾翼)。 鸟空中飞行图 翘翼航模示意图 总结各部分的作用: 机身:固定连接机翼、尾翼和起到承载作用 机翼:为飞行提供动力 尾翼:控制飞机飞行方向和保持飞机飞行平衡

航模的基本原理和基本知识

一、航空模型的基本原理与基本知识 1)航空模型空气动力学原理 1、力的平衡 飞行中的飞机要求手里平衡,才能平稳的飞行。如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称x及y方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。 图1-1 飞机会偏航、Z 图 2 在这里当然是指空气,设法使机翼上部空气流速较快,静压 1-3﹞,于是机翼就被往上 一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。? 图1-3 图1-4 图1-5 3、翼型的种类

1全对称翼:上下弧线均凸且对称。 2半对称翼:上下弧线均凸但不对称。 3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。 4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。 5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。 基本航模的翼型选测规律: 2厚的翼型阻力大,但不易失速。 6 4、飞行中的阻力 一架飞行中飞机阻力可分成四大类: 1磨擦阻力:空气分子与飞机磨擦产生的阻力,这是最容易理解的阻力但不很重要,只占总阻力的一小部分,当然为减少磨擦阻力还是尽量把飞机磨光。 2形状阻力:物体前后压力差引起的阻力,平常汽车广告所说的风阻系数就是指形状阻力系数﹝如图3-3﹞,飞机做得越流线形,形状阻力就越小,尖锥状的物体形状阻力不见得最小,反而是有一点钝头的物体阻力小,读者如果有机会看到油轮船头水底下那部分,你会看到一个大

中学生综合素质等级评价操作说明

郴州亚星学校学生综合素质评价 操作说明 初中学生综合素质评价是学生初中阶段发展的综合评价,其意义不仅在于评价学生的综合素质,促进学生全面发展,还在于通过对学生的评价完善教师的教学行为,促使教育教学质量的全面提高。综合素质评价是一项艰巨的、繁琐的工作,需要教师们具有足够的耐心和细心。下面是关于操作程序和评价细则的一些说明,希望对学校的具体操作有所帮助。 一、评价内容和结果呈现 六个维度(15个评价要素,38项主要表现):道德品质、公民素养、学习能力、合作与交流、审美与表现、运动与健康状况。评价结果以优、良、合格和不合格四个等级呈现,分别用A、B、C、D表示。 二、评价过程 学生自评——学生小组互评(同学互评)——教师小组评价(师评)——学校评价工作委员会审查、认定、签字——家长、学生认定签字。 三、评价前的准备 1、各方面的荣誉实证材料,小制作、艺术作品,活动记录,学习计划、总结、反思材料,作业本,校本课程学习考勤记录等。 2、《中学生成长记录册》由各县(市、区)自行制作,内容包含有:每期获奖情况、期末评语、各科学习期中和期末成绩等级、各科学习日常表现情况、社会实践活动参与情况、道德品质表现与公益活动参加情况、学生体质健康状况等。 3、自我评价报告。

四、操作说明 (一)自评 1、完成初中阶段的自我评价报告。学生根据六个维度的主要表现,搜集并整理相关资料,写出初中阶段自我评价报告,记入成长记录册。自我评价报告将作为同学互评和师评的依据之一。 2、自评过程:学生对照六个维度和评价标准逐项列出有关实证材料,并写上相应的评价等级。如“道德品质”一项,若某学生是下列情况:①活动参与率约98%;②两次评为“优秀学生干部”,一次评为“学雷锋标兵”;③《记录册》评价均为“优”。将上述情况在“实证材料”一栏中写明,然后在“评价结果”的“自评”栏中写上“A”。其它维度的评价同样。逐项评出等级。 (二)互评 1、小组成员:同学互评小组必须由8人组成,小组成员由抽签确定。每组推举一名组长负责组织和记录。互评时当事人回避。互评所列条件必须同时具备,经小组评议得出互评结果。 2、互评过程:①以主要表现、评价标准和实证材料为依据,依次对评价对象的六个维度逐项进行评价;②根据“评价标准”中的“同伴互评结果”控制条件,统一确定评价对象某维度最后的互评等级,填入“互评”栏右边的空格内。其它维度的评价同样,逐项评出等级。 (三)师评 1、小组成员及职责:①各班教师评价小组由该班班主任和四名科任教师组成(最好有英语教师、音体美教师代表、理化生教师代表、语政史地教师代表)。班主任任组长。②师评小组负责审核学生的实证材料,对全班学生进行综合素质等级评价并写出综合性评语。 2、评价过程:①以学生互评小组为单位,每次评价8人。②以评价标准、实证材料和学生的日常表现为依据,对互评小组成员逐一

第一讲航模基础知识

第一讲航模基础知识 什么叫航空模型 在国际航联制定的竞赛规则里明确规定“航空模 型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。其技术要求是: 最大飞行重量同燃料在内为五千克; 最大升力面积一百五十平方分米; 最大的翼载荷100 克/ 平方分米; 活塞式发动机最大工作容积10 亳升。 1、什么叫飞机模型 般认为不能飞行的,以某种飞机的实际尺寸按 一定比例制作的模型叫飞机模型。 2、什么叫模型飞机 般称能在空中飞行的模型为模型飞机,叫航空 模型。 二、模型飞机的组成 模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。 1、机翼——是模型飞机在飞行时产生升力的装 置,并能保持模型飞机飞机飞行时的横侧安定。

2、尾翼——包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。 3、机身——将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架——供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。 5、发动机——它是模型飞机产生飞行动力的装 置。模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 三、航空模型技术常用术语 1、翼展——机翼(尾翼)左右翼尖间的直线距离。 穿过机身部分也计算在内)。 2、机身全长——模型飞机最前端到最末端的直线

航模的基本原理和基本知识

航模的基本原理和基本 知识 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

一、航空模型的基本原理与基本知识 1)航空模型空气动力学原理 1、力的平衡 飞行中的飞机要求手里平衡,才能平稳的飞行。如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称 x 及 y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。 图1-1 弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。 图1-2 2、伯努利定律 伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力越小,速度越小,静压力越大,流体一般是指空气或水,在这里当然是指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,静压力较大,两边互相较力﹝如图1-3﹞,于是机翼就被往上推去,然后飞机就飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应

在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。 图1-3 图1-4 图1-5 3、翼型的种类 1全对称翼:上下弧线均凸且对称。 2半对称翼:上下弧线均凸但不对称。 3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y 翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。 4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。 5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。 基本航模的翼型选测规律: 1薄的翼型阻力小,但不适合高攻角飞行,适合高速机。 2厚的翼型阻力大,但不易失速。

小学生简易航空模型的制作

简易航空模型的制作 从人类诞生以来,一直都有一个梦,梦想着能像鸟儿一样飞翔。人类为此伤透了脑筋:为什么鸟儿有翅膀就能飞上天空,人类却不能。为此,我们的祖先制作出了种类繁多的风筝、竹晴蜒、孔明灯和木鸟模型。它们在飞机发明的过程中起了重要的作用。经过一代又一代人的努力。人类终于梦想成真了。 1903年,美国莱特兄弟(哥哥威尔伯,弟弟奥维尔)利用汽油发动机制造的“飞行者”号在美国基蒂霍克成功进行了历史上第一次机械动力飞行,12秒钟飞行了36米。此后在第一次世界大战中,飞机的性能得到迅速改善。1927年,美国飞行员林白曾驾驶“圣路易精神号(Spirit of Saint Louis)”成功飞越纽约和巴黎之间的大西洋,连续飞行5809公里,飞行时间为33小时50分钟。 但是,我国在航空同工业发达的国家相比,还有不少差距。开展航空模型小制作活动,可以使学生了解我国航空发展的历史和现状,激发学生从小立志献身于祖国的航空事业,为四化建设作出贡献。 航空模型的制作需要运用许多的科学知识,通过模型的制作,可以启发学生运用所学知识勇于实践,培养动手能力和创造能力。 初级橡筋动力模型飞机 初级橡筋动力模型飞机是一个比较典型的传统普及项目。通过制作、放飞初级橡筋动力模型飞机,可以对带有动力的自由飞项目有一个初步了解,为进一步学习制作复杂的模型飞机打下一个扎实的基础,是在初级模型滑翔机的基础上学习的延伸。下面让我们来做一架初级橡筋动力模型飞机. 第一节飞机的制作 一、材料工具: 一套初级橡筋动力模型飞机材料。砂纸板、壁纸刀、尖嘴钳、铅笔、尺子、透明胶带、双面胶带、模型快干胶(白乳胶、502胶水均可)。 二、制作过程: 1、制作机翼: 将吹塑纸按图示尺寸裁出左右机翼

遥控电动固定翼入门手册无水印

遥控电动固定翼 ——入门教程 任伟著

目录 前言 (3) 第1讲飞机为什么会飞 (4) 1.1飞机的组成部分 (4) 1.2飞机的组成部分 (7) 第2讲什么是航模 (10) 2.1航空模型运动 (10) 2.2航空运动 (10) 2.3航模 (10) 第3讲航模部件解析 (13) 3.1遥控器 (13) 3.2电机及桨 (14) 3.3电调 (16) 3.4舵机 (17) 3.5锂电池 (18) 3.5其他配件 (19) 第4讲kt板遥控纸飞机制作 (20) 4.1工具、材料及配件 (20) 4.2画图、裁板 (21) 4.3制作副翼 (22) 4.4喷漆上色 (23) 4.5组装模型 (24) 4.6装配件 (26) 4.7对码、调试 (29) 第5讲固定翼练习机制作 (31) 5.1工具、材料及配件 (31) 5.2认识图纸 (31) 5.3各部件的制作 (31) 第6讲飞行基础训练 (43) 6.1模拟飞行训练 (43) 6.1.1软件的安装和设置 (43) 6.1.2飞行操作方法 (47) 6.2实践训练 (49)

前言 当前国内的航模运动日趋普遍,随着航模的个人玩家和各类组织增多,相应的各类航模比赛也随之增多。针对青少年的全国比赛有全国青少年航模锦标赛、“飞向北京-飞行太空”全国青少年航空航天模型教育竞赛等,对应的各省、市也会有各类选拔赛,这些比赛都是教育行政部门认可的。加之航模比赛历经24年再次加入全运会,更进一步推动了航模运动的发展。 目前全国各地级市以上城市的大部分中小学及大学都有开始航模社团或者航模兴趣小组,以培养学生对于航空航天的兴趣,及动手能力和创新能力。而在县级的中小学就很少有关于航模的社团或者兴趣小组,个别小学只有一些基础的航模类器材应付上级检查。在我省(陕西省)只有个别县比较重视航模的发展,笔者所在的渭南市大荔县也只有同州中学有航模社团,虽然成立时间短,但是在校长及负责领导的大力支持下发展迅速,已在省赛中获奖。 航模运动对于学生的发展意义重大,在应试教育的阴霾暂未散去的情况下,航模的制作和操纵无疑是培养学生的人生规划意识、创新意识和动手能力最好的方式之一。很多学校或者家长可能认为学习航模对上高中、上大学没有用处,其实不然,很多高中都招收航模特长生,北航、南航等一些可自主招生航空类大学对航模特长生都有优惠政策,降分最大幅度可达到60分,这也是任何数学、英语类竞赛无法比拟的。 航模运动在县级中小学为什么难以普及?究其原因,总结为三点:一、学校经济紧张,航模的原材料和制作过程都是不断的花钱,虽然学生的模型是学生自己花钱,但是学校的资金投入也不少,并且模型种类繁多,价格上不封顶,选择哪一种还是多种,都是学校需要从经济投入方面考虑的问题。二、学校没有专门负责航模的老师,如果外聘,理由同第一条所述。笔者是在担任物理教师,完成正常课时量的前提下,利用课余时间进行航模训练的。这就需要老师有足够的兴趣,才能坚持下来。三、教育行政部门没有硬性要求。航模运动的推行需要一定的资金,学生花钱就需要和家长沟通,过程过于复杂,教育行政部门难以干涉。很多城市的航模运动也是在一些组织,如航模协会推广到一定能够程度了予以支持,如此就发展起来了。 笔者通过长时间的积累,包括航模制作、试飞、教学以及学生制作和试飞过程发现的问题,最后在考虑到学生家庭经济不宽裕的情况下,确定了两个模型的制作和飞行训练,通过这两个模型的制作和飞行训练,学生已基本掌握模型的制

相关文档
最新文档