过氧化(二)苯甲酰

过氧化(二)苯甲酰
过氧化(二)苯甲酰

8、过氧化(二)苯甲酰(Dibenzoyl peroxide)

8.1别名:苯甲酰过氧化物,硫化剂,Benzoyl peroxide, Benzoyl superoxide

相对分子量:242.2 分子式:C6H5COOO C6H5

8.2危规分类及编号:有机过氧化物。GB5.2类52045。

8.3规格用途

规格:分粒状、粉状和晶状。含量(干燥)≥优级品98.5%,一级品98.0%。

含水量25%~30%。

用途:聚合催化剂、聚酯树脂固化剂,脂肪、植物油、肥皂的除臭及脱色,

面粉的漂白等。

8.3物化特性

纯品为无色结晶,有轻微的苯甲醛臭味。相对密度1.33。熔点103℃(分解)。

理论活性氧量6.62%。活化能125.6kJ/mol(30kcal/mol)。分解温度130℃(半

衰期1分钟),72℃(半衰期10小时)。不溶于水。微溶于乙醇。溶于苯、氯仿

等。干的过氧化苯甲酰的危险性大,通常制成含20%或30%水的颗粒性水合物,

或常含50%左右增塑剂或其他稀释剂的各种各样的糊状物,以降低它的易燃性和

震动敏感性。面粉漂白剂含有32%的过氧化苯甲酰和68%的淀粉、石膏或磷酸二

钙二水合物,是不易燃烧的。并有一种含有5%~10%过氧化苯甲酰的痤疮脂也是

不易燃物品。

8.4危险特性

干燥的过氧化苯甲酰非常易燃,遇热、摩擦、震动或杂质污染能引起爆炸分

解。它在室温时较稳定,但是在受热时会放热分解,如其分解热不能充分迅速散

发时,反应就加速成迅速的自动分解或爆炸,分解在瞬间发生,如超过熔点时就

发生爆炸。摩擦或震动放出的热量足以引起剧烈分解。与强酸、强碱、硫化剂、

还原剂、聚合用助催化剂和促进剂如二甲基苯胺、胺类或金属环烷酸盐接触会发

生剧烈反应。干的过氧化苯甲酰非常危险,一般用分散的非溶剂性的稀释剂中吸

收分解的热量。通常用水、增塑剂、其他稀释剂或石膏、磷酸二钙等增加它的稳

定性。毒性较微,长期接触后,对皮肤、黏膜和眼睛有潜在刺激。

8.5应急措施

消防方法:消防人员须在防爆隐蔽处操作。用雾状水、砂土、二氧化碳灭火。

遇大火,切勿轻易接近。火熄后,须待物料全部冷却,才能进行清理工作。

急救:应使吸入蒸气的患者脱离污染区,安置休息并保暖。眼睛受刺激用水冲洗,严重者须就医诊治。皮肤接触先用水冲洗,再用肥皂彻底洗涤。误服立即漱口,急送医院救治。

8.6储运须知

包装标志:有机过氧化物。副标志:爆炸品。

包装方法:(Ⅰ、Ⅱ)类。

储运条件:储存于阴凉、通风良好的不燃结构的地温库房。避免受热,防止阳光直射。与其他物品特别是促进剂、还原剂、有机物、易燃物、酸类、碱类、胺类物品及金属隔离储运。严防产生电火花等情况。

泄漏处理:切断一切火源,戴好防毒面具与手套。用不燃材料吸收,用塑料铲铲入塑料桶中,逐渐将小量物品倒至空旷地方用长柄火把点燃烧掉。使用过的空容器用10%氢氧化钠清洗。

邻二甲苯安全技术说明书

危险化学品安全技术说明书 一化学品及企业标识: 化学品中文名称:邻二甲苯;1,2-二甲苯 化学品英文名称:o-xylene;1,2-xylene 二成分/组成信息 纯 品混合物 化学品名称:邻二甲苯 分子式:C 8H 10 相对分子量:106.17 化学类别:芳香烃 有害物成分含量CAS号 邻二甲苯100% 000108-38-3 三危险性概述 危险性类别:第3.3类高闪点易燃液体 侵入途径:吸入、食入、经皮吸收。 健康危害:III级危害(中度危害)。 邻二甲苯对眼、上呼吸道有刺激作用。高浓度时对神经中枢系统有麻醉作用。 急性毒性:短时间内吸入较高浓度本品可出现眼及上呼吸道明显的刺激症状、眼结膜及咽部充血、头晕、头痛、恶心、呕吐、 胸闷、四肢无力、步态蹒跚、意识模糊。重者可出现躁动、抽搐、 昏迷。 慢性毒性:长期接触可发生神经衰弱综合症,肝肿大,女工月经异常等。皮肤干燥、皲裂、皮炎。 环境危害:其环境污染行为主要体现饮用水和大气中,残留和蓄积并不严重,在环境中可被生物降解和化学降解,但这种过程的速度比挥发过程的 速度低得多,挥发到大气中的二甲苯也可能被光解。 爆炸危险:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热有燃烧爆炸危险。 NFPA分类:H2;F2;R0;IP4 四急救措施 皮肤接触:脱去污染的衣着,立即用流动的清水或肥皂水彻底清洗至少15分钟。

眼睛接触:立即提起眼睑,用大量的流动清水或生理盐水彻底清洗至少15分钟。 就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道畅通;如呼吸困难给吸氧。必要时进行人工呼吸。 食入:立即给饮大量温水、催吐。就医。 五消防措施 危险特性:易燃。其蒸气与空气可形成爆炸性混合物。遇明火、高热有引起燃烧爆炸的危险。与氧化剂发生强烈反应。流速过快,易产生 和积聚静电。其蒸气比空气重,能在较低处扩散到较远的地方, 遇明火引起回燃。 有害燃烧产物:一氧化碳、二氧化碳 最小点火能(mj):无资料 最大爆炸压力(MPa):0.764 灭火方法:尽可能移出容器。否则喷水保持火场容器冷却,直至灭火结束。 消防人员应佩戴防毒面具、大量泄露处理应戴自给式正压呼吸器, 穿全身消防服。 灭火剂:普通泡沫、干粉、二氧化碳、沙土。 六泄漏应急处理 应急处理: l隔离泄漏污染区,迅速疏散人员至安全区,限制出入。 l切断火源。关闭阀门。防止泄露物进入下水道等限制性区域。 l建议应急处理人员戴自给式呼吸器,穿消防防护服。 l喷水雾或蛋白泡沫以减少蒸发。 消除方法: l小量泄漏:用沙土或其他不燃材料吸收。也可用大量水冲洗稀释后进入废水处理系统。 l大量泄漏:利用围堤收容,然后收集、转移(槽车或收集器)、回收或无害化处理后废弃。 七操作处置与储存 操作处置注意事项: l密闭操作,加强通风。 l戴过滤式防毒面具(半面罩),浸胶手套,化学安全防护镜,穿防静电工作服。 l远离火种、热源。现场禁食、禁烟和禁饮。工作后,淋浴更衣。实行就业前和定期体检。 l轻装轻卸搬运。 储存注意事项: l储存于阴凉、通风仓间内。 l远离火种、热源,防止阳光直射。保持容器密封。 l电气全部要求防爆型。 l桶装堆垛不得高于三层,且要留出防火检查通道,堆垛行列不得超过两排。 l与氧化剂、食用化工原料分开存放。

10-食品安全风险分析与评估-危害特性与过氧化苯甲酰风险评估

杨文建lingwentt@https://www.360docs.net/doc/d111822106.html, 南京财经大学食品学院

风险分析风险交流 风险管理 风险评估 风险描述暴露评估危害特性危害识别

危害特性描述:对危害因子(物质)进行定性或定量评估。 ◆确定起因(危害物质)-效应(有害作用)关系的存在与否。 ◆在确定关系的基础上,建立剂量-效应关系(数学模型)。 对人类摄入的微生物病原体的数量、有毒化学物剂量或者其他危害物的量与人体发生不良反应的可能性之间用数学模型进行描述,即摄入危害物质与发生不良影响的可能性的数学关系。

通常利用毒理学或流行病学数据来进行主要效应的剂量-反应关系分析和数学模型的模拟。 通过剂量-反应模型可以获得每日允许摄入量ADI、每日可耐受摄入量(TDI)、急性参考量(ARfD)。 剂量-反应关系评价:是描述暴露评估的前提, ↓ 用数学模型描述:危害特征描述的一个主要部分。

剂量-反应关系分析 剂量概念 在毒理学研究中,涉及到外部剂量、内部剂量、有效剂量3个概念。 ①给予剂量/外部剂量/作用剂量 在一定的途径、频率下,给予实验动物或人的外源化学物质或微生物的数量。常指暴露量或摄入量。 注意:微生物的剂量评估比较难 a:在食品中分布随机;b:在食品或宿主中繁殖;

剂量-反应关系分析 ②内部剂量/吸收剂量 是指外源化学物或微生物与机体接触后,机体获得的剂量或外部剂量被吸收浸入体内循环或被感染能存活的量。 化学物:代谢动力学研究; 微生物:影响因素很多。 ③靶剂量/组织剂量/有效剂量 指机体吸收外源化学物或感染微生物后,分布并出现在特定器官的有效剂量。

22000ta抗氧化剂生产项目环境影响报告书

22000t/a抗氧化剂生产项目环境影响报告书 (报批稿) 建设单位:湖南金域新材料有限公司 评价单位:湖南润美环保科技有限公司 2019年3月

目录 概述 (1) 1总则 (10) 1.1 编制依据 (10) 1.2项目区环境功能属性 (12) 1.3评价标准 (13) 1.4评价因子识别与筛选 (18) 1.5评价工作等级及评价范围 (19) 1.6评价内容及评价重点 (24) 1.7环境保护目标 (25) 2 项目概况 (28) 2.1 项目基本情况 (28) 2.2 建设内容和产品方案 (28) 2.3主要经济技术指标 (31) 2.4主要原辅材料及生产设备 (33) 2.5储运工程 (44) 2.6公用及辅助工程 (44) 2.7平面布局 (46) 3工程分析 (47) 3.1施工期工程分析及污染源分析 (47) 3.2生产工艺 (49) 3.3物料平衡及水量平衡分析 (66) 3.4 污染源分析 (87) 4区域环境特征及环境现状调查 (106) 4.1环境概况 (106) 4.2湖南岳阳绿色化工产业园概况 (110) 4.3与本项目排放污染物有关的其他在建、已批复项目污染源调查 (117) 5环境质量现状调查与评价 (118) 5.1大气环境质量现状调查与评价 (118) 5.2地表水环境质量现状调查与评价 (120)

5.3地下水环境质量现状调查与评价 (124) 5.4 声环境质量现状调查与评价 (126) 6环境影响预测与评价 (127) 6.1 运营期大气环境影响预测评价 (127) 6.2地表水环境影响分析 (161) 6.3地下水环境影响分析 (162) 6.4 声环境影响分析 (168) 6.5 固体废物环境影响分析 (170) 6.6施工期环境影响分析 (170) 7环境保护措施及技术经济可行性分析 (175) 7.1施工期环保措施 (175) 7.2运营期环保措施 (176) 8环境风险影响评价 (189) 8.1评价目的与重点 (189) 8.2环境风险识别 (189) 8.3风险源分析 (201) 8.4后果计算与分析 (208) 8.5风险计算和评价 (212) 8.6 环境风险防范措施 (214) 8.7 环境风险应急预案 (223) 8.8项目风险评价结论和建议 (226) 9 环境经济损益分析及总量控制 (228) 9.1环保投资可行性分析 (228) 9.2环境保护效益分析 (228) 9.3 环保支出及收入情况估算 (229) 9.4 环保投资与工程总投资的比例分析 (229) 9.5社会效益分析 (230) 9.6总量控制 (230) 10 环境管理与环境监测 (231) 10.1 环境管理 (231)

甲苯的来源 甲苯的毒性 甲苯的检测方法

甲苯系苯的同系物,亦名“甲基苯”、“苯基甲烷”,具有类似苯的芳香气味,沸点(常压)110.63℃,熔点-94.99℃。甲苯不溶于水,溶于乙醇、乙醚和丙酮。蒸气和空气形成爆炸性混合物,爆炸极限 1.2~7.0%(体积)。如甲苯溶解溴后,在光照条件下,甲基上的氢原子被溴原子取代(与甲烷相似)而在铁作催化剂条件下,苯基上的氢原子被溴原子取代(与苯相似);但甲苯分子中存在着甲基和苯基的相互影响,使得甲苯又具有不同于苯和甲烷的性质,如苯环上的取代反应(卤化、硝化等),甲苯比苯容易进行,甲苯分子中的甲基可以被酸性高锰酸钾溶液氧化。 家庭和写字楼里的苯主要来自建筑https://www.360docs.net/doc/d111822106.html,装饰中使用大量的化工原材料,如涂料,填料及各种有要溶剂等,都含有大量的有机化合物,经装修后挥发到室内。主要在以下几种装饰材料中较高: 油漆:苯化合物主要从油漆中挥发出来; 天那水、稀料:油漆涂料的添加剂中大量存在; 各种胶粘剂:一些家庭购买的沙发释放出大量的苯,主要原因是生产中使用了含苯高的胶粘剂; 防水材料:原粉加稀料配制成防水涂料,操作后15小时后https://www.360docs.net/doc/d111822106.html,检测,室内空气中苯含量超过国家允许最高浓度的14.7倍。 一些低档和假冒的涂料。 健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:对皮肤、粘膜有刺激性,对中枢神经系统有麻醉作用。 急性中毒:短时间内吸入较高浓度https://www.360docs.net/doc/d111822106.html,本品可出现眼及上呼吸道明显的刺激症状、眼结膜及咽部充血、头晕、头痛、恶心、呕吐、胸闷、四肢无力、步态蹒跚、意识模糊。重症者可有躁动、抽搐、昏迷。 慢性中毒:长期接触可发生神经衰弱综合征,肝肿大,女工月经异常等。皮肤干燥、皲裂、皮炎。 毒理学资料 毒性:属低毒类。 急性毒性:LD505000mg/kg(大鼠经口);LC5012124mg/kg(兔经皮);人吸入71.4g/m3,短时致死;人吸入3g/m3×1~8小时,急性中毒;人吸入0.2~0.3g/m3×8小时,中毒症状出现。 刺激性:人经眼:300ppm,引起刺激。家兔经皮:500mg,中度刺激。 亚急性和慢性毒性:大鼠、豚鼠吸入390mg/m3,8小时/天,90~127天,引起造血系统和实质性脏器改变。 致突变性:微核试验:小鼠经口200mg/kg。细胞遗传学分析:大鼠吸入5400µg/m3,16周(间歇)。 生殖毒性:大鼠吸入最低中毒浓度(TCL0):1.5g/m3,24小时(孕1~18天用药),致胚胎毒性和肌肉发育异常。小鼠吸入最低中毒浓度(TCL0):500mg/m3,24小时(孕6~13天用药),致胚胎毒性。 代谢和降解:吸收在体内的https://www.360docs.net/doc/d111822106.html,甲苯,80%在NADP(转酶II)的存在下,被氧化为苯甲醇,再在NAD(转酶I)的存在下氧化为苯甲醛,再经氧化成苯甲酸。然后在转酶A及三磷酸腺苷存在下与甘氨酸结合成马尿酸。所以人体吸收和甲苯16%-20%由呼吸道以原形呼出,80%以马尿酸形式经肾脏而被排出体外,所以人体接触甲苯后,2小时后尿

苯乙烯的氧化

苯乙烯有多种氧化方式: 1.在KMnO4、K2S2O8、K2Cr2O7等强氧化剂的作用下生成苯甲酸 2.生成环氧化苯乙烯 3.生成苯甲醛 4.苯甲酸叔丁酯(氧化苯甲酸与叔丁醇发生反应所得) 结论: 1.TBHP的浓度对苯乙烯的转化率及其氧化产物的选择性有一定的影响。 苯乙烯的转化率随着TBHP浓度的降低而降低,但是,产物中环氧化苯乙烯的选择性随着TBHP的降低而升高,苯甲酸和苯甲醛的选择性会降低。 原因:苯乙烯分子中乙烯基的碳碳双键是由π键和σ键组成。要将其氧化成苯甲酸或苯甲醛,π键和σ键必须都断裂,高浓度的TBHP的氧化性较强,可以将苯乙烯分子中乙烯基的双键断裂,有利于生成苯甲醛和苯甲酸;而氧化生成环氧化苯乙烯则只需要断裂苯乙烯分子中乙烯基双键中的π键,所以在TBHP浓度较低的条件下,容易生成环氧化苯乙烯。 2.反应温度对苯乙烯转化率和产物选择性的影响 温度较高的情况下,苯乙烯的转化率较高,但是环氧化苯乙烯产物的选择性不是很高;温度低于40℃时,可以完全抑制苯甲酸的生成,但是苯甲醛的含量在产物中比较高。 说明:体系中苯乙烯氧化生成苯甲酸的途径可能是先生成苯甲醛,苯甲醛再被氧化生成生成苯甲酸。 苯乙烯环氧化反应 实验以苯乙烯氧化考察催化剂活性,反应在带冷凝器的100ml三口烧瓶中进行,以高纯O2为氧化剂,苯乙烯0.8ml(6.96mmol),DMF为溶剂20ml,催化剂0.1g~0.2g,以鼓泡方式通入O2,流量为20ml/min,100℃下恒温搅拌。 采用浙江福立GC-9790型气相色谱分析,载气为氮气,氢火焰检测。气相色谱分析条件:柱温90℃保持2min,以15℃/min程序升温到210℃,检测器260℃,汽化室260℃。主要产物分析:A:苯甲醛(179℃);B:环氧苯乙烷(192-195℃) { 估计} Cat m (g) t (h) Con. (%) A.苯甲醛B环氧苯乙烷 Sel.(%) Y.(%) Sel.(%) Y.(%) 无催化剂 SBA-15 Ti10-SBA-15t Ti20-SBA-15t 0.1g 4 3.06 72.9 2.23 27.1 0.83 6 11.3 43.9 4.96 22.9 2.59

二苯基甲烷二异氰酸酯中文警示说明

二苯基甲烷二异氰酸酯 分子式:C 15H 10N 2O 2 分子量:250.24 理化特性 白色到淡黄色固体,或浅黄色液体。熔点≧38℃,相对于空气的蒸气密度为 3.24,相对于水的密度为 1.19,引燃温度≧220℃,闪点177-227℃,易溶于苯、甲苯、氯苯等有机溶剂,微溶于水,并缓慢发生反应。是聚氨酯材料、PU 泡沫原料之一。 可能产生的危害后果 急性中毒 吸入MDI 蒸气可造成呼吸道刺激,引发头痛、流鼻涕、喉痛、气喘、胸闷、呼吸困难以及肺功能衰退。高浓度接触可导致支气管炎、支气管痉挛和肺水肿。眼睛接触可造成眼结膜刺激和中度眼角膜混浊。皮肤接触可造成皮肤刺激、过敏和皮炎。食入,导致腹部痉挛,呕吐。 慢性中毒 长期接触可造成永久性的肺功能衰退、皮疹、过敏性反应。 职业病危害 防护措施 1.使用二苯基甲烷二异氰酸酯设备应密闭,不能密闭的应加强 通风排毒。 2.注意个人防护,穿戴防护用品。 3.严格遵守安全操作规程。 应急救治 措施 皮肤接触:立即脱去污染的衣着,用肥皂水冲洗。如有不适感,就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道畅通。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:饮温水,禁止催吐。如果患者神志不清或痉挛,禁止饮入任何液态物质。立即就医。 泄漏应急 处理 隔离泄漏污染区,限制出入。消除所有点火源。建议应急处理人员戴防毒面具、橡皮手套,穿防化服。穿上适当的防护服前严禁接触破裂的容器和泄漏物。尽可能切断泄漏源。若少量液体泄漏,用蛭石、干砂、泥土吸附泄漏液体。若固体泄漏,小心扫起,逐次以少量加入大量水中,静置,稀释液放入废水处理系统。若大量泄漏,收容并回收。污染地面用含3-8%氨和2-7%的清洁剂冲洗。

二苯基甲烷二异氰酸酯(纯MDI)产品介绍

二苯基甲烷二异氰酸酯(纯MDI)产品说明 二苯基甲烷二异氰酸酯 简称:MDI,国外也有简称MBI、MMDI(单体MDI)。 二苯基甲烷二异氰酸酯(MDI)一般有4,4’-、2,4’-和2,2’-MDI三种异构体,而以4,4’-MDI 为主,没有单独的2,4’-MDI和2,2’-MDI工业化产品。 分子式C15H10N2O2,相对分子质量250.25。 4,4’-MDI的CAS编号101-68-8;2,4’-MDI的CAS编号为5873-54-1;2,2’-MDI的CAS编号为2536-05-2。MDI异构体混合物的CAS编号为26447-40-5。 物化性能 一般的纯MDI主要是指4,4’-MDI,即含4,4’-二苯基甲烷二异氰酸酯99%以上的MDI,又称MDI-100,MDI以4,4’-MDI为主要成分,此外它还有少量2,4’-MDI和2,2’-MDI两种异构体,2,2’-的结构的MDI含量很小。 常温下它是白色至浅黄色固体,熔化后为无色至微黄色液体。加热时有刺激性臭味,可溶于苯、甲苯、氯苯、硝基苯、丙酮、乙醚、乙酸乙酯、二恶烷等。MDI在230℃以上蒸馏易分解、变质。贮存过程缓慢形成不熔化的二聚体,但低水平的二聚体(0.6%~0.8%)不影 2,4’-MDI的熔点范围19~21℃,沸点(0.67Kpa)106~107℃,蒸汽压3Pa. 高2,4’-MDI含量的MDI产品与4,4’-MDI相比,具有较低的反应活性和熔点。一般,当MDI中2,4’-异构体含量大于25%(质量分数)时,在常温下是液态,稍低温度仍会结晶。高2,4’-MDI含量的MDI产品最佳贮存温度是25~35℃。由高2,4’-MDI含量纯MDI产品制备的预聚体,因为无定型性质(低结晶性),其黏度比由4,4’-MDI制备的相同NCO含量预聚体的低。 特性及用途 二苯基甲烷二异氰酸酯(MDI)是用于聚氨酯树脂合成的一种重要的异氰酸酯。其分子结构中含有两个苯环,具有对称的分子结构,制得的聚氨酯弹性体具有良好的力学性能;MDI的反应活性比TDI大;MDI相对分子质量比TDI大,蒸汽压很低,挥发性较小,对人体的毒害相对较小。纯MDI主要应用于各类聚氨酯弹性体的制造,多用于生产热塑性聚氨酯弹性体、氨纶、PU革浆料、鞋用胶黏剂,也用于微孔弹性体材料(鞋底、实心轮胎、自结皮泡沫、汽车保险杠、内饰件等)、浇注型聚氨酯弹性体等的制造。 与纯4,4’-MDI相比,高2,4’-MDI含量的MDI产品具有较低的反应活性和熔点。由于2,4’-MDI与4,4’-MDI反应活性的差异,MDI-50为模塑制品的生产提供了更好的流动性能,该产品可广泛应用于各类聚氨酯弹性体制品、胶黏剂、涂料、汽车部件、内饰件的生产,并可作为TDI的替代品应用于软质聚氨酯泡沫的生产,可减轻环境污染,改善操作条件。

邻二甲苯

邻二甲苯 C6H4(CH3)2/C8H10 CAS登记号:95-47-6 中文名称:邻二甲苯; 1,2-二甲苯 RTECS号:ZE2450000 UN编号:1307 EC编号:601-022-00-9 英文名称:o-XYLENE; ortho-Xylene; 1,2-Dimethylbenzene; o-Xylol 原中国危险货物编号: 33535 分子量:106.2 化学式:C6H4(CH3)2/C8H10 危害/接触 类型 急性危害/症状预防急救/消防 火灾易燃的。禁止明火、禁止火花和禁止 吸烟。 干粉、雾状水、泡沫、二氧化碳 爆炸高于32℃,可能形成爆炸性 蒸气/空气混合物。 高于32℃,密闭系统、通风 和防爆型电气设备。防止静 电荷积聚(例如,通过接 地)。 着火时,喷雾状水保持料桶等冷 却。 接触严格作业环境管理!避免孕妇接触! #吸入头晕,倦睡,头痛,恶心。通风,局部排气通风或呼吸 防护。 新鲜空气,休息,给予医疗护理。 #皮肤皮肤干燥,发红。防护手套脱去污染的衣服,冲洗,然后用水和肥皂清洗皮肤。 #眼睛发红,疼痛。安全护目镜先用大量水冲洗几分钟(如可能易行,摘除隐形眼镜),然后就医 #食入灼烧感,腹部疼痛。另见吸 入。 工作时不得进食,饮水或吸 烟 漱口,不要催吐,给予医疗护理。 泄露处置通风。移除全部引燃源。尽可能将泄漏液收集在可密闭的容器中。用砂土或惰性吸收剂吸收残液,并转移到安全场所。不要让该化学品进入环境。个人防护用具:适用于有机气体和蒸气的过滤呼吸器。 包装与标志欧盟危险性类别:Xn符号标记:C R:10-20/21-38 S:2-25 联合国危险性类别:3 联合国包装类别:III 中国危险性类别:第3类易燃液体中国包装类别:III 应急响应应急卡:TEC(R)-30S1307-III 美国消防协会法规:H2(健康危险性);F3(火灾危险性);R0(反应危险性) 储存耐火设备(条件)。与强氧化剂和强酸分开存放。 易燃性 2 活 性毒 性 3

苯乙烯环氧化反应的研究

第34卷第2期 化学反应工程与工艺 V ol 34, No 2 2018年4月 Chemical Reaction Engineering and Technology Apr. 2018 收稿日期: 2018-03-21; 修订日期: 2018-04-15。 作者简介: 张玲玲(1988—),女,博士研究生;张志炳(1955—),男,教授,通讯联系人。E-mail:zbzhang@https://www.360docs.net/doc/d111822106.html, 。 基金项目: 国家自然科学基金(21476105,91634104)。 文章编号:1001—7631 ( 2018 ) 02—0113—07 DOI: 10.11730/j.issn.1001-7631.2018.02.0113.07 苯乙烯环氧化反应的研究 张玲玲1,2,吴 剑2,贺向坡3,张 锋1,张志炳1 1.南京大学化学化工学院,江苏 南京 210023; 2.江苏环保产业技术研究院股份公司,江苏 南京 210036; 3.中石化南京化工研究院有限公司,江苏 南京 210048 摘要:以分子氧为氧化剂,异丁醛为共还原剂、醋酸钴为催化剂,苯乙烯可被氧化成环氧苯乙烷和苯甲醛。 为了得到高产率的产品环氧苯乙烷,采用响应曲面法(RSM )考察了醛用量、催化剂用量、溶剂比对反应结 果的影响,得到最佳反应条件下产品的总得率为72.9%,环氧苯乙烷和苯甲醛的选择性分别为53.1%和20.7%, 并建立了相应的预测模型。根据实验结果,进一步计算了苯乙烯氧化反应的活化能,生成环氧苯乙烷和苯甲 醛的活化能分别为34.69 kJ/mol 和38.23 kJ/mol ,表明低温有利于提高环氧苯乙烷产品的选择性。 关键词:苯乙烯 环氧苯乙烷 苯甲醛 响应曲面法 活化能 中图分类号:O69 文献标识码:A 有机合成工业中,以O 2为氧化剂、过渡金属化合物为催化剂、醛为共还原剂时,多种烯烃可以被高效地环氧化,该体系被称作“Mukaiyama”催化体系[1,2]。O 2/醛/过渡金属化合物催化的环氧化反应是自由基反应,在该体系条件下,醛被氧化形成高活性的过氧酸后将氧原子迅速转移给烯烃形成环氧化物,金属化合物在该过程中起着促进作用。除此之外,一些金属催化剂也可与O 2作用后直接转移一个氧原子给烯烃,从而完成环氧化反应[3-5],存在以下的竞争反应。 O +O 2CHO +HCHO k 1k 2+O 2 近年来,对于该体系的研究多以新型催化剂的制备为主,过渡金属多为Ni ,Co ,Cu ,Mn ,Fe 和Mo 等。当以它们作为催化剂时,苯乙烯可在较短时间内完全转化,并且反应条件较温和,产品环氧苯乙烷的选择性较高[6-8]。刘艳华等[9]合成了Salen Mn(II)催化剂用于苯乙烯的环氧化反应,以空气为氧化剂,异丁醛为共还原剂,苯乙烯的转化率为98.3%,产品选择性为85.9%;Zhou 等[10]分别以Co-ZSM-5、Co-5A 为催化剂用于烯烃环氧化反应,较优条件下苯乙烯的转化率达94.2%,环氧苯乙烷的选择性达90.5%。大量实验发现,苯乙烯氧化生成环氧苯乙烷的同时会生成其它副产物,如苯甲醛等,反应条件(如催化剂浓度、助剂浓度、温度等)对苯乙烯氧化过程及产物分配有不可忽略的影响,因此,反应条件参数的优化可为反应过程的放大及其工业化应用提供数据基础。Yoon 等[11]以Co 2+交换的分子筛(ETS-10,AM-6)为催化剂,探索了金属离子交换度对苯乙烯氧化产物的影响,产物环

N_N_4_4_二苯甲烷双马来酰亚胺_1_6_己二醇二丙烯酸酯的紫外光固化研究

N,N′24,4′2二苯甲烷双马来酰亚胺/1,62己二醇二丙烯 酸酯的紫外光固化研究3 韩 建 顾嫒娟 袁 莉 梁国正 (苏州大学材料与化学化工学部材料科学与工程系,苏州 215123) 摘要 制备了N,N′24,4′2二苯甲烷双马来酰亚胺(BDM)/1,62己二醇二丙烯酸酯(HDDA)体系,探讨了BDM/ HDDA体系实现UV固化的条件,研究了引发剂种类及其含量对BDM/HDDA体系光固化的反应性及热稳定性的影响。研究表明,2,4,62三甲基苯甲酰基2二苯基氧化磷(TP O)的综合引发效果要好于同类引发剂安息香乙醚和提氢型光引发剂二苯甲酮-三乙醇胺体系。 关键词 N,N′24,4′2二苯甲烷双马来酰亚胺 1,62己二醇二丙烯酸酯 光引发剂 紫外光固化 双马来酰亚胺是耐热型热固性树脂的典型代表,是制备高性能结构/功能材料最具竞争力的树脂之一。在国防军事、电子信息、交通运输等尖端工业领域中具有重要作用[1-4]。目前双马来酰亚胺固化方式为热固化,其最大的缺点是固化温度高、生产周期长[5],因此固化树脂的残余应力大,优异性能难以充分发挥。如何获得更好的固化工艺条件成为双马来酰亚胺改性研究的重要内容之一。 紫外光(UV)固化技术与其它固化方法相比具有固化速度快、生产效率高、材料物理力学性能好、污染小、节省能源、降低成本、满足户外等特殊要求的优点[6-11],因此,作为“面向21世纪的绿色工业新技术”,UV固化得到了学术界和工业界的广泛关注。研究者初步展开了N,N′24,4′2二苯甲烷双马来酰亚胺(BDM)/42羟丁基乙烯基醚(HBVE)体系的UV固化反应性的研究[12],研究结果表明,在适当的引发体系下,BDM/HBVE能进行UV固化。但是,由于BDM自身不能进行UV固化,所以,迄今没有更多的报道涉及这一课题。 笔者旨在探索双马来酰亚胺树脂实现UV固化的可能性,以期从根本上解决双马来酰亚胺热固化存在的问题。制备了BDM/1,62己二醇二丙烯酸酯(HDDA)体系,探讨了BDM/HDDA体系实现UV固化的条件,研究了引发剂种类及其含量对BDM/HD2 DA体系光固化的反应性及热稳定性的影响。 1 实验部分 1.1 主要原材料 BDM:西安双马新材料有限公司; HDDA:南京捷安化工公司; 2,4,62三甲基苯甲酰基2二苯基氧化磷(TP O):上海光固化研究所; 安息香乙醚、二苯甲酮、三乙醇胺:工业品,市售。 1.2 仪器 傅立叶变换红外光谱(FTI R)仪:N I COLET5700型,美国热电尼高力仪器公司; 热重(TG)分析仪:S DT Q600型,美国T A仪器公司; UV光固化仪:自制。 1.3 试样制备 (1)溶液制备 将BDM与HDDA按质量比1∶9倒入三口烧瓶中,在搅拌条件下于150℃共混1h后,即得到澄清透明的BDM/HDDA溶液。向BDM/HDDA溶液中加入不同的光引发剂,待光引发剂完全溶解后,即得到BDM/HDDA/引发剂体系溶液。 (2)BDM/HDDA体系的UV固化 取两块干净的玻璃片,其中玻璃片1的周围垫上厚度为1mm、宽度为1c m的玻璃片;玻璃片2附上PE保鲜膜。将配制好的BDM/HDDA/TP O溶液倒入玻璃片1上,将玻璃片2盖在上面,待完全展开,将其放入UV光固化仪固化,其UVA灯主波长365n m,功率400W。 1.4 性能测试 (1)FTI R测试:采用FTI R仪对体系反应前后进行测试。 (2)FTI R谱图分析 将TP O和安息香乙醚各称取10mg,分别用10 mL二甲基甲酰胺(DMF)溶液稀释,以DMF溶液为 3江苏省自然科学基金资助项目(BK2007506) 收稿日期:2009205213

二苯甲酰甲烷生产建设项目可行性研究报告

二苯甲酰甲烷生产线建设项目可行性研究报告 中咨国联|出品 二〇二〇年八月

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目负责人 (1) 1.1.6项目投资规模 (1) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (2) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (4) 1.4 编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目市场分析 (8) 2.1建设地经济发展概况 (8) 2.2我国二苯甲酰甲烷行业发展状况分析 (8) 2.3我国二苯甲酰甲烷行业发展趋势分析 (9) 2.4市场小结 (10) 第三章项目建设的背景和必要性 (11) 3.1项目提出背景 (11) 3.2项目建设必要性分析 (12) 3.2.1有利于促进我国二苯甲酰甲烷工业快速发展的需要 (12) 3.2.2提升技术进步,满足二苯甲酰甲烷行业生产高品质产品的需要 (13) 3.2.4符合《中国制造2025》“三步走”实现制造强国战略目标 (13) 3.2.5提升我国二苯甲酰甲烷产品研发和技术创新水平的需要 (14) 3.2.6提升企业竞争力水平,有助于企业长远战略发展的需要 (14) 3.2.7增加当地就业带动产业链发展的需要 (15) 3.3项目建设可行性分析 (15) 3.3.1政策可行性 (15) 3.3.2技术可行性 (16) 3.3.3管理可行性 (16) 3.4分析结论 (17)

二苯甲烷二异氰酸酯

聚醚多元醇 聚醚多元醇(简称聚醚)是由起始剂(含活性氢基团的化合物)与环氧乙烷(EO)、环氧丙烷(PO)、环氧丁烷(BO)等在催化剂存在下经加聚反应制得。聚醚产量最大者为以甘油(丙三醇)作起始剂和环氧化物(一般是PO与EO并用),通过改变PO和EO的加料方式(混合加或分开加)、加量比、加料次序等条件,生产出各种通用的聚醚多元醇。

聚醚多元醇[1]是主链含有醚键(—R—O—R—),端基或侧基含有大于2个羟基(—OH)的低聚物。[2]是以低分子量多元醇、多元胺或含活泼氢的化合物为起始剂,-与氧化烯烃在催化剂作用下开环聚合而成。氧化烯烃主要是氧化丙烯(环氧丙烷),氧化乙烯(环氧乙烷),其中以环氧丙烷最为重要。多元醇起始剂有丙二醇、乙二醇等二元醇,甘油三羟甲基丙烷等三元醇及季戊、四醇、木糖醇、山梨醇、蔗糖等多元醇;胺类起始剂为二乙胺、二乙烯三胺等。 聚醚一般常用分子量为800~2000的丙二醇聚醚、分子量为400~4000的三羟甲基丙烷聚醚和端羟基的聚四氢呋喃。作为胶黏剂用的聚醚树脂应去掉聚合时残留下来的碱性催化剂,因为它们能催化异氰酸酯二聚,影响胶黏剂的质量。通常用酸来中和,使聚醚呈微弱酸性(不影响聚氨酯的反应)。制备聚氨酯胶黏剂所用的聚醚要求较为严格,除羟值、酸值外,要求含钾、钠离子量应少于10,含水量小于0.05%,否则有可能产生凝胶。用聚醚树脂配制的聚氨酯胶黏剂具有良好的耐水性,抗冲击性和低温性。 根据起始剂所含活性原子的数目可制得不同官能度的聚醚多元醇,在聚氨酯胶黏剂制备中最常用的聚醚是聚氧化丙烯二醇和聚氧化丙烯三醇,另外还有聚四氢呋喃二醇。

5、分散剂 聚醚在乳状液涂料中作分散剂。F68在醋酸乙烯乳液聚合时作乳化剂。L62、L64可作农药乳化剂,在金属切削和磨削中作冷却剂和润滑剂。在橡胶硫化时作润滑剂。 6、破乳剂 聚醚可用作原油破乳剂,L64、F68能有效地防止输油管道中硬垢的形成,以及用于次级油的回收。 7、造纸助剂 聚醚可用作造纸助剂,F68能有效地提高铜版纸的质量;也用作漂清助剂。 8、制备应用 聚醚多元醇系列产品主要用于制备硬质聚氨酯泡沫塑料,广泛应用于冰箱、冰柜、冷藏车、隔热板、管道保温等领域。制得的产品导热系数低,尺寸稳定好,也是配制组合聚醚的重要原料。聚醚多元醇的生产 在聚氨酯工业中,主要用于聚氨酯泡沫塑料,主要品种有聚氧化丙烯多元醇和聚四氢呋喃醚多元醇等。 编辑本段主要原料 使用三类原料,有机氧化物和呋喃类环状化合物等;起始剂;催化剂 有机氧化物和呋喃类环状化合物等--环氧丙烷、环氧乙烷、环氧氯丙烷、四氢呋喃等; 起始剂--含羟基的低分子化合物和含氨基或含羟基、氨基的低分子化合物。常用的有丙二醇、甘油、三羟甲基丙烷、乙二胺季戊四醇、木糖醇、三乙烯二胺、山梨醇、蔗糖、双酚A、双酚S、三(2-羟乙基)异氰酸酯、甲苯二胺等;使用芳香族或杂环系多元醇或多元胺起始剂时,会在聚醚多元醇结构中引入上述结构,它能使生成的聚氨酯材料具有较好的尺寸稳定性,耐热、耐燃。这类起始剂常用的有双酚A、双酚S、三(2-羟乙基)异氰酸酯、甲苯二胺等。起始剂品种的变化,可以合成不同官能度、不同化学结构和不同功能的聚醚多元醇,以适应聚氨酯制品的多样性变化和性能要求。 催化剂--阴离子型、阳离子型、金属络合型,聚氨酯工业中常用的是阴离子型催化剂的碱金属氢氧化物和阳离子催化剂的路易斯酸。前者用于制备低分子量的普通聚醚多元醇,后者用于制高分子量的聚醚多元醇及四氢呋喃开环共聚合特种聚醚多元醇。金属类络合催化剂用于合成超高分子量的聚醚多元醇,聚氨酯用聚醚多元醇的合成仅有少量应用。最常是氢氧化钾。

5种辅助稳定剂说明

3 辅助稳定剂 锌皂稳定剂对PVC 的稳定性较差,属于短效热稳定剂,而且容易出现“锌烧”现象(主要原因是产生的ZnCl2为强路易斯酸,具有催化脱氯化氢的作用),但具有初期着色性优良、耐候性强等优点。钙皂类热稳定剂属于长期热稳定剂,稳定性较差,着色性强,但无毒,具有优良的润滑性。Ca/Zn 复合稳定剂就是利用二者具有的协同效应,使其成为近年来复合稳定剂中最活跃的领域。为了提高其稳定性,在复配过程中通常要添加一些辅助稳定剂,如季戊四醇等多元醇、水滑石、亚磷酸酯、β-二酮和环氧大豆油等化合物来改善Ca/Zn 复合稳定剂的性能。 3.1 亚磷酸酯 亚磷酸酯是Ca/Zn 复合稳定剂中应用最广的辅助稳定剂,在复合稳定剂中是不可缺少的成份。用做辅助稳定剂的亚磷酸酯主要有亚磷酸三苯酯、亚磷酸三癸酯、亚磷酸三壬基苯酯、亚磷酸三辛酯等。对于软质PVC,亚磷酸酯一般与β-二酮、环氧大豆油等配合使用。亚磷酸酯具有增塑作用,不适用于硬质PVC;具有抗氧化能力,可以捕捉氯化氢,加成多烯烃,能大大提高PVC 稳定体系的稳定性能。在液体稳定剂中添加量一般为10%~35%(质 量分数),主要品种有亚磷酸苯二异辛酯、亚磷酸辛酯、亚磷酸二苯癸酯、亚磷酸二癸苯酯、亚磷酸三壬酯等。目前国内多数选用水解亚磷酸苯二异辛酯,它能有效地改善PVC 制品的着色、热稳定性、透明性、防结垢和耐候性等效果。亚磷酸酯是应用最广泛的辅助稳定剂,长期以来普遍用于钙锌无毒液体复合稳定剂应用中。最有效的是亚磷酸烷基/芳基酯。如日本Adeka -Argels 公司开发的Mark-1500 对稳定剂具有优良的初期着色性能。 3.2 环氧化合物 在环氧化合物中,传统上被用作辅助稳定剂是环氧大豆油。近年来的研究表明,双酚A 二缩水甘油醚、双酚F 二缩水甘油醚、酚醛树脂的缩水甘油醚、四苯基乙烷的缩水甘油醚、脂环族环氧树脂、偏苯三酸三缩水甘油酯、对苯二甲酸二环氧丙酯等都具有较高的稳定效率。环氧化物与氯化氢反应生成氯乙醇,在钙、锌等金属皂催化作用下,取代PVC 中不稳定的氯原子而发挥稳定作用。在静态稳定试验中,环氧化合物的作用是抑制PVC 变黄。单独使用效果不佳,与亚磷酸酯并用时,其稳定效果可明显改善。环氧类辅助热稳定剂一般有环氧大豆油、环氧亚麻籽油、环氧硬脂酸丁酯、辛酯等环氧类化合物等,它们与Ca/Zn体系配合使用有较高的协同作用,具有光稳定性和无毒之优点,适用于软质,特别是要暴露于阳光下的软质PVC制品,通常不用于硬质PVC制品,其缺点是易渗出。协同作用机理[6]可认为是降解产生的HCl被环氧基团和金属皂盐吸收,HCl浓度减小,降低了PVC的脱HCl速度(HCl对PVC 降解有催化作用),从而使PVC的热稳定性得到提高。另外,在Zn盐的催化下,环氧化合物还可以有效地取代烯丙基氯原子。 3.3 多元醇 作为Ca/Zn 复合体系的辅助稳定剂的多元醇主要有季戊四醇、二季戊四醇、聚乙烯醇、四羟甲基环己醇、二三羟甲基丙烷、卡必醇,以及山梨醇、甘露糖醇、木糖醇、麦芽糖醇、异麦芽糖醇、乳糖醇和它们的脱水、半脱水产物等,这类品种与β-二酮、环氧化合物、水滑石配合用于软质PVC 中时,具有极好的协同作用。需要注意的是多元醇尽管有良好的热稳定性,但部分品种由于其自身在加工过程中的脱水着色,仍有不足之处。新品种如菊粉、三(α-羟乙基)异氰脲酸酯可以克服上述缺陷。另外,多元醇易升华,在加工过程中升华物沉积在设备上,妨碍加工。为克服这些不足,现已开发了许多用脂肪酸部分酯化的多元醇,如日本推出的Tohtlixer-101,它是一种多元醇改性物,能较好地克服了一般多元醇的缺点,同Ca/Zn 稳定体系并用,表现出良好的光稳定性、加工性和贮存稳定性。多元醇可以螯合金属离子,防止氯化物催化降解,同时在金属皂的存在下,可以置换烯丙基氯,从而使PVC 稳定。此外,多元醇较多的羟基可以与金属离子形成无色的配位体,从而缓解了硬酯酸锌

化学填空.

单项选择 一、单选 1、下列碳正离子中稳定性最大的是(分数:2 分) A. 乙基碳正离子 B. 叔丁基碳正离子 C. 异丙基碳正离子 D. 2-苯基异丙基叔碳正离子 标准答案是:D。您的答案是:B 2、下列烯烃进行亲电加成反应活性最大的是(分数:2 分) A. 乙烯 B. 丙烯 C. 氯乙烯 D. 硝基乙烯 标准答案是:B。您的答案是: 3、下列化合物与混酸进行亲电取代反应活性最大的是(分数:2 分) A. 苯 B. 甲苯 C. 间二甲苯 D. 均三甲苯 标准答案是:D。您的答案是: 4、下列化合物与HCN进行亲核加成反应活性最大的是(分数:2 分) A. 乙醛 B. 一氯乙醛 C. 二氯乙醛 D. 三氯乙醛 标准答案是:D。您的答案是: 5、下列化合物不能发生碘仿反应的是(分数:2 分) A. 苯乙酮 B. 丙酮 C. 乙醇 D. 丙醛 标准答案是:D。您的答案是: 6、下列化合物水解反应速度最快的是(分数:2 分) A. 乙酰氯 B. 乙酰胺 C. 乙酸乙酯 D. 乙酸酐 标准答案是:A。您的答案是:

7、下列化合物的碱性最大的是(分数:2 分) A. 吡咯 B. 吡啶 C. 六氢吡啶 D. 苯胺 标准答案是:C。您的答案是: 8、下列糖类化合物中不与Tollens试剂作用的是(分数:2 分) A. 蔗糖 B. 麦芽糖 C. 纤维二糖 D. 乳糖 标准答案是:A。您的答案是: 9、下列碳自由基中稳定性最好的是(分数:2 分) A. 苄基自由基 B. 叔丁基自由基 C. 异丙基自由基 D. 乙基自由基 标准答案是:A。您的答案是: 10、下列化合物中含有手性碳原子的是(分数:2 分) A. 2-溴丁烷 B. 丁烷 C. 3-溴戊烷 D. 2-溴丙烷 标准答案是:A。您的答案是: 11、下列化合物中酸性最大的是(分数:2 分) A. 苯酚 B. 对氯苯酚 C. 对硝基苯酚 D. 对甲基苯酚 标准答案是:C。您的答案是: 12、下列化合物最易发生脱水反应的是(分数:2 分) A. 叔丁醇 B. 仲丁醇 C. 异丁醇 D. 丁醇 标准答案是:A。您的答案是: 13、下列化合物与ZnCl2/HCl(卢卡斯试剂)反应速度最快的是(分数:2 分) A. 1-丁醇 B. 2-丁醇 C. 2-丁烯-1-醇

工作场所空气有毒物质测定 第 164 部分:二苯基甲烷二异氰酸酯

工作场所空气有毒物质测定 第164部分:二苯基甲烷二异氰酸酯 1 范围 GBZ/T 300的本部分规定了测定工作场所空气中二苯基甲烷二异氰酸酯(MDI)的浸渍滤纸采集-高效液相色谱法。 本标准适用于工作场所空气中二苯基甲烷二异氰酸酯浓度的检测。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 6682 分析实验室用水规格和试验方法 GBZ 159 工作场所空气中有害物质监测的采样规范 3 二苯基甲烷二异氰酸酯的基本信息 二苯基甲烷二异氰酸酯的基本信息见表1。 表1 二苯基甲烷二异氰酸酯的基本信息 化学物质化学文摘号 (CAS号) 分子式相对分子质量 二苯基甲烷二异氰酸酯 (Diphenylmethane diisocyanate, MDI) 101-68-8 C15H10N2O2250.24 4 二苯基甲烷二异氰酸酯的浸渍滤纸采集-高效液相色谱法 4.1 原理 空气中二苯基甲烷二异氰酸酯(MDI)与浸渍滤纸上的1-(2-吡啶基)哌嗪(1-2PP)反应生成MDI-脲衍生物而被吸附于滤纸上,经洗脱、过滤后,高效液相色谱仪测定,以保留时间定性,峰高或峰面积定量。 4.2 仪器 4.2.1 玻璃纤维滤纸,孔径为0.8 μm,直径为37 mm或40 mm。 4.2.2 浸渍滤纸:在通风柜中,将玻璃纤维滤纸平铺于干净的平面载体上,向滤纸中心滴加0.50 mL 1-2PP溶液A,溶液应浸透整张滤纸。放置30 min后,置于密闭避光容器中保存,2℃~8℃环境中可保存一个月。 4.2.3 采样夹,滤料直径为37 mm或40 mm。

化学品工艺学大题

五、制备工艺题 1、下面是一个化妆品配方:甘油6.0%,棕榈酸乙基己酯6.0%,角鲨烷3%,抗坏血酸葡糖苷2%,鲸蜡硬脂基葡苷2%,甘油辛酸酯/癸酸酯3.0%,甲氧基水杨酸钾2%,霍霍巴油2.5%,丁二醇3.0%,聚二甲基硅氧烷2.0%,烟酰胺2%,鲸蜡硬脂醇2.5%,凝血酸2%,甘油硬脂酸酯1.5%,苯氧乙醇0.8%,硬脂酰谷氨酸钠0.5%,生育酚乙酸酯0.5%,海藻糖3%,甜菜碱3%,洋甘菊提取物2%,尿囊素0.2%,丙烯酸(酯)类0.2%,黄原胶0.2%,透明质酸0.1%,氢氧化钠0.4%,乙基己基甘油0.2%,EDTA二钠0.1%,去离子水至100%。(1)简述各原料在配方中的作用(用表格形式,将原料分类);(2)简述制备工艺;(3)绘制工艺流程图。

制备工艺: (1)油相的制备 把油相(润肤剂、乳化剂、防晒剂等油溶性原料)各成分加到油锅内,加热至75-85 ℃左右,搅拌熔融,混合均匀,并保持此温度准备均质乳化。(A相) (2)水相的制备 将去离子水加入到水锅中,加入EDTA二钠搅拌溶解,再把甘油、丁二醇、黄原胶等(可预先用丁二醇润湿)加入水锅中,搅拌、加热至75-85 oC,并搅拌至完全分散、溶解,保持此温度准备均质乳化。(B相) (3)两相混合、均质乳化 先将油相加入到乳化锅中,开启搅拌器(30-80r/min)和均质器(3000-4000r/min),再将水相加入到乳化锅中,保持在75-85 oC左右,均质5-15min。 (4)冷却降温、出料 ①均质乳化结束后,关闭均质器,冷却至约50oC加入功能性添加剂(透明质酸钠等),搅拌均匀;(C相) ②搅拌降温冷却至45oC加入中和剂(18%氢氧化钠水溶液),调节pH6.5左右; ③加入防腐剂、香精,搅拌均匀;(D相) ④搅拌降温至25-30oC,停止搅拌,出料。(半成品) (5)半成品检验 外观、香气、耐寒、耐热、pH值、离心实验(乳液)(2000 r/min)、微生物。(6)灌装、成品检验 半成品检验合格后,进行灌装。灌装后,对成品的质量进行检验。

有机化学笔记整理

基础有机化学 (邢其毅版) 2011年上海医工院考研笔记整理姓名:庄守群

有机化学理论部分基础知识点 1.保里不相容原理 原子轨道理论 2.能量最低原理 (基态) 3.洪特规则 1.自旋反向平行规则 价键理论 2.共价键的饱和性 3.共价键的方向性 激发态 4.能量相近轨道形成杂化轨道 1.能量相近 分子轨道理论 2.电子云最大重叠 3.对称性相同 规范性示例 化学反应的基本模式:A 试剂 溶剂条件 B 补充知识点 Lewis酸的三种类型: Lewis碱的三种类型: 第三章:立体化学 1.无对称面 1.分子手性的普通判据 2.无对称中心 3.无S4 反轴 注:对称轴Cn不能作为判别分子手性的判据 2. 外消旋体(dl体或+/-体)基本概念 1.绝对构型与相对构型 2.种类:外消旋化合物/混合物/固体溶液 基本理论非对映体 差向异构体端基差向异构体内消旋体(meso-)e.g 酒石酸 举例名词解释可能考察的:相对/绝对构型对映体/非对映体外消旋体潜不对称分子/原手性分子差向异构体

3.立体异构部分 ⑴含手性碳的单环化合物: 判别条件:一般判据 无S 1 S 2 S 4 相关:构象异构体ee aa ea ae 构象对映体 主要考查:S 1=对称面的有无 相关实例:1.1,2-二甲基环己烷 1,3二甲基环己烷 1,4二甲基环己烷 ⑵含不对称原子的光活性化合物 N 稳定形式 S P 三个不同的基团 ⑶含手性碳的旋光异构体 丙二烯型旋光异构体 1.狭义 c c c 条件:a b 两基团不能相同 2.广义:将双键看成环,可扩展一个或两个 c c c 联苯型旋光异构体 (阻转异构现象- 少有的由于单键旋转受阻而产生的异构体) B A a b 构型命名方法:选定一环,大基团为1,小基团为2.另一环,大集团为3,将其小基团转到环后最远处。 ⑷含手性面的旋光异构体 分子内存在扭曲的面而产生的旋光异构体,e.g 六螺苯 4.外消旋化的条件 ⑴若手性碳易成碳正离子、碳负离子、碳自由基等活性中间体,该化合物极易外消旋化。 ⑵若不对称碳原子的氢是羰基的α-H ,则在酸或碱的作用下极易外消旋化。 含多个不对称碳原子时,若只有其中一个碳原子易外消旋化,称差向异构化。 5.外消旋化的拆分 化学法 酶解法 晶种结晶法 柱色谱法 不对称合成法: 1.Prelog 规则—一个分子得构象决定了某一试剂接近分子的方向,这二者的关联成为Prelog 规则. 2.立体专一性:即高度的立体选择性

相关文档
最新文档