数值分析第七章作业

数值分析第七章作业

数值分析第七章作业

1.证明对迭代法0[0,)x ?∈

+∞1n x +=都收敛.

2.设有解方程1的迭代法2arctan 0x x ??=11(1arctan )2n n x x +=?. ① 证明:对于0x R ?∈,均有*lim n n x x →∞

=(*x 为方程的根). ② 此迭代法的收敛阶是多少?证明你的结论. 3.证明迭代公式113(2k k k

x x x +=+

是计算的二阶方法,假定初值0x

充分靠近

k 4.证明迭代公式212(632

k k k k x x x x ++=+)

的三阶方法,假定初值0x

,

并求极限k .

最新第六章习题答案-数值分析

第六章习题解答 2、利用梯形公式和Simpson 公式求积分2 1 ln xdx ? 的近似值,并估计两种方法计算值的最大 误差限。 解:①由梯形公式: 21ln 2 ()[()()][ln1ln 2]0.3466222 b a T f f a f b --= +=+=≈ 最大误差限 3''2 ()111 ()()0.0833******** T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式: 13()[()4()()][ln14ln()ln 2]0.38586262 b a b a S f f a f f b -+= ++=++≈ 最大误差限 5(4)4()66 ()()0.0021288028802880 S b a R f f ηη-=-=≤≈, 其中,(1,2)η∈。 4、推导中点求积公式 3''()()()()() ()224 b a a b b a f x dx b a f f a b ξξ+-=-+<

数值分析第四章数值积分与数值微分习题答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 011431313A h A h A h -?=?? ? =?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

令4()f x x =,则 455 1012()5 2 ()(0)()3 h h h h f x dx x dx h A f h A f A f h h ---== -++=? ? 故此时, 101()()(0)()h h f x dx A f h A f A f h --≠-++? 故 101()()(0)()h h f x dx A f h A f A f h --≈-++? 具有3次代数精度。 (2)若 21012()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1014h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 2211163 h h A h A -=+ 从而解得 1143 8383A h A h A h -?=-?? ? =?? ?=?? 令3 ()f x x =,则 22322()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

第六章习题答案数值分析.docx

第六章习题解答 2 2、利用梯形公式和 Simpson 公式求积分 ln xdx 的近似值, 并估计两种方法计算值的最大 1 误差限。 解:①由梯形公式: T ( f ) b a [ f (a) f (b)] 2 1 [ln1 ln 2] ln 2 0.3466 2 2 2 最大误差限 R ( f ) (b a)3 f '' ( ) 1 1 1 0.0833 T 12 12 2 12 12 其中, (1,2) ②由梯形公式: b a 4 f ( b a f (b)] 1 4ln( 3 ln 2] 0.3858 S( f ) [ f (a) ) [ln1 ) 6 2 6 2 最大误差限 R S ( f ) (b a)5 f (4) ( ) 6 6 0.0021, 2880 2880 4 2880 其中, (1,2) 。 4、推导中点求积公式 f ( x)dx (b a) f ( a b ) (b a) 3 (a b) b a 2 24 证明: 构造一次函数 P ( x ),使 P a 2 b f a b , P ' ( a b ) f ' ( a b ), P '' ( x) 0 2 2 2 则,易求得 P( x) f ' ( a b )( x a b ) f ( a b ) 2 2 2 且 P(x)dx f ' ( a b )( x a b ) f ( a b ) dx b b a a 2 2 2 f ( a b )dx (b a) f ( a b ) ,令 P(x)dx I ( f ) b b a 2 2 a 现分析截断误差:令 r ( x) f ( x) P(x) f ( x) f ' ( a b )( x a b ) f ( a b ) 2 2 2 由 r ' ( x) f ' (x) f ' ( a b ) 易知 x a 2 b 为 r (x) 的二重零点, 2 a b )2 , 所以可令 r (x) ( x)( x 2

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

郑州大学数值分析重点考察内容及各章习题

《数值分析》 重点考察内容及各章作业答案 学院: 学号: 姓名:

重点考察内容 基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。 第一章基础 掌握:误差的种类,截断误差,舍入误差的来源,有效数字的判断。 了解:误差限,算法及要注意的问题。 第二章插值 掌握:Hermite插值,牛顿插值,差商计算,插值误差估计。 了解:Lagrange插值 第三章数据拟合 掌握:给出几个点求线性拟合曲线。 了解:最小二乘原理 第四章数值积分微分 掌握:梯形公式,Simpson公式,代数精度,Gauss积分,带权Gauss积分公式推导,复化梯形公式推导及算法。 了解:数值微分,积分余项 第五章直接法 掌握:LU分解求线性方程组,运算量 了解:Gauss消去法,LDL,追赶法 第六章迭代法 掌握:Jacobi,Gauss-Seidel迭代格式构造,敛散性分析,向量、矩阵的范数、谱半径 了解:SOR迭代 第七章Nolinear迭代法 掌握:牛顿迭代格式构造,简单迭代法构造、敛散性分析,收敛阶。 了解:二分法,弦截法 第八章ODE解法 掌握:Euler公式构造、收敛阶。 了解:梯形Euler公式、收敛阶,改进Euler公式 题目类型:填空,计算,证明综合题

第一章 误差 1. 科学计算中的误差来源有4个,分别是________,________,________,________。 2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差? 3. 0.7499作 3 4 的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字. 4. 改变下列表达式,使计算结果比较精确: (1)11,||1121x x x x --++ (2 ||1x (3) 1cos ,0,|| 1.x x x x -≠ (4)sin sin ,αβαβ-≈ 5. 采用下列各式计算61)时,哪个计算效果最好?并说明理由。 (1) (2 )99-3 )6 (3-(4 6. 已知近似数*x 有4位有效数字,求其相对误差限。 上机实验题: 1、利用Taylor 展开公式计算0! k x k x e k ∞ ==∑,编一段小程序,上机用单精度计算x e 的函数 值. 分别取x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法. 2、已知定积分1 ,0,1,2,,206 n n x I dx n x ==+? ,有如下的递推关系 111 110 0(6)61666 n n n n n x x x x I dx dx I x x n ---+-===++-? ? 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -= -=取; (2) 12011),0.6n n I nI I n -=-=(取

数值分析第一次作业及参考答案

数值计算方法第一次作业及参考答案 1. 已测得函数()y f x =的三对数据:(0,1),(-1,5),(2,-1), (1)用Lagrange 插值求二次插值多项式。(2)构造差商表。(3)用Newton 插值求二次插值多项式。 解:(1)Lagrange 插值基函数为 0(1)(2)1 ()(1)(2)(01)(02)2 x x l x x x +-= =-+-+- 同理 1211 ()(2),()(1)36 l x x x l x x x = -=+ 故 2 20 2151 ()()(1)(2)(2)(1) 23631 i i i p x y l x x x x x x x x x =-==-+-+-++=-+∑ (2)令0120,1,2x x x ==-=,则一阶差商、二阶差商为 011215 5(1) [,]4, [,]20(1) 12 f x x f x x ---= =-= =----- 0124(2) [,,]102 f x x x ---= =- 实际演算中可列一张差商表: (3)用对角线上的数据写出插值多项式 2 2()1(4)(0)1*(0)(1)31P x x x x x x =+--+-+=-+ 2. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使 截断误差不超过6 10-,问使用函数表的步长h 应取多少 解: ()40000(), (),[4,4],,,, 1.x k x f x e f x e e x x h x x h x x th t ==≤∈--+=+≤考察点及

(3) 2000 4 43 4 3 () ()[(()]()[()] 3! (1)(1) (1)(1) 3!3! .(4,4). 6 f R x x x h x x x x h t t t e t h th t h e h e ξ ξ =----+ -+ ≤+??-= ≤∈- 则 4 36 ((1)(1) 100.006. t t t h - -+± << Q在点 得 3.求2 () f x x =在[a,b]上的分段线性插值函数() h I x,并估计误差。 解: 22 22 11 1 111 22 11 11 1 () () k k k k h k k k k k k k k k k k k k k k k k k x x x x x x I x x x x x x x x x x x x x x x x x x x x x ++ + +++ ++ ++ + --- =+= --- ?-? -=+- - [] 2 11 22 11 ()()()[()] 11 ()() 44 h h k k k k k k k k R x f x I x x x x x x x x x x x x x h ++ ++ =-=-+- =--≤-= 4.已知单调连续函数() y f x =的如下数据 用插值法计算x约为多少时() 1. f x=(小数点后至少保留4位) 解:作辅助函数()()1, g x f x =-则问题转化为x为多少时,()0. g x=此时可作新 的关于() i g x的函数表。由() f x单调连续知() g x也单调连续,因此可对() g x的数值进行反插。的牛顿型插值多项式为 1()0.110.097345( 2.23)0.451565( 2.23)( 1.10) 0.255894( 2.23)( 1.10)(0.17) x g y y y y y y y - ==-+++++ -++-

数值分析参考答案(第四章)

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

数值分析作业答案part

6.4.设??? ? ? ??=5010010a b b a A ,0det ≠A ,用a ,b 表示解线性方程组f Ax =的雅可比迭代与 高斯—塞德尔迭代收敛的充分必要条件。 解 雅可比迭代法的迭代矩阵 ? ??? ??? ? ??----=???? ? ??----????? ??=-050100100100000001010101 a b b a a b b a B J , ?? ? ?? -=-1003||2ab B I J λλλ,10||3)(ab B J = ρ。 雅可比迭代法收敛的充分必要条件是3 100 ||

数值分析作业答案(第4章) part2

4.6.若用复化梯形公式计算积分1 x I e dx =? , 问区间[0,1]应人多少等分才能使截断误差不超过 51 102 -??若改用复化辛普森公式,要达到同样精度区间[0,1]应分多少等分? 解:采用复化梯形公式时,余项为 2 ()(),(,)12 n b a R f h f a b ηη-''=- ∈ 又 1 x I e dx =? 故 (),(),0, 1.x x f x e f x e a b ''==== 221()()1212 n e R f h f h η''∴= ≤ 若51 ()102 n R f -≤ ?,则 256 10h e -≤? 当对区间[0,1]进行等分时, 1,h n = 故有 212.85n ≥ = 因此,将区间213等分时可以满足误差要求。 采用复化辛普森公式时,余项为 4(4) ()()(),(,)1802 n b a h R f f a b ηη-=- ∈ 又 (),x f x e = (4)4(4)4 (), 1()|()|28802880 x n f x e e R f h f h η∴=∴=-≤ 若51 ()102 n R f -≤ ?,则 451440 10h e -≤ ?

当对区间[0,1]进行等分时 1n h = 故有 1 54 1440(10) 3.71n e ≥?= 因此,将区间8等分时可以满足误差要求。 4.10.试构造高斯型求积公式 )()()(1 11001 x f A x f A dx x f x +≈? 。 解 令公式对32,,,1)(x x x x f =准确成立,得 ??? ?? ? ??? ??=+=+=+=+,72,52, 32,213103012 1020110010A x A x A x A x A x A x A A ) 4()3()2() 1( 由于 1011001100)()(A x x A A x A x A x -++=+, 利用方程(1),方程(2)可化为 3 2 )(21010= -+A x x x (5) 同样,用方程(2)化方程(3),方程(3)化方程(4),分别得 52 )(3211010=-+A x x x x (6) 7 2 )(52121010=-+A x x x x (7) 用方程(5)消去方程(6)中的101)(A x x -,即将101)(A x x -用023 2 x -代替,得 5 2 )32(32100=-+x x x (8) 用方程(6)消去方程(7)中的1101)(A x x x -,即将1101)(A x x x -用03 2 52x -代替,得

数值分析 第六章 习题

第六章 习 题 1. 计算下列矩阵的1A ,2A ,A ∞三种范数。 (1)1101A ???=????,(2)312020116A ????=??????? . 2. 用Jacobi 方法和Gauss-Seidel 迭代求解方程组 1231231 238322041133631236x x x x x x x x x ?+=??+?=??++=? 要求取(0)(0,0,0)T x =计算到(5)x ,并分别与精确解(3,2,1)T x =比较。 3. 用Gauss-Seidel 迭代求解 12312312 35163621122x x x x x x x x x ??=??++=???+=?? 以(0)(1,1,1)T x =?为初值,当(1)() 310k k x x +?∞?<时,迭代终止。 4. 已知方程组121122,2,x x b tx x b +=?? +=? (1)写出解方程组的Jacobi 迭代矩阵,并讨论迭代收敛条件。 (2)写出解方程组的Gauss-Seidel 迭代矩阵,并讨论迭代收敛条件. 5. 设有系数矩阵 122111221A ?????=?????? , 211111112B ?????=??????? , 证明:(1)对于系数矩阵A ,Jacobi 迭代收敛,而Gauss-Seidel 迭代不收敛. (2)对于矩阵B ,. 6. 讨论方程组 112233302021212x b x b x b ?????????????=??????????????????? 用Jacobi 迭代和Gauss-Seidel 迭代的收敛性;如果都收敛,比较哪种方法收敛更快.

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

数值分析习题六解答

习 题 六 解 答 1、在区间[0,1]上用欧拉法求解下列的初值问题,取步长h=0.1。 (1)210(1)(0)2y y y '?=--?=?(2)sin (0)0x y x e y -'?=+?=? 解:(1)取h=0.1,本初值问题的欧拉公式具体形式为 21(1)(0,1,2,)n n n y y y n +=--= 由初值y 0=y(0)=2出发计算,所得数值结果如下: x 0=0,y 0=2; x 1=0.1,2100(1)211y y y =--=-= x 2=0.2,2211(1)101y y y =--=-= 指出: 可以看出,实际上求出的所有数值解都是1。 (2)取h=0.1,本初值问题的欧拉公式具体形式为 21(sin )(0,1,2,)n x n n n y y h x e n -+=++= 由初值y 0=y(0)=0出发计算,所得数值结果如下: x 0=0,y 0=0; x 1=0.1, 02 1000 (sin )00.1(sin 0)00.1(01)0.1x y y h x e e -=++=+?+=+?+= x 2=0.2, 122110.1 (sin )0.10.1(sin 0.1)0.10.1(0.10.9)0.2 x y y h x e e --=++=+?+=+?+= 指出: 本小题的求解过程中,函数值计算需要用到计算器。 2、用欧拉法和改进的欧拉法(预测-校正法)求解初值问题,取步长h=0.1。 22(00.5) (0)1 y x y x y '?=-≤≤? =? 解:(1) 取h=0.1,本初值问题的欧拉公式具体形式为 2 1(2)(0,1,2,)n n n n y y h x y n +=+-= 由初值y 0=y(0)=1出发计算,所得数值结果如下:

数值分析(第五版)计算实习题第四章作业

第四章: 1、(1):复合梯形 建立m文件: function t=natrapz(fname,a,b,n) h=(b-a)/n; fa=feval(fname,a);fb=feval(fname,b); f=feval(fname,a+h:h:b-h+0.001*h); t=h*(0.5*(fa+fb)+sum(f)); 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,10) 输出: ans = -0.417062831779470 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,100) 输出: ans = -0.443117908008157 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,1000) 输出: ans = -0.444387538997162 复合辛普森 建立m文件: function t=comsimpson(fname,a,b,n)

h=(b-a)/n; fa=feval(fname,a);fb=feval(fname,b); f1=feval(fname,a+h:h:b-h+0.001*h); f2=feval(fname,a+h/2:h:b-h+0.001*h); t=h/6*(fa+fb+2*sum(f1)+4*sum(f2)); 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> format long; >>comsimpson(f,eps,1,10) 输出: ans = -0.435297890074689 输入: >>syms x >>f=inline('sqrt(x).*log(x);'); >>comsimpson(f,eps,1,100) 输出: ans = -0.444161178415673 输入: >>syms x >>f=inline('sqrt(x).*log(x);'); >>comsimpson(f,eps,1,1000) 输出: ans = -0.444434117614180 (2)龙贝格 建立m文件: function [RT,R,wugu,h]=Romberg(fun,a,b,wucha,m) %RT是龙贝格积分表 %R是数值积分值 %wugu是误差估计 %h是最小步长 %fun是被积函数 %a b是积分下、上限

第六章非线性方程的数值解法习题解答

第六章非线性方程的数值解法习题解答 填空题: 1. 求方程()x f x =根的牛顿迭代格式是__________________。 Ans:1()1()n n n n n x f x x x f x +-=- '- 2.求解方程 在(1, 2)内根的下列迭代法中, (1) (2) (3) (4) 收敛的迭代法是(A ). A .(1)和(2) B. (2)和(3) C. (3)和(4) D. (4)和(1) 3.若0)()(,故迭代发散。 以上三中以第二种迭代格式较好。 2、设方程()0f x =有根,且'0()m f x M <≤≤。试证明由迭代格式1()k k k x x f x λ+=- (0,1,2,)k =L 产生的迭代序列{}0k k x ∞ =对任意的初值0(,)x ∈-∞+∞,当2 0M λ<< 时,均收敛于方程的根。

数值分析第三章作业

16. 求运动方程. 解:设运动方程为S = at + b,由给定数据得 616 1 =∑=i ,7.1461 =∑=i i x , 63.536 1 2=∑=i i x , 2806 1 =∑=i i y ,10786 1 =∑=i i i y x 得 ?? ?=+=+1078 63.537.14280 7.146a b a b 解得 b=-7.8550478,a=22.25376 运动方程为S=22.25376t-7.8550478 17.已知实验数据如下: 用最小二乘法求一个形如2bx a y +=的经验公式,并计算均方误差. 解:由题意{} 2102)(,1)(,,1x x x x span ===??φ, 所以51), (2 5 1 00==∑=i ?? 7277699),(5 1 4 11== ∑=i i x ?? 5327),(5 12 10== ∑=i i x ?? 4.271),(5 1 0== ∑=i i y y ? 5.369321),(5 1 2 1==∑=i i i y x y ? 得

?? ?=+=+5.36932172769953274 .27153275b a b a 解得:a=0.9726046,b=0.0500351 所以经验公式为 y=0.9726046+0.0500351x 2 均方误差为 : [ ] 130.0)01693.0(),(),(||||||||2 12 11022 2==--=y b y a y ??δ 18.在某化学反应中,由实验得分解物浓度与时间关系如下: 用最小二乘法求)(t f y = 解:将给定数据点画出草图,可见曲线近似指数函数,故设t b ae y =,两边取对数得 t b Ina Iny + = 记Ina A Iny y ==,,则有 t b A y 1 += 即t x x t span 1 )(,1)(},1,1{10===??φ,计算 ∑=== 11 1 2 00111),(i ??,∑=== 11 1 2 1106232136.01 ),(i i t ?? 6039755.0t 1 ),(),(11 1 i 1010∑ === =i ???? ∑=== 11 1 0639649.13),(i i y y ? ,∑=== 11 115303303.0),(i i i t y y ? 从而解得法方程为 ?? ?=+=+5303303 .0062321366.06039755.0639649 .1360397556.011b A b A

数值分析作业答案(第5章)

5.1.设A 是对称矩阵且011≠a ,经过一步高斯消去法后,A 约化为 ?? ????21 110 A a a T 证明2A 是对称矩阵。 证明 由消元公式及A 的对称性,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 对称。 5.2.设n ij a A )(=是对称正定矩阵,经过高斯消去法一步后,A 约化为 ?? ????21 110 A a a T 其中1)2(2)(-=n ij a A 。证明: (1).A 的对角元素;,,2,1,0n i a ii => (2).2A 是对称正定矩阵。 证明 (1).因为A 对称正定,所以 n i e Ae a i i ii ,,2,1,0),( =>=, 其中T i e )0,,0,1,0,,0( =为第i 个单位向量。 (2).由A 的对称性及消元公式,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 也对称。 又由A L A a a T 121110=????? ?,其中

??? ?????- =? ????? ? ?????????--=-111 1 11111 21101 1011n n I a a a a a a L , 可见1L 非奇异,因而对任意0≠x ,由A 的正定性,有 ,0),(),(,011111>=≠x AL x L x AL L x x L T T T T 故T AL L 11正定。 由,000110211 111121111 1?? ? ?? ?=????????-??????=-A a I a a A a a AL L n T T T 而011>a ,故知2A 正定

数值分析第四版习题和答案解析

第四版 数值分析习题 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝ 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大这个计算过程 稳定吗 12.计算,取,利用下列等式计算,哪一个得到的结果最好 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式 计算,求对数时误差有多大 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 . 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3.

4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误 差做比较. 2.求证: (a)当时,. (b)当时,. 3.在次数不超过6的多项式中,求在的最佳一致逼近多项式.

常州大学数值分析第三章

第三章作业 1.设节点x 0=0,x 1=π/8,x2=π/4,x3=3π/8,x4=π/2,试适当选取上述节点,用拉格朗日插值法分别构造cosx 在区间[0,π/2]上的一次、二次、四次差值多项式P 1(x ),P 2(x)和P 4(x),并分别计算P 1(π/3),P 2(π/3)和P 4(π/3). 解: x0 x1 x2 x3 x4 x π/8 π/4 3π/8 π/2 y=cosx 1 0.923879 0.707106 0.382683 (1)选择x0=0,x4=π/2的节点 y0=cosx0=1,y4=cosx4=0,可得 ) () ()()()(0101 1010 1x x x x y x x x x y x P --+--=,即 333333 .0)3/(1636620.0)(11≈+-≈πP x x P (2)选择x0=0,x2=π/4,x4=π/2的节点 y0=cosx0=1,y2=cosx2=0.707106,y4=cosx4=0,可得 ) )(())(())(() )(())(())(()(1202102 2101201 2010210 1x x x x x x x x y x x x x x x x x y x x x x x x x x y x P ----+----+----=,即 145968 .1)3/(1511124.5482067.1)(222≈++-≈πP x x x P (3)选择x0=0,,x1=π/8,x2=π/4,x3=3π/8,x4=π/2的节点y0=cosx0=1,y1=cosx1=0.923879,y2=cosx2 =0.707106,y3=cosx3=0.382683,y4=cosx4=0可得 ) ( )(4 ,04 4∏ ∑≠==--=i j j j i j i i x x x x y x P , 得 P3(x)=1+0.0031x-0.51542x +0.02423 x +0.02 844 x 4(3) 0.5001P π=/ 7.解: 选取0123=0=1=2=3x x x x ,,,为节点 >> T0=[0.0 0.5];x=[1 2 3]';y=[1.25 2.75 3.5]';x0=2.8;T=aitken(x,y,x0,T0) T = 0.0000 0.5000 0.0000 0.0000 0.0000 1.0000 1.2500 2.6000 0.0000 0.0000 2.0000 2.7500 3.6500 4.4900 0.0000 3.0000 3.5000 3.3000 3.2300 3.4820 16 1)拉格朗日差值 .选取 函数 ],[),sin()cos(ππ-∈+=x x x y x0=-pi:0.5*pi:pi; y0=cos(x0); x=-pi:0.05*pi:pi; if length(x0)~=length(y0) error('The length of x0 must be equal to it of y0'); end w=length(x0); n=w-1; L=zeros(w,w); for k=1:n+1 V=1; for j=1:n+1 if k~=j if abs(x0(k)-x0(j))

相关文档
最新文档