初中数学动点问题专题讲解(简洁版)

初中数学动点问题专题讲解(简洁版)
初中数学动点问题专题讲解(简洁版)

A

B C

D E O l A ′ 中考动点专题

所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.

关键:动中求静.

数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想

注重对几何图形运动变化能力的考查

从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 例1(2005年·)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.

(1)求证: △ADE ∽△AEP.

(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域. (3)当BF=1时,求线段AP 的长.

(二)线动问题

在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E.

(1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长;

(2)若直线l 与AB 相交于点F ,且AO =4

1AC ,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值围;②探索:是否存在这样的x ,以A 为圆心,以-x 4

3长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.

(2)①92+=x AC ,9412+=x AO ,)9(12

12+=x AF ,x x AE 492+=

A 3(2) O

3(1)

∴AF 2

1?=?AE S AEF x x 96)9(22+=,x x x S 96)9(322+-= x

x x S 968127024-+-= (333<

x x ,01=x (舍去),582=x ∵35

82<=x ∴不存在这样的x ,使圆A 与直线l 相切. [类题]09虹口25题.

(三)面动问题

如图,在ABC ?中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .

(1)试求ABC ?的面积;

(2)当边FG 与BC 重合时,求正方形DEFG 的边长;

(3)设x AD =,ABC ?与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;

(4)当BDG ?是等腰三角形时,请直接写出AD 的长.

[题型背景和区分度测量点]

本题改编自新教材九上《相似形》24.5(4)例七,典型的共角相似三角形问题,试题为了形成坡度,在原题的基础上改编出求等腰三角形面积的第一小题,当D 点在AB 边上运动时,正方形DEFG 整体动起来,GF 边落在BC 边上时,恰好和教材中的例题对应,可以说是相似三角形对应的小高比大高=对应的小边比大边,探寻正方形和三角形的重叠部分的面积与线段AD 的关系的函数解析式形成了第三小题,仍然属于面积类习题来设置区分测量点一,用等腰三角形的存在性来设置区分测量点二.

[区分度性小题处理手法]

图3-5图3-4

图3-3

3-1

C C C C C 1.找到三角形与正方形的重叠部分是解决本题的关键,如上图3-1、3-2重叠部分分别为正方形和矩形包括两种情况.

2.正确的抓住等腰三角形的腰与底的分类,如上图3-3、3-4、3-5用方程思想解决.

3.解题的关键是用含x 的代数式表示出相关的线段.

[ 略解]

解:(1)12=?ABC S .

(2)令此时正方形的边长为a ,则446a a -=,解得5

12=a . (3)当20≤x π时, 22253656x x y =??

? ??=,

当52ππx 时, ()2252452455456x x x x y -=-?=

. (4)7

20,1125,73125=AD . [类题] 改编自09奉贤3月考25题,将条件(2)“当点M 、N 分别在边BA 、CA 上时”,去掉,同时加到第(3)题中.

已知:在△ABC 中,AB =AC ,∠B =30o,BC =6,点D 在边BC

上,点E 在线段DC 上,DE =3,△DEF 是等边三角形,边

DF 、EF 与边BA 、CA 分别相交于点M 、N .

(1)求证:△BDM ∽△CEN ;

(2)设BD =x ,△ABC 与△DEF 重叠部分的面积为y ,求y

关于x 的函数解析式,并写出定义域. (3)当点M 、N 分别在边BA 、CA 上时,是否存在点D ,使以M 为圆心, BM 为半径的圆与直线EF 相切,

如果存在,请求出x 的值;如不存在,请说明理由.

例1:已知⊙O 的弦AB 的长等于⊙O 的半径,点C 在⊙O 上变化(不与A 、B )重合,求∠ACB 的大小 .

分析:点C 的变化是否影响∠ACB 的大小的变化呢?我们不妨将点C 改变一下,如何变化呢?可能在优弧AB 上,也可能在劣弧AB 上变化,显然这两者的结果不一样。那么,当点C 在优弧AB 上变化时,∠ACB 所对的弧是劣弧AB ,它的大小为劣弧AB 的一半,因此很自然地想到它的圆心角,连结AO 、BO ,则由于AB=OA=OB ,即三角形ABC 为等边三角形,则∠AOB=600,则由同弧所对的圆心角与圆周角的

关系得出:∠ACB=21

∠AOB=300,

当点C 在劣弧AB 上变化时,∠ACB 所对的弧是优弧AB ,它的大小为优弧AB 的一半,由∠AOB=600得,优弧AB 的度数为3600-600=3000,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=1500,

因此,本题的答案有两个,分别为300或1500.

反思:本题通过点C 在圆上运动的不确定性而引起结果的不唯一性。从而需要分类讨论。这样由点C 的运动变化性而引起的分类讨论在解题中经常出现。

变式1:已知△ABC 是半径为2的圆接三角形,若32=AB ,求∠C 的大小.

本题与例1的区别只是AB 与圆的半径的关系发生了一些变化,其解题方法与上面一致,在三角形AOB

中,232121sin ==∠OB AB AOB ,则06021=∠AOB ,即0120=∠AOB ,

从而当点C 在优弧AB 上变化时,∠C 所对的弧是劣弧AB ,它的大小为劣弧AB 的一半,即0

60=∠C , 当点C 在劣弧AB 上变化时,∠C 所对的弧是优弧AB ,它的大小为优弧AB 的一半,由∠AOB=1200得,优弧AB 的度数为3600-1200=2400,则由同弧所对的圆心角与圆周角的关系得出:∠C=1200,

因此060=∠C 或∠C=1200. A B F D E M N

C

变式2: 如图,半经为1的半圆O 上有两个动点A 、B ,若AB=1,

判断∠AOB 的大小是否会随点A 、B 的变化而变化,若变化,求出变化围,若不变化,求出它的值。 四边形ABCD 的面积的最大值。

解:(1)由于AB=OA=OB ,所以三角形AOB 为等边三角形,则∠AOB=600,即∠AOB 的大小不会随点A 、B 的变化而变化。

(2)四边形ABCD 的面积由三个三角形组成,其中三角形AOB 的面积为43

,而三角

形AOD 与三角形BOC 的面积之和为)(212121BG AF BG OC AF OD +=?+?,又由梯形

的中位线定理得三角形AOD 与三角形BOC 的面积之和EH BG AF =+)(21,要四边形

ABCD 的面积最大,只需EH 最大,显然EH ≤OE=23

,当AB ∥CD 时,EH=OE ,因此

四边形ABCD 的面积最大值为43+23=43

3.

对于本题同学们还可以继续思考:四边形ABCD 的周长的变化围.

变式3: 如图,有一块半圆形的木板,现要把它截成三角形板块.三角形的两个顶点分

别为A 、B ,另一个顶点C 在半圆上,问怎样截取才能使截出的三角形的面积最大?要求说明理由(市2000年考题)

分析:要使三角形ABC 的面积最大,而三角形ABC 的底边AB 为圆的直径为常量,只需AB 边上的高最大即可。过点C 作CD ⊥AB 于点D ,连结CO ,

由于CD ≤CO ,当O 与D 重合,CD=CO ,因此,当CO 与AB 垂直时,即C 为半圆弧

的中点时,其三角形ABC 的面积最大。

本题也可以先猜想,点C 为半圆弧的中点时,三角形ABC 的面积最大,故只需另选一个位置C1(不与C 重合),,证明三角形ABC 的面积大于三角形ABC1的面积即可。如图

显然三角形 ABC1的面积=21AB ×C1D ,而C1D< C1O=CO,则三角形 ABC1的面积=21AB ×C1D<21

AB ×C1O=三角形 ABC 的面积,因此,对于除点C 外的任意点C1,都有三角形 ABC1的面积小于三角形三角形 ABC 的面积,故点C 为半圆中点时,三角形ABC 面积最大.

本题还可研究三角形ABC 的周长何时最大的问题。

提示:利用周长与面积之间的关系。要三角形ABC 的周长最大,AB 为常数,只需AC+BC 最大,而(AC+BC )2=AC2+CB2+2AC ×BC=AB2+4×ΔABC 的面积,因此ΔABC 的面积最大时,AC+BC 最大,从而ΔABC 的周长最大。

从以上一道题及其三个变式的研究我们不难发现,解决动态几何问题的常见方法有:

一、 特殊探路,一般推证

例2:(2004年市中考题第11题)如图,⊙O1和⊙O2切于A ,⊙O1的半径为3,⊙O2的半径为2,

点P 为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C ,PB 切⊙O2于点B ,则PC BP

的值为

(A )2 (B )3 (C )23

(D )26

分析:本题是一道选择题,给出四个答案有且只有一个是正确的,因此可以取一个特殊位置进行研究,

当点P 满足PB ⊥AB 时,可以通过计算得出PB=

221322=- BC ×AP=BP ×AB ,因此 BC=62

4622

88162822==+=+?BP AB BP

AB ,

在三角形BPC 中,PC=

36

222=-BC BP , 所以,PC BP =3选(B ) 当然,本题还可以根据三角形相似得BP AP PC BP =

,即可计算出结论。

作为一道选择题,到此已经完成,但如果是一道解答题,我们得出的结论只是一个特殊情况,还要进一步证明对一般情况也成立。

例3:如图,在等腰直角三角形ABC 中,斜边BC=4,OA ⊥BC 于O,点E 和点F 分别在边AB 、AC 上滑动并保持AE=CF,但点F 不与A 、C 重合,点E 不与B 、A 重合。

判断?OEF 的形状,并加以证明。

判断四边形AEOF 的面积是否随点E 、F 的变化而变化,若变化,求其变化围,若不变化,求它的值. ?AEF 的面积是否随着点E 、F 的变化而变化,若变化,求其变化围,若不变化,求它的值。

分析:本题结论很难发现,先从特殊情况入手。最特殊情况为E 、F 分别为AB 、AC 中点,显然有ΔEOF 为等腰直角三角形。还可发现当点E 与A 无限接近时,点F 与点C 无限接

近,此时ΔEOF 无限接近ΔAOC ,而ΔAOC 为等腰直角三角形,几种特殊情况都可以得出ΔEOF 为等腰直角三角形。一般情况下成立吗?OE 与OF

相等吗?∠EOF 为直角吗?能否证明。如果它们成立,便可以推出三角形OFC 与三角形OEA 全等,一般情况下这两个三角形全等吗?

不难从题目的条件可得:OA=OC ,∠OCF=∠OAE ,而AE=CF ,则ΔOEA

≌ΔOFC ,则OE=OF ,且∠FOC=∠EOA ,所以∠EOF=∠EOA+∠AOF=∠

FOC+∠FOA=900,则∠EOF 为直角,故ΔEOF 为等腰直角三角形。

二、 动手实践,操作确认

例4(2003年市中考试题)在⊙O 中,C 为弧AB 的中点,D 为弧AC 上任一点(与A 、C 不重合),则

(A )AC+CB=AD+DB (B) AC+CB

(C) AC+CB>AD+DB (D) AC+CB 与AD+DB 的大小关系不确定

分析:本题可以通过动手操作一下,度量AC 、CB 、AD 、DB 的长度,可以尝试换几个位置量一量,得出结论(C )

例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和CD 与大圆分别交于点B 、E ,则下列结论中正确的是( * )

(A )AB DE = (B )AB DE >

(C )AB DE <(D )AB DE ,的大小不确定

分析:本题可以通过度量的方法进行,选(B )

本题也可以可以证明得出结论,连结DO 、EO ,则在三角形OED 中,

由于两边之差小于第三边,则

OE —OD 三、 建立联系,计算说明

例6:如图,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,

N 为对角线AC 上任意一点,则DN+MN 的最小值为 . 分析:能否将DN 和NM 进行转化,与建立三角形两边之和大于第三

边等问题,很自然地想到轴对称问题,由于ABCD 为正方形,因此连结BN ,显然有ND=NB ,则问题就转化为BN+NM 的最小值问题了,一般情况下:BN+NM ≥BM,只有在B 、N 、M 三点共线时,

BN+NM=BM ,因此DN+MN 的最小值为BM=

522=+CM BC 本题通过建立平面上三个点中构成的三角形中的两边之和大于第三边及共线时的两边之和等于第三边的特殊情况求最小值,最后通过勾股定理计算得出结论。

例7:如图,在等腰直角三角形ABC 中,斜边BC=4,OA ⊥BC 于O,点E 和点F 分别在边AB 、AC 上滑动并保持AE=CF,但点F 不与A 、C 重合,点E 不与B 、A 重合。

判断四边形AEOF 的面积是否随点E 、F 的变化而变化,若变化,求其变化围,若不变化,求它的值.

?AEF 的面积是否随着点E 、F 的变化而变化,若变化,求其变化围,若不变化,求它的值。 (即例3的第2、第3问)

分析:(2)本题的方法很多,其一,可以建立四边形AEOF 与AE 长的函数关系式,如设AE=x ,则AF=x -22,

而三角形AOB 的面积与三角形AOE 的面积之比=x 2

2,而三角形AOB 的面积=221=??OA OB ,则三角形AOE 的面积=2x ,同理三角形AOF 的面积=

222x -,因此四边形AEOF 的面积=2

2)

22(=-+x x ;即AEOF 的面积不会随点E 、F 的变化而变化,是一个定值,

且为2.

当然,本题也可以这样思考,由于三角形AOE 与三角形COF 全等,则四边形AEOF 的面积与三角形AOC 的面积相等,而AOC 的面积为2,因此AEOF 的面积不会随点E 、F 的变化而变化,是一个定值,且为2.

本题通过建立函数关系或有关图形之间的关系,然后通过简单的计算得出结论的方法应用比较广泛.

第(3)问,也可以通过建立函数关系求得, ?AEF 的面积=1)2(21)22(212+--=-x x x ,又

x 的变化围为220<

<0?AEF 的面积1≤.

本题也可以根据三角形AEF 与三角形OEF 的面积关系确定?AEF 的面积围:

B

不难证明?AEF 的面积≤?OEF 的面积,它们公用边EF ,取EF 的中点H ,显然由于?OEF 为等

腰直角三角形,则OH ⊥EF ,作AG ⊥EF ,显然AG ≤AH=AG (=EF

21),所以?AEF 的面积≤?OEF 的面积,而它们的和为2,因此<0?AEF 的面积1≤.

本题包容的涵十分丰富,还可以提出很多问题研究:

比如,比较线段EF 与AO 长度大小等(可以通过A 、E 、O 、F 四点在以EF 为直径的圆上得出很多结论)

例8:如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从点A 开始向点B 以2厘米/秒的速度移动;点Q 沿DA 边从点D 开始向点A 以1厘米/秒的速度移动。如果P、Q同时出发,用t 秒表示移动的时间(0≤ t ≤6),那么:

(1)当t 为何值时,三角形QAP 为等腰三角形?

(2)求四边形QAPC 的面积,提出一个与计算结果有关的结论;

(3)当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?

分析:(1)当三角形QAP 为等腰三角形时,由于∠A 为直角,只能是AQ=AP ,建立等量关系,t t -=62,即2=t 时,三角形QAP 为等腰三角形;

(2)四边形QAPC 的面积=ABCD 的面积—三角形QDC 的面积—三角形PBC 的面积 =6)212(211221612?--??-?x x =36,即当P 、Q 运动时,四边形QAPC 的面积不变。

(3)显然有两种情况:△PAQ ∽△ABC ,△QAP ∽△ABC , 由相似关系得61262=-x

x 或12662=-x x ,解之得3=x 或2.1=x 建立关系求解,包含的容多,可以是函数关系,可以是方程组或不等式等,通过解方程、或函数的最大值最小值,自变量的取值围等方面来解决问题;也可以是通过一些几何上的关系,描述图形的特征,如全等、相似、共圆等方面的知识求解。

作为训练同学们可以综合上述方法求解:

练习1:2003年市中考压轴题(全卷得分最低的一道)

已知?ABC 为直角三角形,AC=5,BC=12,∠ACB 为直角,P 是AB 边上的动点(与点A 、B 不重合),Q 是BC 边上动点(与点B 、C 不重合)

(1) 如图,当PQ ∥AC ,且Q 为BC 的中点,求线段CP 的长。

当PQ 与AC 不平行时,?CPQ 可能为直角三角形吗?若有可能,求出线段CQ 的长的取值围;若不可能,请说明理由。

第1问很易得出P 为AB 中点,则CP=2132

1=AB 第2问:如果?CPQ 为直角三角形,由于PQ 与AC 不平行,则∠Q 不可能为直角

又点P 不与A 重合,则∠PCQ 也不可能为直角,只能是∠CPQ 为直角,即以CQ 为直径的圆与AB 有交点,设CQ=2x ,CQ 的中点D 到AB 的距离DM 不大于CD ,

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

七年级数学上册动点问题专题讲解

七年级数学上册 动点问题专题讲解 明确以下几个问题: 1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值.......,也即用右边的数减去左边的数的差。 即数轴上两点间的距离......... =.右边点表示的数....... -.左边点表示的数....... 。2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。即一个点表示的数为a ,向左运动b 个单位后表示的数为 a - b ;向右运动b 个单位后所表示的数为 a+b 。 3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。 基础题 1.如图所示,数轴上一动点 A 向左移动2个单位长度到达点 B ,再向右移动 5个单位长度到达点 C 点. (1)求动点A 所走过的路程及A 、C 之间的距离. (2)若C 表示的数为 1,则点A 表示的数为 . 2.画个数轴,想一想 (1)已知在数轴上表示 3的点和表示8的点之间的距离为 5个单位,有这样的关系 5=8-3,那么在数轴上 C B A 250

表示数4的点和表示-3的点之间的距离是________单位; (2)已知在数轴上到表示数-3的点和表示数5的点距离相等的点表示数1,有这样的关系 1 ,那么在数轴上到表示数a的点和表示数b的点之间距离相等的点表示的数是1(35) 2 __________________. (3)已知在数轴上表示数x的点到表示数-2的点的距离是到表示数6的点的距离的2倍,求数x. 应用题 1、已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时出发相向而行,甲的速度为4个单位/秒。 ⑴问多少秒后,甲到A、B、C的距离和为40个单位? ⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴 上的哪个点相遇? ⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。问甲、乙还能在数轴上 相遇吗?若能,求出相遇点;若不能,请说明理由。

高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解 一.专题内容: 求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程. (3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程. (4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系).

注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练 (一)选择、填空题 1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 2.( )设(0,5)M ,(0,5)N -,MNP ?的周长为36,则MNP ?的顶点P 的轨迹方程是 (A )22125169x y + =(0x ≠) (B )22 1144169 x y +=(0x ≠) (C ) 22116925x y +=(0y ≠) (D )22 1169144 x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ; 4.P 在以1F 、2F 为焦点的双曲线22 1169 x y -=上运动,则12F F P ?的重心G 的轨迹方程是 ; 5.已知圆C : 22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平

(word完整版)北师大版九年级数学动点问题题型方法归纳,推荐文档

图(3) B 图(1) B 图(2) 动点问题题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48 5 S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市) 如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

专题_解析几何中的动点轨迹问题

专题:解析几何中的动点轨迹问题 学大分教研中心 周坤 轨迹方程的探解析几何中的基本问题之一,也是近几年各省高考中的常见题型之一。解答这类问题,需要善于揭示问题的部规律及知识之间的相互联系。本专题分成四个部分,首先从题目类型出发,总结常见的几类动点轨迹问题,并给出典型例题;其次从方法入手,总结若干技法(包含高考和竞赛要求,够你用的了...);然后,精选若干练习题,并给出详细解析与答案,务必完全弄懂;最后,回顾高考,列出近几年高考中的动点轨迹原题。OK ,不废话了,开始进入正题吧... Part 1 几类动点轨迹问题 一、动线段定比分点的轨迹 例1 已知线段AB 的长为5,并且它的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在段AB 上,(0)AP PB λλ=>,求点P 的轨迹。 ()()()00P x y A a B b 解:设,,,,,, ()( )0 11101a a x x y b b y λλλλλλλ+???=+=??? +??++?=??=? ?+? , 2225a b +=代入 () () 2 2 2 2 2 1125y x λλλ +++ = () () 2 2 2 2 2 125 2511x y λλλ+ =++

2225 14 P x y λ=+= 当时,点的轨迹是圆;① 1P y λ>当时,点的轨迹是焦点在轴上的椭圆;② 01P x λ<<当时,点的轨迹是焦点在轴上的椭圆③; 例2 已知定点A(3,1),动点B 在圆O 224x y +=上,点P 在线段AB 上,且BP:PA=1:2,求点P 的轨迹的方程. ()()113P x y B x y AB BP =-解:设,,,,有 ()()()()11 33131313x x y y ?+-= ?+-? ? +-?=?+-? 11332 312 x x y y -?=??? -?=??化简即: 22114x y +=代入 22 3331422x y --???? += ? ????? 得 所以点P 的轨迹为()2 2 116139x y ? ?-+-= ?? ? 二、两条动直线的交点问题 例3 已知两点P (-1,3),Q (1,3)以及一条直线:l y x = AB 在l 上移动(点A 在B 的左下方),求直线PA 、QB 交点M 的轨迹的方程 ()()()11M x y A t t B t t ++解:设,,,,,, ()()1313PM x y PA t t =+-=+-,,,,

初中数学动点问题归纳

图(3) A B 图(1) A B 图(2) 动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与 t 之间 的函数关系式; (3)当48 5 S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个 顶点M 的坐标. 解:1、A (8,0) B (0,6) 2、当0<t <3时,S=t 2 当3<t <8时,S=3/8(8-t)t 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市) 如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o . (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

动点的轨迹问题

动点的轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法: 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法。 2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。 3.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x ’,y ’)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x ’,y ’表示为x,y 的式子,再代入Q 的轨迹方程,然而整理得P 的轨迹方程,代入法也称相关点法。 4.参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y 之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。 5.交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。 6.转移法:如果动点P 随着另一动点Q 的运动而运动,且Q 点在某一已知曲线上运动,那么只需将Q 点的坐标来表示,并代入已知曲线方程,便可得到P 点的轨迹方程。 7.几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程。 8.待定系数法:求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求。 9.点差法:求圆锥曲线中点弦轨迹问题时,常把两个端点设为),(),,(2211y x B y x A 并代入圆锥曲线方程,然而作差求出曲线的轨迹方程。 此部分内容主要考查圆锥曲线,圆锥曲线的定义是根本,它是相应标准方程和几何性质的“源”。对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略。 二、注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

七年级数学上册数轴类动点问题专题讲解练习汇总

七年级数学上册数轴类动点问题专题讲解练习汇总 关于动点问题的基本认知 1. 数轴是一条直线,是无穷多个点构成的,数轴上面每个点都可以表示一个实数(不仅仅 是有理数,如π也可以在数轴上表示出来),而不能说数轴上面有实数或数轴上面是实数;数轴把数和数轴上的点联系起来,是“数形结合”的基础,画图可以明确解题思路,简化计算过程,画出一个正确的图形非常重要. 2. 数轴有两个方向(正方向与负方向,在未明确指出向左为正方向时,我们默认向右为正 方向,向左为负方向),数轴上一个点有两侧,点的运动方向有两个(往正方向、往负方向),遇见动点问题我们要常考虑多种情况. 3. 数轴上两点间的距离等于在右边的点表示的数与在左边的点表示的数的差,即,若数轴 上A 、B 两点分别表示数a 、数b (a <b ),则AB =b -a ;若位置点的位置,则可用绝对值表示:AB =|a -b |. 4. 若数轴上的点A 表示数a ,则: (1)它向右移动b 个单位长度为:a +b ; (2)向左移动c 个单位长度为:a -c ; (3)先向右移动b 个单位长度,再向左移动c 个单位长度为:a +b -c . (4)数轴上点的运动顺序可以改变,并不改变点的最终位置,因为实数具有加法交换律. 5. 数轴上各种距离或者线段长度表示: (1)A 、B 两点距离或者线段AB 长度:0 a b a b AB a b a b b a a b ->?? =-==??-

①AP vt =,m vt P AB BP m vt vt m P AB -?=-=? -? 点在线段上;点在线段延长线上. ②P 点位置为:运动方向为正时是m +vt ,运动方向为负时是m -vt . 6. 线段比例关系: (1)线段AB 的中点M 的位置为:2 a b m += ; (2)点C 在直线AB 上,且AC =nBC ,点C 的位置为要考虑在线段AB 上和在线段AB 的延长线两种情况.如:若点A 在点C 左侧,点B 满足:AB =2BC ,点B 的位置可能为: 1°点B 在点A 左侧时(b <a ),AB <BC 不符合条件; 2°点B 在点A 、C 之间时(a ≤b ≤c ):()2b a c b -=-; 3°点B 在点C 右侧时(c <b ):此时C 为AB 中点:2 a b c += ; 或者直接有2a b b c -=-,解这个方程即可. (3)点在数轴上的周期运动注意找规律:注意周期的开始与结束分别在上面时候,记数是从“1”开始,还是从“0”开始. 数轴上的动点问题基本解法:“点 一 线一 式 ” 三步. (1) 读题画图; (2) 列点:写出相关各点的坐标;

初二数学经典动点问题

动点问题 1、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 2、如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论. 3、如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形MNCD是平行四边形? (2)当t为何值时,四边形MNCD是等腰梯形?

4、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D 出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm. (1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形; (2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形; (3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值; 如果不能,请说明理由. 5、直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O?B?A运动. (1)直接写出A、B两点的坐标; (2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式; (3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.

立体几何中的动点轨迹问题讲解

立体几何中的动点轨迹问题讲解 这类问题在高考中并不常见,或者说在高考中出现得并不明显,但在用空间向量求二面角时偶尔会遇到一种题目,即需要用到的点并不是一个确定的点,而是在一个面上的动点,且这个点还满足一些特定的值或平面几何关系,此时需要根据条件确定出动点所在的轨迹,在每年高考前的模拟题中也会遇到这种题目,若在选填中,则一般位于压轴或次压轴位置,求几何体中动点的轨迹或者与轨迹求值相关的问题,在解析几何中满足条件的动点都会有特定的轨迹,动点绝不是乱点,在几何体中依旧如此。 这种题目做法和平面几何求轨迹方程类似,因为点在面内(非平面),所求的轨迹一般有四种,即线段型,平面型,二次曲线型,球型,这四种情况没有过于明显的界限,知道就好,下列题目中就不再分门别类的去叙述了。 立体几何中与动点轨迹有关的题目归根到底还是对点线面关系的认知,其中更多涉及了平行和垂直的一些证明方法,在此类问题中要么很容易的看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式,和解析几何中的轨迹问题并没有太大区别。 题目中可以找到与AM垂直且包含OP的平面,这样动点P的轨迹就知道了,从O点向底面作垂线,垂足为O',连接BO',可知AM⊥平面OO'B,即可得知P的轨迹。

但题目是在规则的正方体中,直线OP和AM为异面直线,两者成90°的特殊角度,根据射影法求异面直线的夹角方法,我们只需确定出OP在底面上的投影位置即可。 与上题类似,需要找到一个与BD1垂直且包含AP的平面,根据三垂线定理可知BD1⊥AC,BD1⊥AB1,所以BD1⊥平面ACB1,平面ACB1与有侧面的交线为B1C,所以点P的轨迹为线段B1C

初中的数学动点问题归纳

动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 解:1、A (8,0) B (0,6) 2、当0<t <3时,S=t 2 当3<t <8时,S=3/8(8-t)t 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市) 如图,AB 是⊙O 的直径,弦BC=2cm ,

初中数学动点问题专题讲解

例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P ,PH ⊥O A,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△P GH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P在弧A B上运动时,OP 保持不变,于是线段GO 、GP 、 GH 中,有长度保持不变的线段,这条线段是GH=32NH=2 1 32?OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴ 2362 1 21x OH MH -== . 在Rt △MPH 中, . ∴y =GP= 32M P=23363 1x + (0

初三动点问题经典练习

动点问题练习 1.如图,已知在矩形ABCD 中,AD =8,CD =4,点E 从点D 出发,沿线段DA 以每秒1个单 位长的速度向点A 方向移动,同时点F 从点C 出发,沿射线CD 方向以每秒2个单位长的速度移动,当B ,E ,F 三点共线时,两点同时停止运动.设点E 移动的时间为t (秒). (1)求当t 为何值时,两点同时停止运动; (2)设四边形BCFE 的面积为S ,求S 与t 之间的函数关系式,并写出t 的取值范围; (3)求当t 为何值时,以E ,F ,C 三点为顶点的三角形是等腰三角形; (4)求当t 为何值时,∠BEC =∠BFC . 1. 解:(1)当B ,E ,F 三点共线时,两点同时停止运动,如图2所示.………(1分) 由题意可知:ED =t ,BC =8,FD = 2t -4,FC = 2t . ∵ED ∥BC ,∴△FED ∽△FBC .∴ FD ED FC BC = . ∴ 2428 t t t -=.解得t =4. ∴当t =4时,两点同时停止运动;……(3分) (2)∵ED=t ,CF=2t , ∴S =S △BCE + S △BCF = 12×8×4+1 2 ×2t ×t =16+ t 2. 即S =16+ t 2.(0 ≤t ≤4);………………………………………………………(6分) (3)①若EF=EC 时,则点F 只能在CD 的延长线上, ∵EF 2=2 2 2 (24)51616t t t t -+=-+, EC 2=222416t t +=+,∴251616t t -+=2 16t +.∴t =4或t=0(舍去); ②若EC=FC 时,∵EC 2=222416t t +=+,FC 2=4t 2,∴2 16t +=4t 2.∴4 33 t =; ③若EF=FC 时,∵EF 2=2 2 2 (24)51616t t t t -+=-+,FC 2=4t 2, ∴2 51616t t -+=4t 2.∴t 1=163+,t 2=1683-. ∴当t 的值为44 33 1683-E ,F ,C 三点为顶点的三角形是等腰三角形;………………………………………………………………………………(9分) (4)在Rt △BCF 和Rt △CED 中,∵∠BCD =∠CDE =90°,2BC CF CD ED ==, A B C D E F O 图2 A B C D E F

中考数学--动点问题题型方法归纳

图 B 图 B 图动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1(2009年齐齐哈尔市)直线3 64 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的 平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2.如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

初中数学动点问题专题讲解简洁版

A B C D E O l A ′ 中考动点专题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 例1(2005年·)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F. (1)求证: △ADE ∽△AEP. (2)设OA=x ,AP=y ,求y 关于 x 的函数解析式,并写出它的定义域. (3)当BF=1时,求线段AP 的长. (二)线动问题 在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E. (1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F ,且AO = 4 1 AC ,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值围; ②探索:是否存在这样的x ,以A 为圆心,以-x 4 3 长为半径的圆与直 线l 相切,若存在,请求出x 的值;若不存在,请说明理由. (2)①92+=x AC ,9412+=x AO ,)9(121 2+=x AF ,x x AE 49 2+= ∴AF 2 1 ?=?AE S AEF x x 96)9(22+= ,x x x S 96)9(322+-= A 3(2) O 3(1)

动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法. 一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若A、B是平面直角坐标系内两定点,P是某直线上一动点,当P、A、B在一条直线上时,PA PB 最大,最大值为线段AB的长(如下图所示); (1)单动点模型 ~ 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P是x轴上一动点,求PA+PB的最小值的作图.

P是∠AOB内一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值. 作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直线的交点M、N即为所求. O 5. 二次函数的最大(小)值 ()2 y a x h k =-+,当a>0时,y有最小值k;当a<0时,y有最大值k. 二、主要思想方法 利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) ~ 三、精品例题解析 例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

强烈推荐初二动点问题解析与专题训练详尽

初二动点问题解析 1.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿 AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 分析: (1)四边形PQCD为平行四边形时PD=CQ. (2)四边形PQCD为等腰梯形时QC-PD=2CE. (3)四边形PQCD为直角梯形时QC-PD=EC. 所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可. 解答: 解:(1)∵四边形PQCD平行为四边形 ∴PD=CQ ∴24-t=3t 解得:t=6 即当t=6时,四边形PQCD平行为四边形. (2)过D作DE⊥BC于E 则四边形ABED为矩形 ∴BE=AD=24cm∴EC=BC-BE=2cm∵四边形PQCD为等腰梯形∴QC-PD=2CE 即3t-(24-t)=4解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形. (3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2 解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.点评:此题主要考查了平行四边形、等腰梯形, 直角梯形的判定,难易程度适中. (3)如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.

相关文档
最新文档