导数基本概念及导数的几何意义典型例题解析

导数基本概念及导数的几何意义典型例题解析
导数基本概念及导数的几何意义典型例题解析

导数的概念及几何意义

一、导数的概念

设函数)(x f y =在0x x =_____有定义,当自变量在0x x =处有_________时,则函数)(x f y =相应地有_____________________,如果_________时,_______________________, 即____________________________________________________________

_____________________________________________________________

注意:①

例1.若2)(0='x f ,则_____2)()(lim 000=--→k

x f k x f k 例2.如果函数)(x f y =可导,那么x

f x f x ?-?+→?3)1()1(lim 0的值为_____ A. )1(f ' B. )1(3f ' C.

)1(31f ' D. )3(f ' 例3.设函数)(x f y =可导,满足12)1()1(lim 0-=--→x

x f f x ,则过曲线)(x f y =上的点))1(,1(f 处切线斜率为_____

二、导函数

如果函数)(x f y =在开区间),(b a 内的各点处________,此时,_________________,______________________________,称这个函数)(x f '为函数)(x f y =在开区间内的导函数。 即______________________________________________________

三、导数运算

1.基本函数的导数公式

①C x f =)((C 为常数),则_________;②n x x f =)(,则_____________

③x x f sin )(=,则_______________;④x x f cos )(=,则___________

⑤x a x f =)(,则_______________;⑥x e x f =)(,则___________

⑦x x f a log )(=,则_____________;⑧x x f ln )(=,则___________

2.导数的运算法则

_________________])()([='±x g x f

_______

__________])()([='?x g x f _________________])

()([='x g x f 3.复合函数求导__________________________

例1.求下列函数的导数

①65324+--=x x x y ②x x y sin = ③1

1+-=x x y

④)3

2sin(π+=x y ⑤)3(log 2x y = 例2.已知函数)(x f y =在R 上可导,若函数)4()4()(22x f x f x F -+-=,则_____)2(='F 例3.(10江西)等比数列{}n a 中,4,281==a a ,函数)())(()(821a x a x a x x x f ---= ,则______)0(='f

A. 62

B. 92

C. 122

D. 152

四、导数的几何意义

函数)(x f y =在点))(,(00x f x 处的导数的几何意义是______________________________。 切线方程为______________________________________________

注意:①______________________________________________________________________ ②____________________________________________________________________________ 例:求函数x

y 1=过)0,4(处的切线方程。 ③考点分析_________________________________________________

典型例题:

例1.过点(1,0)作曲线y =e x 的切线,则切线方程为________

例2.(09全国)曲线1

2-=x x y 在点)1,1(处的切线方程为____________________ A. 02=--y x B. 02=-+y x C. 054=-+y x D. 054=--y x 例3.(09全国)设曲线2ax y =在点),1(a 处的切线与直线062=--y x 平行,则a 的值为____

例4.设曲线1

1-+=

x x y 在点)2,3(处的切线与直线01=++y ax 垂直,则a 的值为____ 例5.直线y =kx +b 与曲线y =ax 2+2+ln x 相切于点P (1,4),则b 的值为________. 例6.若曲线f (x )=x sin x +1在x =π2

处的切线与直线ax +2y +1=0互相垂直,则实数a =________.

例7.(09安徽)已知函数)(x f 在R 上满足88)2(2)(2-+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程为______

A. 12-=x y

B. x y =

C. 23-=x y

D. 32+-=x y

例8.(08辽宁)设P 为曲线32:2++=x x y C 上的点,且曲线C 在点P 处切线倾斜角的取值范围为??

????4,0π,则点P 的横坐标为____ A. ??????--21,1 B. []0,1- C. []1,0 D. ??

????1,21 例9.(10辽宁)已知点P 在曲线1

4+=x e y 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围_____

A. ??????4,0π

B. ??????2,4ππ

C. ??? ??43,2ππ

D. ??????ππ,43 例10.(10江苏)函数)0(2>=x x y 的图象在点),(2k k a a 处的切线与x 轴的交点横坐标为1+k a ,其中*∈N k ,若161=a ,则______531=++a a a

例11.(09福建)若曲线x ax x f ln )(2+=存在垂直于y 轴的切线,则实数a 的取值范围是____

例12.点P 是曲线0ln 22=--x y x 上任意一点,则点P 到直线0144=++y x 的最小距离为_________

例13.(07江苏)已知二次函数c bx ax x f ++=2)(的导数为0)0(),(>''f x f ,对任意实数x ,都有0)(≥x f ,则)

0()1(f f '的最小值为_______

高中数学导数的概念、运算及其几何意义练习题

导数的概念、运算及其几何意义 黑龙江 依兰高中 刘 岩 A 组基础达标 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2. 已知函数f ’ (x)=3x 2 , 则f (x)的值一定是( ) A. 3x +x B. 3x C. 3x +c (c 为常数) D. 3x+c (c 为常数) 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f / (x)的图象是( ) 4.下列求导数运算错误.. 的是( ) A. 20122013x 0132c x ='+)( (c 为常数) B. x xlnx 2lnx x 2+=')( C. 2x cosx xsinx x cosx +=')( D . 3ln 33x x =')( 5..已知曲线23ln 4x y x =-的一条切线的斜率为12 ,则切点的横坐标为( ) A . 2 B . 3 C . 12 D .1 填空题: 1.若2012)1(/ =f ,则x f x f x ?-?+→?)1()1(lim 0= ,x f x f x ?--?+→?)1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 2.函数y=(2x -3)2 的导数为 函数y= x -e 的导数为 A x D C x B

导数的计算及其几何意义

导数的计算及其几何意义 一、导数的概念及其几何意义 1.函数的平均变化率: 定义:已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=- 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-,则当0x ?≠时,商 00()()f x x f x y x x +?-?=??称 作函数()y f x =在区间00[,]x x x +?(或00[,]x x x +?)的平均变化率. 注意:这里x ?,y ?可为正值,也可为负值.但0x ?≠,y ?可以为0. 2.函数的瞬时变化率、函数的导数: 定义:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-.如果当x ?趋近于0时,平均变化 00()()f x x f x y x x +?-?=??趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作:“当0 x ?→时, 00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '.这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ?→时, 000()() ()f x x f x f x x +?-'→?” 或 “0000 ()() lim ()x f x x f x f x x ? →+?-'=?”. 注:0'()f x 是个数. 3.可导与导函数: 定义:如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构

导数概念及其几何意义

导数概念及其几何意义 1、在函数的平均变化率的定义中,自变量的的增量满足() A .>0 B .<0 C D. =0 2、设函数,当自变量由改变到时,函数值的改变量是() A B C D 3、已知函数的图像上一点(1,2)及邻近一点,则等于() A 2 B 2x C D 2+ 5.函数y=f(x)在x=x0处可导是它在x=x0处连续的() A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 6.在曲线y=2x2-1的图象上取一点(1,1)及邻近一点(1+Δx,1+Δy),则等于() A.4Δx+2Δx2 B.4+2Δx C.4Δx+Δx2 D.4+Δx 7.若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x+y-1=0,则() A.f′(x0)>0 B.f′(x0)<0 C.f′(x0)=0 D.f′(x0)不存在 8.已知命题p:函数y=f(x)的导函数是常数函数;命题q:函数y=f(x)是一次函数,则命题p是命题q的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.设函数f(x)在x0处可导,则等于() A.f′(x0) B.0 C.2f′(x0) D.-2f′(x0) 10.设f(x)=x(1+|x|),则f′(0)等于() A.0 B.1 C.-1 D.不存在 11.若曲线上每一点处的切线都平行于x轴,则此曲线的函数必是______ 函数.(填增、减、常函数) 13.设f(x)在点x处可导,a、b为常数,则=_____. 16.已知曲线y=2x2上一点A(1,2),求(1)点A处的切线的斜率.(2)点A处的切线方程. 17.已知函数f(x)=,试确定a、b的值,使f(x)在x=0处可导.

导数的计算与导数的几何意义高考试题汇编(含答案)

专题三 导数及其应用 第七讲 导数的计算与导数的几何意义 2019年 1.(2019全国Ⅰ文13)曲线2)3(e x y x x =+在点(0,0)处的切线方程为___________. 2.(2019全国Ⅱ文10)曲线y =2sin x +cos x 在点(π,–1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 3.(2019全国三文7)已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则 A .a=e ,b =-1 B .a=e ,b =1 C .a=e -1,b =1 D .a=e -1,1b =- 4.(2019天津文11)曲线cos 2 x y x =- 在点()0,1处的切线方程为__________. 5.(2019江苏11)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的 切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 . 2010-2018年 一、选择题 1.(2018全国卷Ⅰ)设函数32()(1)=+-+f x x a x ax .若()f x 为奇函数,则曲线()=y f x 在点(0,0)处的切线方程为 A .2=-y x B .y x =- C .2=y x D .=y x 2.(2017山东)若函数e ()x f x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单 调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 A .()2 x f x -= B .2 ()f x x = C .()3 x f x -= D .()cos f x x = 3.(2016年山东)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线 互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是 A .sin y x = B .ln y x = C .e x y = D .3y x = 4.(2016年四川)设直线1l ,2l 分别是函数ln ,01 ()ln , 1x x f x x x -<?,图象上点1P ,2P 处

导数练习题含答案

导数概念及其几何意义、导数的运算 一、选择题: 1 已知32 ()32f x ax x =++,若(1)4f '-=,则a 的值等于 A 193 B 103 C 16 3 D 133 2 已知直线1y kx =+与曲线3 y x ax b =++切于点(1,3),则b 的值为 A 3 B -3 C 5 D -5 3 函数2y x a a = +2 ()(x-)的导数为 A 222()x a - B 223()x a + C 223()x a - D 22 2()x a + 4 曲线313y x x =+在点4 (1,)3 处的切线与坐标轴围成的三角形的面积为 A 1 9 B 29 C 13 D 2 3 5 已知二次函数2 y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1) (0) f f '的最小值为 A 3 B 52 C 2 D 32 6 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B ()2(1)f x x =- C 2()2(1)f x x =- D ()1f x x =- 7 下列求导数运算正确的是 A 211()1x x x '+=+ B 21 (log )ln 2 x x '= C 3(3)3log x x e '=? D 2 (cos )2sin x x x x '=- 8 曲线32 153 y x x =-+在1x =处的切线的倾斜角为 A 6 π B 34π C 4π D 3 π 9 曲线3 2 31y x x =-+在点(1,1)-处的切线方程为 A 34y x =- B 32y x =-+ C 43y x =-+ D 45y x =- 10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为

导数练习题(含答案).

3 B 10 3 C 16 3 D 13 = 2 导数概念及其几何意义、导数的运算 一、选择题: 1 已知 f ( x ) = ax 3 + 3x 2 + 2 ,若 f '(-1) = 4 ,则 a 的值等于 A 19 3 2 已知直线 y = kx + 1 与曲线 y = x 3 + ax + b 切于点(1,3),则 b 的值为 A 3 B -3 C 5 D -5 3 函数 y (x + 2a )(x-a ) 的导数为 A 2( x 2 - a 2 ) B 3(x 2 + a 2 ) C 3(x 2 - a 2 ) D 2( x 2 + a 2 ) 1 4 4 曲线 y = x 3 + x 在点 (1, ) 处的切线与坐标轴围成的三角形的面积为 3 3 A 1 2 1 2 B C D 9 9 3 3 5 已知二次函数 y = ax 2 + bx + c 的导数为 f '( x ), f '(0) > 0 ,对于任意实数 x ,有 f ( x ) ≥ 0 ,则 最小值为 f (1) f '(0) 的 A 3 B 5 2 C 2 D 3 2 6 已知函数 f ( x ) 在 x = 1 处的导数为 3,则 f ( x ) 的解析式可能为 A C f ( x ) = ( x -1)2 + 3(x - 1) f ( x ) = 2( x - 1)2 B f ( x ) = 2( x - 1) D f ( x ) = x - 1 7 下列求导数运算正确的是 A 1 1 ( x + )' = 1 + x x 2 B (log x )' = 2 1 x ln 2 C (3x )' = 3x ? log e D ( x 2 cos x )' = -2 x sin x 3 8 曲线 y = A π 6 1 3 x 3 - x 2 + 5 在 x = 1 处的切线的倾斜角为 3π π π B C D 4 4 3 9 曲线 y = x 3 - 3x 2 + 1 在点 (1,-1) 处的切线方程为 A y = 3x - 4 B y = -3x + 2 C y = -4 x + 3 D y = 4 x - 5 10 设函数 y = x sin x + cos x 的图像上的点 ( x , y ) 处的切线斜率为 k ,若 k = g ( x ) ,则函数 k = g ( x ) 的图

(完整版)导数的几何意义(基础练习题)

导数的几何意义(1) 1.设f(x)=1 x ,则lim x→a f x-f a x-a 等于( ) A.-1 a B. 2 a C.-1 a2 D. 1 a2 2.在曲线y=x2上切线倾斜角为π 4 的点是( ) A.(0,0) B.(2,4) C.(1 4 , 1 16 ) D.( 1 2 , 1 4 ) 3.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a=( ) A.1 B.1 2 C.-1 2 D.-1 4.若曲线y=h(x)在点P(a,h(a))处切线方程为2x+y+1=0,则( ) A.h′(a)<0 B.h′(a)>0 C.h′(a)=0 D.h′(a)的符号不定 5.一木块沿某一斜面自由下滑,测得下滑的水平距离s与时间t 之间的函数关系为s=1 8 t2,则当t=2时,此木块在水平方向的瞬时速

度为( ) A. 2 B. 1 C.12 D.14 6.函数f (x )=-2x 2+3在点(0,3)处的导数是________. 7.如图是函数f (x )及f (x )在点P 处切线的图像,则f (2)+f ′(2)=________. 8.设曲线y =x 2在点P 处的切线斜率为3,则点P 的坐标为________. 9.已知曲线y =2x 2上的点(1,2),求过该点且与过该点的切线垂直的直线方程. 10.求双曲线y =1 x 在点(1 2 ,2)处的切线的斜率,并写出切线方程.

导数的几何意义(2) 1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那 么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0 D .f ′(x 0)不存在 2.函数在处的切线斜率为( ) A .0 B 。1 C 。2 D 。3 3.曲线y =12x 2-2在点? ? ???1,-32处切线的倾斜角为( ) A .1 B. π4 C.5 4 π D .- π 4 4.在曲线y =x 2上切线的倾斜角为 π 4 的点是( ) A .(0,0) B .(2,4) C.? ?? ?? 14,116 D.? ?? ??12,14 5.设f (x )为可导函数,且满足lim x →0 f (1)-f (1-2x ) 2x =-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( ) A .2 B .-1 C .1 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

导数的概念及其几何意义教案

§2 导数的概念及其几何意义 第四课时 导数的几何意义习题课 一、教学目标:会利用导数的几何意义求曲线上某点处的切线方程。 二、教学重点:曲线上一点处的切线斜率的求法 教学难点:理解导数的几何意义 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习:导数的几何意义:函数)(x f y =在x 0处的导数就是曲线)(x f y =在点(x 0,)(0x f )处的切线的斜率。 (二)、探究新课 例1、在曲线34x y =上求一点P 使得曲线在该点处的切线满足下列条件: (1)平行于直线y =x +1; (2)垂直于直线2x -16y +1=0; (3)倾斜角为135°。 解:设点坐标为(0x ,0y ),则 202002020202020) (48)()(484)(4x x x x x x x x x x x x x x x x x y ?+?--=??+?-?-=?-?+=?? ∴当Δx 趋于0时,30 400088)(x x x x f -=-='。 (1)∵切线与直线y =x +1平行。 ∴1)(0='x f ,即1830 =-x , ∴20-=x ,10=y 。 即P (―2,1)。 (2)∵切线与直线2x -16y +1=0垂直, ∴1)16 2(·)(0-=--'x f ,即181·830-=-x ,

∴10=x ,40=y 。 即P (―1,4)。 (3)∵切线倾斜角为135°, ∴1135tan )(00-=='x f ,即1830 -=- x , ∴20=x ,10=y 。 即P (2,1)。 例2、求曲线1)(3+==x x f y 过(1,1)点的切线的斜率。 解:设过(1,1)点的切线与13+=x y 相切与点)1,(300+x x P ,则 2020320203030)(33)()(33)1(1)(x x x x x x x x x x x x x x x y ?+?+=??+?+?=?+-+?+=?? 当Δx 趋于0时, 2003)(x x f =', 由导数的几何意义可知,曲线在点P 处的切线的斜率为203x k = ① 又过(1,1)点的切线的斜率1 11030--+=x x k ② ∴由①②得:130302 -=x x x 解得:00=x 或230=x ,∴0=k 或427=k , ∴曲线13+=x y 过(1,1)点的切线的斜率为0或427。 例3、如图,它表示跳水运动中高度随时间变化的函数 2() 4.9 6.510h x x x =-++,根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况. 解:我们用曲线()h t 在0t 、1t 、2t 处的切线,刻画曲线()h t 在上述三个时刻附近的变化情况. (1) 当0t t =时,曲线()h t 在0t 处的切线0l 平行于x 轴,所以,在0t t =附近曲线 比较平坦,几乎没有升降. (2) 当1t t =时,曲线()h t 在1t 处的切线1l 的斜率1()0h t '<,所以,在1t t =附近

导数的概念、运算及几何意义

导数的概率、运算以及几何意义 1.函数的平均变化率: 一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=-, 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-, 则当0x ?≠时,商00()()f x x f x y x x +?-?= ??称作函数()y f x =在区间[,]x x x +?(或00[,]x x x +?)上的平均变化率.2.函数的瞬时变化率、函数的导数: 设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-. 如果当x ?趋近于0时,平均变化率 00()() f x x f x y x x +?-?= ??趋近于一个常数,那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作: “当0x ?→时,00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→” 读作“趋近于”. 函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作 “当0x ?→时,000()()()f x x f x f x x +?-'→?”或“0000()() lim ()x f x x f x f x x ?→+?-'=?”. 考点1: 导数的定义【铺垫】求下列函数在区间[]22x +?,和[]33x +?,上的平均变化率 ①()f x x = ②2()f x x = 【例1】 平均变化率与瞬时变化率 ⑴ 求下列函数在区间00[]x x x +?,上的平均变化率. ① ()f x x = ② 2()f x x = ③ 3()f x x = ④1 ()f x x = ⑤ ()f x ⑵ 求下列函数分别在1x =,2x =和3x =处的瞬时变化率. ① ()f x x = ② 2()f x x = ③ 3()f x x =④1 ()f x x =⑤()f x 【追问】从瞬时变化率角度分析每个函数的整体变化趋势,我们可以很明显的看出 对于一次函数,二次函数,三次函数来说,次数越高,往后变化越快. 【总结】由例1⑵看出一次函数的增长速度不变,二次函数三次函数的增长速度越来越快, 提高班学案1 【拓1】 求函数3()2f x x x =-在[]11x +?,上附近的平均变化率,在1x =处的瞬时变化率与 导数.

最新导数的概念及其几何意义同步练习题

导数的概念及其几何意义 1 一、选择题 2 1. 21y x =+在(1,2)内的平均变化率为( ) 3 A .3 B .2 C .1 D .0 4 2. 质点运动动规律23s t =+,则在时间(3,3)t +?中,相应的平均速度为( ) 5 A .6t +? B .9 6t t +?+ ? C .3t +? D .9t +? 6 3. 函数y =f (x )的自变量x 由x 0改变到x 0+⊿x 时,函数值的改变量⊿y 为() 7 A.f (x 0+⊿x ) B.f (x 0)+⊿x C. f (x 0)?⊿x D. f (x 0+⊿x )- f (x 0) 8 4.已知函数y =f (x )=2x 2-1的图像上一点(1,1)及邻近一点(1+⊿x ,1+⊿y ),则等于( ) 9 A.4 B.4x C.4+2⊿x D.4+2(⊿x )2 10 5. 一质点运动的方程为s =5-3t 2,则在时间[1,1+Δt ]内相应的平均速度为( ) 11 A. 3Δt +6 B. -3Δt +6 C. 3Δt -6 D. -3Δt -6 12 6.若函数y =f (x )在x 0处可导,则0 00 ()() lim h f x h f x h 的值( ) 13 A.与x 0,h 有关 B.仅与x 0有关,而与h 无关 C. 仅与h 有关,而与x 0无关 D. 与x 0,h 14 都无关 15 7. 函数y =x +1 x 在x =1处的导数是( ) 16 A.2 B.1 C.0 D.-1 17 8.设函数f (x )=,则()() lim x a f x f a x a 等于( ) 18

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具, 它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展, 同时为后继研究导数的几何意义及应用打下必备的基础, 具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度, 再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型, 并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 )(x f y 的图像,平均变化x y 表示什么?这个思考为研究导数的几何意义埋下 了伏笔。因此,在将瞬时变化率定义为导数之后, 立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数, 掌握求导数的基本步骤,初步学会求解 简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观

导数的几何意义及运算

导数的几何意义及运算复习 一、 导数的几何意义: )(0x f ?=x y ??=x x x x x f x f 0 000)()()(-?+-?+=x f x f x x ?-?+)()(00=K 当Δx----0时, )(0x f ? =K 趋近于一常数 二、 导数的求导公式及运算 典型例题: 例1、当h 无限趋近于0时,h h 4)4(22-+无限趋近于 ;h h 44-+无限趋近于 . 练习:若 )(0x f ?=3,当Δx 无限趋近于0时,x x f x f x x ??--?+)3()(00= . 例2.已知函数y=f(x)的图像在点(1,f(1))处的切线方程是x-2y+1=0,则'(1)2(1)f f += 训练1:已知函数y=f(x)的图像在点(0,f(0))处的切线方程是2x-y+2=0,则'(0)(0)f f += 2.曲线 '2(1) 1().(0)2x f x f x e f e x =-+在点(1,f(1))处的切线方程为 题型二:求切线方程 例3、已知曲线y=3 4313+x , (1)、求曲线在点P (2,4)处的切线方程; (2)、求斜率为4的曲线的切线方程; (3)、求过点P (2,4)的切线方程;

练习1:已知曲线3 y x = (1) 求曲线在点P (1,1)处的切线方程; (2) 求与直线3x-y=0平行的直线方程; (3) 求过点P(1,1)处的直线方程; 练习2:已知kx+1=㏑x 有实数解,求k 的取值范围 题型三:告诉切线方程求参数的值 例4:函数y=12+x a 图像与直线y=x 相切,则a= . 练习: 曲线y= 13++ax x 的一条切线方程为y=2x+1则实数a= 题型四:两个曲线的公切线 例5.若存有过点(1,0)的直线与曲线3y x =和21594 y ax x =+-都相切,则实数a= 例6已知曲线C 1:y=x 2与C 2:y=-)2(2-x ,直线l 与C 1,C 2都相切,求直线l 的方程.

导数的几何意义练习题及答案

【巩固练习】 一、选择题 1.一个物体的运动方程为2 1t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 2.(2014 东昌府区校级二模)若点P 在曲线 323 3(34 y x x x =-++ 上移动,经过点P 的切线的倾斜角 为α ,则角α 的取值范围是( ) A.0,2π?????? B. 20,,23πππ???? ? ????? ?? C. 2,3ππ???? ?? D. 20,,223πππ???? ? ?????? 3. 函数)(x f y =在0x x =处的导数)(0/ x f 的几何意义是( ) A 在点0x x =处的函数值 B 在点))(,(00x f x 处的切线与x 轴所夹锐角的正切值 C 曲线)(x f y =在点))(,(00x f x 处的切线的斜率 D 点))(,(00x f x 与点(0,0)连线的斜率. 4.(2015春 湖北校级期末)已知函数y=3x 4+a ,y=4x 3,若它们的图象有公共点,且在公共点处的切线重合,则切斜线率为( ) A .0 B .12 C .0或12 D .4或1 5.已知函数3 ()f x x =的切线的斜率等于1,则其切线方程有( ) A .1条 B .2条 C .多于2条 D .不确定 6.(2015 上饶三模)定义:如果函数()f x 在[a ,b]上存在x 1,x 2(a <x 1<x 2<b )满足 '1()()()f b f a f x b a -= -,' 2()()()f b f a f x b a -=-,则称函数()f x 在[a ,b]上的“双中值函 数”。已知函数3 2 ()f x x x a =-+是[0,a]上的“双中值函数”,则实数a 的取值范围是

导数的概念及几何意义运算

一、选择题 1.若f ′(x 0)=2,则 f (x 0-k )-f (x 0)2k 等于( ) A .-1 B .-2 C .1 D.12 答案:A 3. 曲线f (x )=x 3+x -2在P 0点处的切线平行于直线y =4x -1, 则P 0点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)或(-1,-4) D .(2,8)或(-1,-4) 解析:设P 0点的坐标为(x 0,y 0),由f (x )=x 3+x -2得:f ′(x )=3x 2+1, 令f ′(x 0)=4,即3x 2 o +1=4得x 0=1或x 0=-1,∴P 0点的坐标为(1,0)或(-1,-4). 答案:C 4.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线 的斜率为( ) A .-15 B .0 C.15 D .5 解析:由已知f ′(x )是R 上以5为周期的奇函数,则f ′(5)=f ′(0)=0. 答案:B 5. 设f (x )在x 0处可导,则 f (x 0+t )-f (x 0-t )t 的值等于________. 答案:2f ′(x 0) 6. 过原点作曲线y =e x 的切线,则切点的坐标为________,切线的斜率为________. 解析:设切点坐标为(x 0,y 0),由y =e x 知y ′=e x ,则y ′|x =x 0=e x 0, ∴y 0x 0=e x 0,即e x 0x 0 =e x 0,则x 0=1,因此切点坐标为(1,e).斜率为e. 答案:(1,e) e 7. 曲线y =x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 所围成的三角形面积为16 , 则a =________. 解析:由y =x 3知y ′=3x 2,则y ′|x =a =3a 2.因此切线方程为y -a 3=3a 2(x -a ) 即y =3a 2x -2a 3,令y =0得:x =2a 3,令x =a 得y =a 3根据已知条件12|a -2a 3|·|a 3|=16 , 解得:a =±1. 答案:±1 1. 函数f (x )=(x +2a )(x -a )2的导数为( )

(完整版)导数的概念及其几何意义同步练习题(学生版)

导数的概念及其几何意义同步练习题 一、选择题 1. 21y x =+在(1,2)内的平均变化率为( ) A .3 B .2 C .1 D .0 2. 质点运动动规律23s t =+,则在时间(3,3)t +?中,相应的平均速度为( ) A .6t +? B .96t t +?+? C .3t +? D .9t +? 3. 函数y =f (x )的自变量x 由x 0改变到x 0+⊿x 时,函数值的改变量⊿y 为( ) A.f (x 0+⊿x ) B.f (x 0)+⊿x C. f (x 0)?⊿x D. f (x 0+⊿x )- f (x 0) 4.已知函数y =f (x )=2x 2-1的图像上一点(1,1)及邻近一点(1+⊿x ,1+⊿y ),则 等于( ) A.4 B.4x C.4+2⊿x D.4+2(⊿x ) 2 5. 一质点运动的方程为s =5-3t 2,则在时间[1,1+Δt ]内相应的平均速度为( ) A. 3Δt +6 B. -3Δt +6 C. 3Δt -6 D. -3Δt -6 6.若函数y =f (x )在x 0处可导,则000()()lim h f x h f x h ?+-的值( ) A.与x 0,h 有关 B.仅与x 0有关,而与h 无关 C. 仅与h 有关,而与x 0无关 D. 与x 0,h 都无关 7. 函数y =x +1x 在x =1处的导数是( ) A.2 B.1 C.0 D.-1 8.设函数f (x )=,则()()lim x a f x f a x a ?--等于( ) A.1a - B.2a C.21a - D.21a 9. 下列各式中正确的是( ) A. y ′|x =x 0=li m Δx →0 f (x -Δx )-f (x 0)Δx B. y ′|x =x 0=li m Δx →0 f (x 0+Δx )+f (x 0)Δx C. f ′(x 0)=li m Δx →0 f (x 0-Δx )-f (x 0)Δx D. f ′(x )=li m Δx →0 f (x 0)-f (x 0-Δx )Δx 10. 设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)3Δx 等于( ) A. f ′(1) B. 不存在 C. 13 f ′(1) D. 以上都不对 11. 设函数f (x )=ax +4,若f ′(1)=2,则a 等于( ) A. 2 B. -2 C. 3 D. 不确定 12. 已知物体的运动方程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( ) A. 194 B. 174 C. 154 D. 134 13.曲线y=2x 2+1在点P (-1,3)处的切线方程是( ) A.y =-4x -1 B.y =-4x -7 C.y =4x -1 D.y =4x -7 14.过点(-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是( ) A.y =2x -1 B.y =2x +1 C.y =2x +4 D .y =2x -4 15. 下面四个命题: ①若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处没有切线; ②若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在; ③若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在; ④曲线的切线和曲线有且只有一个公共点. 其中,真命题个数是( ) A. 0 B. 1 C. 2 D. 3 16. 函数y =f (x )的导函数f ′(x 0)图像如图所示,则在y =f (x )的图像上A 、B 的对应点附近,有( )

8导数的计算及其几何意义 - 难 -讲义

导数的计算及其 几何意义 知识讲解 一、导数的概念及其几何意义 1.函数的平均变化率: 定义:已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=- 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-,则当0x ?≠时,商 00()()f x x f x y x x +?-?=??称 作函数()y f x =在区间00[,]x x x +?(或00[,]x x x +?)的平均变化率. 注意:这里x ?,y ?可为正值,也可为负值.但0x ?≠,y ?可以为0. 2.函数的瞬时变化率、函数的导数: 定义:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-.如果当x ?趋近于0时,平均变化 00()()f x x f x y x x +?-?=??趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作:“当0 x ?→时, 00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '.这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ?→时, 000()() ()f x x f x f x x +?-'→?” 或 “0000 ()() lim ()x f x x f x f x x ? →+?-'=?”. 注:0'()f x 是个数.

导数的概念及导数的几何意义

§57 导数的概念及导数的几何意义⑴ 【考点及要求】了解导数的概念,理解导数的几何意义,通过函数图象能直观地理解导数的几何意义。 【基础知识】 1.一般地,函数)(x f 在区间],[21x x 上的平均变化率为,平均变化率反映了函数在某个区间上平均变化的趋势(变化快慢),或说在某个区间上曲线陡峭的程度; 2.不妨设))(,()),(,(0011x f x Q x f x P ,则割线PQ 的斜率为, 设x 1-x 0=△x ,则x 1 =△x +x 0,∴=PQ k ,当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+=) ()(00无 限趋近点Q 处切线。 3.曲线上任一点(x 0,f(x 0))切线斜率的求法:x x f x x f k ?-?+= ) ()(00,当 △x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的,记为. 4.瞬时速度与瞬时加速度:位移的平均变化率: t t s t t s ?-?+) ()(00,称为;当无限趋近于0 时, t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常数称为t=t 0时的;速度的平均变化率: t t v t t v ?-?+)()(00,当无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这个常数 称为t=t 0时的. 【基础练习】 1.已知函数2()f x ax =在区间[1,2]上的平均变化率为,则()f x 在区间[-2,-1]上的平均变化率为 . 2.A 、B 两船从同一码头同时出发,A 船向北,B 船向东,若A 船的速度为30km/h,B 船的速度为40km/h,设时间为t,则在区间[t 1,t 2]上,A,B 两船间距离变化的平均速度为____ __ _ 【典型例题讲练】 例1.已知函数f(x)=2x+1, ⑴分别计算在区间[-3,-1],[0,5]上函数f(x)的平均变化率; ⑵.探求一次函数y=kx+b 在区间[m ,n]上的平均变化率的特点; 练习:已知函数f(x)=x 2+2x ,分别计算f(x)在下列区间上的平均变化率; ⑴[1,2]; ⑵[3,4]; ⑶[-1,1]; ⑷[2,3] 【课堂检测】 1.求函数()y f x == 在区间[1,1+△x]内的平均变化率

导数的概念和几何意义同步练习题(教师版)

导数的概念和几何意义同步练习题 一、选择题 1.若幂函数()y f x =的图像经过点11(,)42 A ,则它在A 点处的切线方程是( ) A. 4410x y ++= B. 4410x y -+= C .20x y -= D. 20x y += 【答案】B 【解析】试题分析:设()a f x x =,把11(,)42A 代入,得1142a =,得12 a =,所以1 2()f x x ==() f x '= ,1 ()14f '=,所以所求的切线方程为11 24 y x - =-即4410x y -+=,选B.考点:幂函数、曲线的切线. 2.函数()x e x f x cos =的图像在点()()0,0f 处的切线的倾斜角为( ) A 、 4π B 、0 C 、4 3π D 、1 【答案】A 【解析】试题分析:由)sin (cos )('x x e x f x -=,则在点()()0,0f 处的切线的斜率1)0('==f k , 1.利用导数求切线的斜率; 2.直线斜率与倾斜角的关系 3.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 e B.2 2e C.2 4e D.22 e 【答案】D 【解析】试题分析:∵点2 (2)e ,在曲线上,∴切线的斜率'22 2 x x x k y e e --===, ∴切线的方程为2 2 (2)y e e x -=-,即2 2 0e x y e --=,与两坐标轴的交点坐标为2 (0,)e -,(1,0), ∴22 1122 e S e =??=.考点:1.利用导数求切线方程;2.三角形面积公式. 4.函数2 ()f x x =在点(2,(2))f 处的切线方程为( ) A .44y x =- B .44y x =+ C .42y x =+ D .4y = 【答案】A 【解析】 试题分析:由x x f 2)(='得切线的斜率为4)2(='f ,又4)2(=f ,所以切线方程为)2(44-=-x y ,即44-=x y .也可以直接验证得到。考点:导数求法及几何意义 5.曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为( ) (A )() 11,e -- (B )()0,1 (C )()1,e (D )()0,2

相关文档
最新文档