快速傅里叶变换_蝶形运算_按频率抽取基2-fft算法_MATLAB代码

快速傅里叶变换_蝶形运算_按频率抽取基2-fft算法_MATLAB代码
快速傅里叶变换_蝶形运算_按频率抽取基2-fft算法_MATLAB代码

function y=MyFFT_FB(x,n)

%MYFFT_TB:My Fast Fourier Transform Frequency Based

%按频率抽取基2-fft算法

%input:

% x -- 输入的一维样本

% n -- 变换长度,缺省时 n=length(x) 当n小于x数据长度时,x数据被截断到第n个数据

% 当n大于时,x数据在尾部补0直到 x 含n个数据

%output:

% y -- 1*n的向量,快速傅里叶变换结果

%variable define:

% N -- 一维数据x的长度

% xtem -- 临时储存x数据用

% m,M -- 对N进行分解 N=2^m*M,M为不能被2整除的整数

% two_m -- 2^m

% adr -- 变址,1*N的向量

% l -- 当前蝶形运算的级数

% W -- 长为 N/2的向量,记录 W(0,N),W(1,N),...W(N/2-1,N)

% d -- 蝶形运算两点间距离

% t -- 第l级蝶形运算含有的奇偶数组的个数

% mul -- 标量,乘数

% ind1,ind2 -- 标量,下标

% tem -- 标量,用于临时储存

%参考文献:

% 81c 输入参数个数检查

msg=nargchk(1,2,nargin);

error(msg);

%% 输入数据截断或加0

N=length(x);

if nargin==2

if N

xtem=x;

x=zeros(1,n);

x(1:N)=xtem;

N=n;

else % 截断

xtem=x;

x=xtem(1:n);

N=n;

end

end

%% 对N进行分解 N=2^m*M

[m,M]=factorize(N);

two_m=N/M;

%% 变换

if m~=0

%% 如果N可以被2整除

adr=address(m,M,two_m);

y=x; % 蝶形运算级数 l=m 时

%% 计算W向量

W=exp(-2*pi*i* ( 0:N/2-1 ) /N);

%% 蝶形运算

d=N/2;

t=1;

for l=1:m

% 加

for ii=0:t-1

ind1=ii*2*d+1;

ind2=ind1+d;

for r=0:d-1

tem=y(ind1)+y(ind2);

y(ind2)=y(ind1)-y(ind2);

y(ind1)=tem;

ind1=ind1+1;

ind2=ind2+1;

end

end

% 乘

for r=0:d-1

mul=W(r*t+1);

for ii=0:t-1

y(ii*2*d+d+1+r) = y(ii*2*d+d+1+r)*mul;

end

end

d=d/2;t=t*2;

end

%% 直接傅里叶变换

if M~=1 % N 分解含有非2因数M时,对y中每M个数据做直接傅里叶变换 for ii=1:two_m

y((ii-1)*M+1 : ii*M ) = DDFT( y((ii-1)*M+1 : ii*M ) );

end

%% 变址输出

y=y(adr+1);

else

%% 如果N 不能被2整除

y=DDFT(x);

end

end

%% 内嵌函数 ====================================================== function y=DDFT(x)

%% 直接离散傅里叶变换

%input:

% x -- 样本数据,N维向量

%output:

% y -- N维向量

%参考文献:

% 结构动力学,克拉夫,P82

% variable define

% s -- sum,用于求和

N=length(x);

y=zeros(size(x));

for n=1:N

s=0;

for m=1:N

s=s+x(m)*exp( -i*2*pi*(m-1)*(n-1)/N );

end

y(n)=s;

end

end

function [m,M]=factorize(N)

%% 对N分解

m=0;

while true

if mod(N,2)==0

m=m+1;

N=N/2;

else

break;

end

end

end

function adr=address(m,M,two_m)

%% 变址

% b -- 2^m * m 的矩阵,用来存储二进制数据

% ds -- 数,公差

adr=zeros(two_m,M);

b=de2bi(0:two_m-1,m);%转换为2进制注:matlab中二进制[0 1 1]=6 b=b(:,end:-1:1);% 逆序

adr(:,1)=bi2de(b);%2进制转换为10进制

if M~=1

ds=two_m;

adr=adr(:,1)*ones(1,M);

adr=adr+ds*ones(size(adr,1),1)*(0:M-1);

adr=reshape(adr',1,[]);

end

end

按频率抽取基2-快速傅里叶逆变换算法_MATLAB代码

function x=MyIFFT_FB(y) %MyIFFT_TB:My Inverse Fast Fourier Transform Time Based %按频率抽取基2-傅里叶逆变换算法 %input: % y -- 傅里叶正变换结果,1*N的向量 %output: % x -- 逆变换结果,1*N的向量 %参考文献: % https://www.360docs.net/doc/d12399574.html,/view/fea1e985b9d528ea81c779ee.html N=length(y); x=conj(y); %求共轭 x=MyFFT_FB(x);%求FFT x=conj(x);%求共轭 x=x./N;%除以N end %% 内嵌函数====================================================== function y=MyFFT_FB(x,n) %MYFFT_TB:My Fast Fourier Transform Frequency Based %按频率抽取基2-fft算法 %input: % x -- 输入的一维样本 % n -- 变换长度,缺省时n=length(x) 当n小于x数据长度时,x数据被截断到第n个数据% 当n大于时,x数据在尾部补0直到x 含n个数据 %output: % y -- 1*n的向量,快速傅里叶变换结果 %variable define: % N -- 一维数据x的长度 % xtem -- 临时储存x数据用 % m,M -- 对N进行分解N=2^m*M,M为不能被2整除的整数 % two_m -- 2^m % adr -- 变址,1*N的向量 % l -- 当前蝶形运算的级数 % W -- 长为N/2的向量,记录W(0,N),W(1,N),...W(N/2-1,N) % d -- 蝶形运算两点间距离 % t -- 第l级蝶形运算含有的奇偶数组的个数 % mul -- 标量,乘数 % ind1,ind2 -- 标量,下标 % tem -- 标量,用于临时储存 %参考文献: % https://www.360docs.net/doc/d12399574.html,/view/fea1e985b9d528ea81c779ee.html %% 输入参数个数检查

聚类分析Matlab程序实现

2. Matlab程序 2.1 一次聚类法 X=[11978 12.5 93.5 31908;…;57500 67.6 238.0 15900]; T=clusterdata(X,0.9) 2.2 分步聚类 Step1 寻找变量之间的相似性 用pdist函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore 函数进行标准化。 X2=zscore(X); %标准化数据 Y2=pdist(X2); %计算距离 Step2 定义变量之间的连接 Z2=linkage(Y2); Step3 评价聚类信息 C2=cophenet(Z2,Y2); //0.94698 Step4 创建聚类,并作出谱系图 T=cluster(Z2,6); H=dendrogram(Z2); Matlab提供了两种方法进行聚类分析。 一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;(3)用 cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。 1.Matlab中相关函数介绍 1.1 pdist函数 调用格式:Y=pdist(X,’metric’) 说明:用‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。’ X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。 metric’取值如下: ‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离; ‘minkowski’:明可夫斯基距离;‘cosine’: ‘correlation’:‘hamming’: ‘jaccard’:‘chebychev’:Chebychev距离。 1.2 squareform函数 调用格式:Z=squareform(Y,..) 说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。 1.3 linkage函数 调用格式:Z=linkage(Y,’method’) 说明:用‘method’参数指定的算法计算系统聚类树。 Y:pdist函数返回的距离向量;

MATLAB实现FCM 聚类算法

本文在阐述聚类分析方法的基础上重点研究FCM 聚类算法。FCM 算法是一种基于划分的聚类算法,它的思想是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。最后基于MATLAB实现了对图像信息的聚类。 第 1 章概述 聚类分析是数据挖掘的一项重要功能,而聚类算法是目前研究的核心,聚类分析就是使用聚类算法来发现有意义的聚类,即“物以类聚” 。虽然聚类也可起到分类的作用,但和大多数分类或预测不同。大多数分类方法都是演绎的,即人们事先确定某种事物分类的准则或各类别的标准,分类的过程就是比较分类的要素与各类别标准,然后将各要素划归于各类别中。确定事物的分类准则或各类别的标准或多或少带有主观色彩。 为获得基于划分聚类分析的全局最优结果,则需要穷举所有可能的对象划分,为此大多数应用采用的常用启发方法包括:k-均值算法,算法中的每一个聚类均用相应聚类中对象的均值来表示;k-medoid 算法,算法中的每一个聚类均用相应聚类中离聚类中心最近的对象来表示。这些启发聚类方法在分析中小规模数据集以发现圆形或球状聚类时工作得很好,但当分析处理大规模数据集或复杂数据类型时效果较差,需要对其进行扩展。 而模糊C均值(Fuzzy C-means, FCM)聚类方法,属于基于目标函数的模糊聚类算法的范畴。模糊C均值聚类方法是基于目标函数的模糊聚类算法理论中最为完善、应用最为广泛的一种算法。模糊c均值算法最早从硬聚类目标函数的优化中导出的。为了借助目标函数法求解聚类问题,人们利用均方逼近理论构造了带约束的非线性规划函数,以此来求解聚类问题,从此类内平方误差和WGSS(Within-Groups Sum of Squared Error)成为聚类目标函数的普遍形式。随着模糊划分概念的提出,Dunn [10] 首先将其推广到加权WGSS 函数,后来由Bezdek 扩展到加权WGSS 的无限族,形成了FCM 聚类算法的通用聚类准则。从此这类模糊聚类蓬勃发展起来,目前已经形成庞大的体系。 第 2 章聚类分析方法 2-1 聚类分析 聚类分析就是根据对象的相似性将其分群,聚类是一种无监督学习方法,它不需要先验的分类知识就能发现数据下的隐藏结构。它的目标是要对一个给定的数据集进行划分,这种划分应满足以下两个特性:①类内相似性:属于同一类的数据应尽可能相似。②类间相异性:属于不同类的数据应尽可能相异。图2.1是一个简单聚类分析的例子。

计算方法_全主元消去法_matlab程序

%求四阶线性方程组的MA TLAB程序 clear Ab=[0.001 2 1 5 1; 3 - 4 0.1 -2 2; 2 -1 2 0.01 3; 1.1 6 2.3 9 4];%增广矩阵 num=[1 2 3 4];%未知量x的对应序号 for i=1:3 A=abs(Ab(i:4,i:4));%系数矩阵取绝对值 [r,c]=find(A==max(A(:))); r=r+i-1;%最大值对应行号 c=c+i-1;%最大值对应列号 q=Ab(r,:),Ab(r,:)=Ab(i,:),Ab(i,:)=q;%行变换 w=Ab(:,c),Ab(:,c)=Ab(:,i),Ab(:,i)=w;%列变换 n=num(i),num(i)=num(c),num(c)=n;%列变换引起未知量x次序变化for j=i:3 Ab(j+1,:)=-Ab(j+1,i)*Ab(i,:)/Ab(i,i)+Ab(j+1,:);%消去过程 end end %最后得到系数矩阵为上三角矩阵 %回代算法求解上三角形方程组 x(4)=Ab(4,5)/Ab(4,4); x(3)=(Ab(3,5)-Ab(3,4)*x(4))/Ab(3,3); x(2)=(Ab(2,5)-Ab(2,3)*x(3)-Ab(2,4)*x(4))/Ab(2,2); x(1)=(Ab(1,5)-Ab(1,2)*x(2)-Ab(1,3)*x(3)-Ab(1,4)*x(4))/Ab(1,1); for s=1:4 fprintf('未知量x%g =%g\n',num(s),x(s)) end %验证如下 %A=[0.001 2 1 5 1; 3 -4 0.1 -2 2;2 -1 2 0.01 3; 1.1 6 2.3 9 4]; %b=[1 2 3 4]'; %x=A\b; %x1= 1.0308 %x2= 0.3144 %x3= 0.6267 %x4= -0.0513

傅里叶变换matlab代码

%傅里叶变换 clc;clear all;close all; tic Fs=128;%采样频率,频谱图的最大频率 T=1/Fs;%采样时间,原始信号的时间间隔 L=256;%原始信号的长度,即原始离散信号的点数 t=(0:L-1)*T;%原始信号的时间取值范围 x=7*cos(2*pi*15*t-pi)+3*cos(2*pi*40*t-90*pi/180)+3*cos(2*pi*30*t-90*pi/ 180); z=7*cos(2*pi*15*t-pi)+3*cos(2*pi*40*t-90*pi/180); z1=6*cos(2*pi*30*t-90*pi/180); z1(1:L/2)=0; z=z+z1; y=x;%+randn(size(t)); figure; plot(t,y) title('含噪信号') xlabel('时间(s)') hold on plot(t,z,'r--') N=2^nextpow2(L);%N为使2^N>=L的最小幂 Y=fft(y,N)/N*2; Z=fft(z,N)/N*2;%快速傅里叶变换之后每个点的幅值是直流信号以外的原始信号幅值的N/2倍(是直流信号的N倍) f=Fs/N*(0:N-1);%频谱图的频率取值范围 A=abs(Y);%幅值 A1=abs(Z); B=A; %让很小的数置零. B1=A1; A(A<10^-10)=0; % A1(A1<10^-10)=0; P=angle(Y).*A./B; P1=angle(Z).*A1./B1; P=unwrap(P,pi);%初相位值,以除去了振幅为零时的相位值 P1=unwrap(P1,pi); figure subplot(211) plot(f(1:N/2),A(1:N/2))%函数ffs返回值的数据结构具有对称性,因此只取前一半 hold on plot(f(1:N/2),A1(1:N/2),'r--') title('幅值频谱')

matlab实现Kmeans聚类算法

题目:matlab实现Kmeans聚类算法 姓名吴隆煌 学号41158007

背景知识 1.简介: Kmeans算法是一种经典的聚类算法,在模式识别中得到了广泛的应用,基于Kmeans的变种算法也有很多,模糊Kmeans、分层Kmeans 等。 Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定标记样本调整类别中心向量。K均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是一种概率密度梯度估计方法(优点:无需求解出具体的概率密度,直接求解概率密度梯度。),所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans 和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些

点应该分在一个组中。当一堆点都靠的比较近,那这堆点应该是分到同一组。使用k-means,可以找到每一组的中心点。 当然,聚类算法并不局限于2维的点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量) 2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。但这也并不意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上

MATLAB数字图像处理几何变换傅里叶变换

Matlab数字图像处理实验指导 实验目的: 通过实验,深入理解和掌握图像处理的基本技术,提高动手实践能力。 实验环境: Matlab变成 实验一图像的几何变换 实验内容:设计一个程序,能够实现图像的各种几何变换。 实验要求:读入图像,打开图像,实现图像的平移变换、比例缩放、转置变换、镜像变换、旋转变换等操作。 实验原理: 图像几何变换又称为图像空间变换,它将一幅图像中的坐标位置映射到另一幅图像中的新坐标位置。学习几何变换的关键就是要确定这种空间映射关系,以及映射过程中的变化参数。 几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排。一个几何变换需要两部分运算:首先是空间变换所需的运算,如平移、镜像和旋转等,需要用它来表示输出图像与输入图像之间的(像素)映射关系;此外,还需要使用灰度插值算法,因为按照这种变换关系进行计算,输出图像的像素可能被映射到输入图像的非整数坐标上。 设原图像f(x0,y0)经过几何变换产生的目标图像为g(x1,y1),则该空间变换(映射)关系可表示为: x1=s(x0,y0) y1=t(x0,y0) 其中,s(x0,y0)和t(x0,y0)为由f(x0,y0)到g(x1,y1)的坐标换变换函数。 一、图像平移 图像平移就是将图像中所有的点按照指定的平移量水平或者垂直移动。

二、图像镜像 镜像变换又分为水平镜像和垂直镜像。水平镜像即将图像左半部分和右半部分以图像竖直中轴线为中心轴进行对换;而竖直镜像则是将图像上半部分和下半部分以图像水平中轴线为中心轴进行对换。 三、图像转置 图像转置是将图像像素的x坐标和y坐标呼唤。图像的大小会随之改变——高度和宽度将呼唤。

最短距离聚类的matlab实现-1(含聚类图-含距离计算)

最短距离聚类的matlab实现-1 【2013-5-21更新】 说明:正文中命令部分可以直接在Matlab中运行, 作者(Yangfd09)于2013-5-21 19:15:50在MATLAB R2009a(7.8.0.347)中运行通过 %最短距离聚类(含距离计算,含聚类图) %说明:此程序的优点在于每一步都是自己编写的,很少用matlab现成的指令, %所以更适合于初学者,有助于理解各种标准化方法和距离计算方法。 %程序包含了极差标准化(两种方法)、中心化、标准差标准化、总和标准化和极大值标准化等标准化方法, %以及绝对值距离、欧氏距离、明科夫斯基距离和切比雪夫距离等距离计算方法。 %==========================>>导入数据<<============================== %变量名为test(新建一个以test变量,双击进入Variable Editor界面,将数据复制进去即可)%数据要求:m行n列,m为要素个数,n为区域个数(待聚类变量)。 % 具体参见末页测试数据。 testdata=test; %============================>>标准化<<=============================== %变量初始化,m用来寻找每行的最大值,n找最小值,s记录每行数据的和 [M,N]=size(testdata);m=zeros(1,M);n=9999*ones(1,M);s=zeros(1,M);eq=zeros(1,M); %为m、n和s赋值 for i=1:M for j=1:N if testdata(i,j)>=m(i) m(i)=testdata(i,j); end if testdata(i,j)<=n(i) n(i)=testdata(i,j); end s(i)=s(i)+testdata(i,j); end eq(i)=s(i)/N; end %sigma0是离差平方和,sigma是标准差 sigma0=zeros(M); for i=1:M for j=1:N sigma0(i)=sigma0(i)+(testdata(i,j)-eq(i))^2; end end sigma=sqrt(sigma0/N);

数学实验05聚类分析---用matlab做聚类分析

用matlab做聚类分析 Matlab提供了两种方法进行聚类分析。 一种是利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。1.Matlab中相关函数介绍 1.1pdist函数 调用格式:Y=pdist(X,’metric’) 说明:用‘metric’指定的方法计算X数据矩阵中对象之间的距离。’X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。 metric’取值如下: ‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离; ‘minkowski’:明可夫斯基距离;‘cosine’: ‘correlation’:‘hamming’: ‘jaccard’:‘chebychev’:Chebychev距离。 1.2squareform函数 调用格式:Z=squareform(Y,..)

说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。 1.3linkage函数 调用格式:Z=linkage(Y,’method’) 说明:用‘method’参数指定的算法计算系统聚类树。 Y:pdist函数返回的距离向量; method:可取值如下: ‘single’:最短距离法(默认);‘complete’:最长距离法; ‘average’:未加权平均距离法;‘weighted’:加权平均法; ‘centroid’:质心距离法;‘median’:加权质心距离法; ‘ward’:内平方距离法(最小方差算法) 返回:Z为一个包含聚类树信息的(m-1)×3的矩阵。 1.4dendrogram函数 调用格式:[H,T,…]=dendrogram(Z,p,…) 说明:生成只有顶部p个节点的冰柱图(谱系图)。 1.5cophenet函数 调用格式:c=cophenetic(Z,Y) 说明:利用pdist函数生成的Y和linkage函数生成的Z计算cophenet相关系数。 1.6cluster函数 调用格式:T=cluster(Z,…) 说明:根据linkage函数的输出Z创建分类。

王能超 计算方法——算法设计及MATLAB实现课后代码

第一章插值方法 1.1Lagrange插值 1.2逐步插值 1.3分段三次Hermite插值 1.4分段三次样条插值 第二章数值积分 2.1 Simpson公式 2.2 变步长梯形法 2.3 Romberg加速算法 2.4 三点Gauss公式 第三章常微分方程德差分方法 3.1 改进的Euler方法 3.2 四阶Runge-Kutta方法 3.3 二阶Adams预报校正系统 3.4 改进的四阶Adams预报校正系统 第四章方程求根 4.1 二分法 4.2 开方法 4.3 Newton下山法 4.4 快速弦截法 第五章线性方程组的迭代法 5.1 Jacobi迭代 5.2 Gauss-Seidel迭代 5.3 超松弛迭代 5.4 对称超松弛迭代 第六章线性方程组的直接法 6.1 追赶法 6.2 Cholesky方法 6.3 矩阵分解方法 6.4 Gauss列主元消去法

第一章插值方法 1.1Lagrange插值 计算Lagrange插值多项式在x=x0处的值. MATLAB文件:(文件名:Lagrange_eval.m)function [y0,N]= Lagrange_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Lagrange插值多项式在x0处的值 %N是Lagrange插值函数的权系数 m=length(X); N=zeros(m,1); y0=0; for i=1:m N(i)=1; for j=1:m if j~=i; N(i)=N(i)*(x0-X(j))/(X(i)-X(j)); end end y0=y0+Y(i)*N(i); end 用法》X=[…];Y=[…]; 》x0= ; 》[y0,N]= Lagrange_eval(X,Y,x0) 1.2逐步插值 计算逐步插值多项式在x=x0处的值. MATLAB文件:(文件名:Neville_eval.m)function y0=Neville_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Neville逐步插值多项式在x0处的值 m=length(X); P=zeros(m,1); P1=zeros(m,1); P=Y; for i=1:m P1=P; k=1; for j=i+1:m k=k+1;

用Matlab对信号进行傅里叶变换实例

目录 用Matlab 对信号进行傅里叶变换 (2) Matlab 的傅里叶变换实例 (5) Matlab 方波傅立叶变换画出频谱图 (7)

用 Matlab 对信号进行傅里叶变换 1. 离散序列的傅里叶变换 DTFT(Discrete Time Fourier Transform) 代码: %原离散信号有 8 点 %原信号是 1行 8列的矩阵 %构建原始信号,为指数信号 %频域共-800 +800 的长度(本应是无穷, 高 %求 dtft 变换,采用原始定义的方法,对复指 7 subplot(311) 8 stem(n,xn); 9 title('原始信号(指数信号 )'); 10 subplot(312); 11 plot(w/pi,abs(X)); 12 title('DTFT 变换 ') 结果: 分析:可见,离散序列的 dtft 变换是周期的,这也符合 Nyquist 采样 定理的描述, 连续时间信号经周期采样之后, 所得的离散信号的频谱 是原连续信号频谱的周期延拓。 2. 离散傅里叶变换 1 N=8; 2 n=[0:1:N-1] 3 xn=0.5.^n; 4 5 w=[-800:1:800]*4*pi/800; 频分量很少,故省去) 6 X=xn*exp(-j*(n'*w)); 数分 量求和而得

与 1 中 DTFT 不一样的是, DTFT 的求和区间是整个频域,这对 N=8; % 原离散信号有 8 点 n=[0:1:N-1] %原信号是 1行 8列的矩阵 xn=0.5.^n; %构建原始信号,为指数信号 w=[-8:1:8]*4*pi/8; %频域共 -800 +800 的长度(本应是无穷, 高频分量很少, 故省去) X=xn*exp(-j*(n'*w)); %求 dtft 变换,采用原始定义的方法,对复指数分量求和而得 subplot(311) stem(n,xn); w1=[-4:1:4]*4*pi/4; X1=xn*exp(-j*(n'*w1)); title(' 原始信号 (指数信号 )'); subplot(312); stem(w/pi,abs(X)); title(' 原信号的 16 点 DFT 变换 ') subplot(313) stem(w1/pi,abs(X1)); title(' 原信号的 8 点 DFT 变换 ') 计算机的计算来说是不可以实现的, DFT 就是序列的有限傅里叶变换。 实际上, 1 中代码也只是对频域的 -800 +800 中间的 1601 结果图: 分析: DFT 只是 DTFT 的现实版本,因为 DTFT 要求求和区间无穷, 而 DFT 只在有限点内求和。 3. 快速傅里叶变换 FFT ( Fast Fourier Transform ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(整理)matlab16常用计算方法.

常用计算方法 1.超越方程的求解 一超越方程为 x (2ln x – 3) -100 = 0 求超越方程的解。 [算法]方法一:用迭代算法。将方程改为 01002ln()3 x x =- 其中x 0是一个初始值,由此计算终值x 。取最大误差为e = 10-4,当| x - x 0| > e 时,就用x 的值换成x 0的值,重新进行计算;否则| x - x 0| < e 为止。 [程序]P1_1abs.m 如下。 %超越方程的迭代算法 clear %清除变量 x0=30; %初始值 xx=[]; %空向量 while 1 %无限循环 x=100/(2*log(x0)-3); %迭代运算 xx=[xx,x]; %连接结果 if length(xx)>1000,break ,end %如果项数太多则退出循环(暗示发散) if abs(x0-x)<1e-4,break ,end %当精度足够高时退出循环 x0=x; %替换初值 end %结束循环 figure %创建图形窗口 plot(xx,'.-','LineWidth',2,'MarkerSize',12)%画迭代线'.-'表示每个点用.来表示,再用线连接 grid on %加网格 fs=16; %字体大小 title('超越方程的迭代折线','fontsize',fs)%标题 xlabel('\itn','fontsize',fs) %x 标签 ylabel('\itx','fontsize',fs) %y 标签 text(length(xx),xx(end),num2str(xx(end)),'fontsize',fs)%显示结果 [图示]用下标作为自变量画迭代的折线。如P0_20_1图所示,当最大误差为10-4时,需要迭代19次才能达到精度,超越方程的解为27.539。 [算法]方法二:用求零函数和求解函数。将方程改为函数 100()2ln()3f x x x =-- MATLAB 求零函数为fzero ,fzero 函数的格式之一是 x = fzero(f,x0) 其中,f 表示求解的函数文件,x0是估计值。fzero 函数的格式之二是 x = fzero(f,[x1,x2])

傅里叶变换的应用,matlab程序,C语言程序

1 利用FFT 计算连续时间信号的傅里叶变换 设()x t 是连续时间信号,并假设0t <时()0x t =,则其傅里叶变换由下式给出 0()()i t X x t e dt ωω∞ -=? 令Γ是一个固定的正实数,N 是一个固定的正整数。当,0,1,2,,1k k N ω=Γ=-L 时,利用FFT 算法可计算()X ω。 已知一个固定的时间间隔T ,选择T 足够小,使得每一个T 秒的间隔(1)nT t n T ≤<+内,()x t 的变化很小,则式中积分可近似为 (1)0 ()()()n T iwt nT n X e dt x nT ω∞+-==∑? (1)01[ ]()i t t n T t nT n e x nT i ωω ∞-=+==-=∑ 0 1()i T i nT n e e x nT i ωωω-∞-=-=∑ (27) 假设N 足够大,对于所有n N ≥的整数,幅值()x nT 很小,则式(27)变为 1 01()()i T N i nT n e X e x nT i ωωωω---=-=∑ (28) 当2/k NT ωπ=时,式(28)两边的值为 2/2/12/0211()()[]2/2/i k N i k N N i nk N n k e e X e x nT X k NT i k NT i k NT ππππππ----=--==∑ (29) 其中[]X k 代表抽样信号[]()x n x nT =的N 点DFT 。最后令2/NT πΓ=,则上式变为 2/1()[]0,1,2,,12/i k N e X k X k k N i k NT ππ--Γ==-L (30) 首先用FFT 算法求出[]X k ,然后可用上式求出0,1,2,,1k N =-L 时的()X k Γ。 应该强调的是,式(28)只是一个近似表示,计算得到的()X ω只是一个近似值。通过取更小的抽样间隔T ,或者增加点数N ,可以得到更精确的值。如果B ω>时,幅度谱()X ω很小,对应于奈奎斯特抽样频率2s B ω=,抽样间隔T 选择/B π比较合适。如果已知信号只在时间区间10t t ≤≤内存在,可以通过对1nT t >时的抽样信号[]()x n x nT =补零,使N 足够大。 例1 利用FFT 计算傅里叶变换

matlab用于计算方法的源程序

1、Newdon迭代法求解非线性方程 function [x k t]=NewdonToEquation(f,df,x0,eps) %牛顿迭代法解线性方程 %[x k t]=NewdonToEquation(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:原函数,定义为内联函数 ?:函数的倒数,定义为内联函数 %x0:初始值 %eps:误差限 % %应用举例: %f=inline('x^3+4*x^2-10'); ?=inline('3*x^2+8*x'); %x=NewdonToEquation(f,df,1,0.5e-6) %[x k]=NewdonToEquation(f,df,1,0.5e-6) %[x k t]=NewdonToEquation(f,df,1,0.5e-6) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquation(f,df,1) if nargin==3 eps="0".5e-6; end tic; k=0; while 1 x="x0-f"(x0)./df(x0); k="k"+1; if abs(x-x0) < eps || k >30 break; end x0=x; end t=toc; if k >= 30 disp('迭代次数太多。'); x="0"; t="0"; end

2、Newdon迭代法求解非线性方程组 function y="NewdonF"(x) %牛顿迭代法解非线性方程组的测试函数 %定义是必须定义为列向量 y(1,1)=x(1).^2-10*x(1)+x(2).^2+8; y(2,1)=x(1).*x(2).^2+x(1)-10*x(2)+8; return; function y="NewdonDF"(x) %牛顿迭代法解非线性方程组的测试函数的导数 y(1,1)=2*x(1)-10; y(1,2)=2*x(2); y(2,1)=x(2).^+1; y(2,2)=2*x(1).*x(2)-10; return; 以上两个函数仅供下面程序的测试 function [x k t]=NewdonToEquations(f,df,x0,eps) %牛顿迭代法解非线性方程组 %[x k t]=NewdonToEquations(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:方程组(事先定义) ?:方程组的导数(事先定义) %x0:初始值 %eps:误差限 % %说明:由于虚参f和df的类型都是函数,使用前需要事先在当前目录下采用函数M文件定义% 另外在使用此函数求解非线性方程组时,需要在函数名前加符号“@”,如下所示 % %应用举例: %x0=[0,0];eps=0.5e-6; %x=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps)

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法 1.简介: Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量)

2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上有4中“标签”,每个“标签”使用不同的颜色来表示。所有黄色点我们可以用标签以看出,有3个类离的比较远,有两个类离得比较近,几乎要混合在一起了。 当然,数据集不一定是坐标,假如你要对彩色图像进行聚类,那么你的向量就可以是(b,g,r),如果使用的是hsv颜色空间,那还可以使用(h,s,v),当然肯定可以有不同的组合例如(b*b,g*r,r*b) ,(h*b,s*g,v*v)等等。 在本文中,初始的类的中心点是随机产生的。如上图的红色点所示,是本文随机产生的初始点。注意观察那两个离得比较近的类,它们几乎要混合在一起,看看算法是如何将它们分开的。 类的初始中心点是随机产生的。算法会不断迭代来矫正这些中心点,并最终得到比较靠5个中心点的距离,选出一个距离最小的(例如该点与第2个中心点的距离是5个距离中最小的),那么该点就归属于该类.上图是点的归类结果示意图. 经过步骤3后,每一个中心center(i)点都有它的”管辖范围”,由于这个中心点不一定是这个管辖范围的真正中心点,所以要重新计算中心点,计算的方法有很多种,最简单的一种是,直接计算该管辖范围内所有点的均值,做为心的中心点new_center(i). 如果重新计算的中心点new_center(i)与原来的中心点center(i)的距离大于一定的阈值(该阈值可以设定),那么认为算法尚未收敛,使用new_center(i)代替center(i)(如图,中心点从红色点

0计算方法及MATLAB实现简明讲义课件PPS8-1欧拉龙格法

第8章 常微分方程初值问题数值解法 8.1 引言 8.2 欧拉方法 8.3 龙格-库塔方法 8.4 单步法的收敛性与稳定性 8.5 线性多步法

8.1 引 言 考虑一阶常微分方程的初值问题 00(,),[,],(). y f x y x a b y x y '=∈=(1.1) (1.2) 如果存在实数 ,使得 121212(,)(,).,R f x y f x y L y y y y -≤-?∈(1.3) 则称 关于 满足李普希茨(Lipschitz )条件, 称为 的李普希茨常数(简称Lips.常数). 0>L f y L f (参阅教材386页)

计算方法及MATLAB 实现 所谓数值解法,就是寻求解 在一系列离散节点 )(x y <<<<<+121n n x x x x 上的近似值 . ,,,,,121+n n y y y y 相邻两个节点的间距 称为步长. n n n x x h -=+1 如不特别说明,总是假定 为定数, ),2,1( ==i h h i 这时节点为 . ) ,2,1,0(0 =+=i nh x x n 初值问题(1.1),(1.2)的数值解法的基本特点是采取 “步进式”. 即求解过程顺着节点排列的次序一步一步地向前推进. 00(,),[,], (). y f x y x a b y x y '=∈=

描述这类算法,只要给出用已知信息 ,,,21--n n n y y y 计算 的递推公式. 1+n y 一类是计算 时只用到前一点的值 ,称为单步法. 1+n y n y 另一类是用到 前面 点的值 , 1+n y k 11,,,+--k n n n y y y 称为 步法. k 其次,要研究公式的局部截断误差和阶,数值解 与 精确解 的误差估计及收敛性,还有递推公式的计算 稳定性等问题. n y )(n x y 首先对方程 离散化,建立求数值解的递推 公式. ),(y x f y ='

聚类分析matlab程序设计代码

function varargout = lljuleifenxi(varargin) % LLJULEIFENXI MATLAB code for lljuleifenxi.fig % LLJULEIFENXI, by itself, creates a new LLJULEIFENXI or raises the existing % singleton*. % % H = LLJULEIFENXI returns the handle to a new LLJULEIFENXI or the handle to % the existing singleton*. % % LLJULEIFENXI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LLJULEIFENXI.M with the given input arguments. % % LLJULEIFENXI('Property','Value',...) creates a new LLJULEIFENXI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before lljuleifenxi_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to lljuleifenxi_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help lljuleifenxi % Last Modified by GUIDE v2.5 07-Jan-2015 18:18:25 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @lljuleifenxi_OpeningFcn, ... 'gui_OutputFcn', @lljuleifenxi_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before lljuleifenxi is made visible. function lljuleifenxi_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB

相关文档
最新文档