管理创新与领导艺术心得知识交流

管理创新与领导艺术心得知识交流
管理创新与领导艺术心得知识交流

《管理创新与领导艺术》学习心得

近期通过参加集团公司组织的《管理创新与领导艺术》培训班的学习,使我对管理工作有了新的认识和感悟。

什么是领导艺术?领导艺术就是指领导者在长期的领导工作和实践中总结概括出来的一种高超的特殊才能。这种才能表现为能创造性地灵活运用已经掌握的科学知识和领导方法,是领导者的智慧、学识、胆略、经验、作风、品格、方法、能力的综合体现。历史上,刘邦、刘备,在有些人看来本事不大,更无一丝英雄气度,但却最终成就大业,什么原因?其实我们仔细一分析,两个人都是个人的文才武略不出众,但有驾驭群雄、审时度势的特殊才能,这种才能也就是我们今天所说的领导艺术。长坂坡一战,刘备被曹操打得丢盔卸甲、仓惶逃命,爱子阿斗陷落敌阵。当赵云冒死救出阿斗时,刘备却说:“为你这个小孩子,差一点损我一员大将!”也许刘备口是心非,但不管怎样,这一行为产生的后果是赵云感到自己在刘备心目中的位置比阿斗还重要,从而激发了他为刘备打天下的热情,这就是一种独到的领导艺术。通俗的说,领导艺术就是运用各种灵活、变通的方法、手段达到你最终想要的目的。

管理者应具备哪些方面的素质,首先应具备过硬的政治素质,主要有两个方面。一是忠诚。论语中,季康子问:“使民敬、忠以劝,如之何?”子曰:“临之以庄则敬;孝慈则忠;举善而教不能则劝。就是说,季康子问夫子:“要使老百姓恭敬、忠诚和听话,如何才能做到?”夫子回答:“只要为政者能以庄重的神态负责任地对待各种事务,老百姓自然就会恭敬听话。能做到对长辈尽孝敬顺,对后辈心存慈爱,老百姓自然就会忠诚于你”。一个人的忠和孝是相通的,忠是孝

的延伸和升华,孝是忠的内涵和基础。如果一个管理者像对待自己父母一样对待下属,心甘情意为他们服务,那无疑就是一个好领导、好公仆了。二要清醒。就是在大是大非面前,在关键时刻、危难关头,掂得出轻重,分得清是非。这主要体现在六个“不”上:在危险面前挺身而出,不退;在困难面前坚忍不拔,不倒;在成绩面前戒骄戒躁,不飘;在生活面前勤俭节约,不奢;在荣誉面前泰然处之,不争;在胜败面前一如既往,不停。

其次,要有高尚的道德素质。道德素质包括以下两个方面:一要谦虚谨慎。毛泽东有句众所周知的名言:“虚心使人进步,骄傲使人落后”。唐朝名相房玄龄说,“谦虚温谨,不以才地矜物。”意思是说,做人要谦虚、温和、谨慎,不要以自己的才能、门第而矜骄于人。要能正确认识自己、估价自己,虚心向别人学习,善于倾听别人的意见和建议。二要宽容大度。宽容是人格的容器。宽容度愈大,人格的容量就愈大。人无完人,金无足赤。“将相头顶堪走马,公侯肚里能撑船”,管理者要容人容言、容长容短、容功容过,要允许失误,宽容失败,不能一次犯错误就“永不叙录”。古人言:“闻过则喜。”管理者要听得下各种各样的话,装得下各种各样的事,容得下各种各样的人,甚至不计私怨,惟才是用。

第三,要有渊博的知识素质。要具备渊博的知识素质,不断学习实践、总结思考是唯一的途径。要恒学,学无止境,学贵有恒。当今时代,知识更新的周期大大缩短,各种新知识、新情况、新事物层出不穷。到了如今的知识经济时代,只有经常不断地抓紧学习、坚持不懈地终身学习,才能够使用一辈子,否则,就难以适应新的形势,最终也会贻误自己。“活到老,学到老”,只有持之以恒地学习新知识,掌握新技能,才能提高驾驭全局和应对复杂局面的能力。要善思。没有思考就没有智慧,没有思考能力的管理者难以形成独立的见解,遇事经常多问

几个为什么,举一反三,时刻在思考中干工作,做到谋划在前、思虑在先,掌握工作的主动权。

第四,要有良好的身心素质。情绪稳定。无论工作顺利与否,应始终沉着应对,情绪饱满,持之以恒,不能在工作顺利时就喜形于色,而工作不顺利时就垂头丧气,甚至“撂挑子”。切忌浮躁之风,浮躁是一种常见病。其特征是:情绪不稳定,易急躁;头脑不冷静,易冲动;心理不平衡,易偏激;精力不集中,易走神;工作不静心,易分心;行为不沉着,易追风。浮躁看似是“小病”,无关痛痒,实则危害很大,甚至严重影响了各项事业发展。要乐观自信。这是管理者必须具备的基本心态,管理者乐观向上的风貌、积极进取的人生态度,将会对他周围人的心态产生积极深刻的影响。纵观古今中外,优秀的管理者都是热爱学习、奋发向上的人,同时也是富有激情、心态健康的人。

科学运用领导艺术,全面提升领导能力。领导是一种学问,更是一门艺术。要学会在工作中科学运用领导艺术,提高工作能力和水平。

1、提升统揽全局的能力。古人讲“不谋全局者,不足谋一域;不谋万世者,不足谋一时。”意思是管理者要善于抓大事,管全局,争取全局的主动,这是一种重要的领导艺术。一要想全局。想问题、办事情、做工作时,要把全局作为考虑和解决问题的出发点和落脚点,了解熟悉本单位的情况,努力使各项工作都体现时代性、把握规律性、富于创造性。二要抓大事。古人说:“物有本末,事有终始,知所先后,则近道矣”。这里的“本”,就是根本的意思。毛泽东主席也曾经指出:“主要矛盾在事物的发展中处于支配地位,起着主导性、决定性作用,抓住了主要矛盾,也就抓住了问题的关键;解决了主要矛盾,其他问题也就容易解决了”。我们做工作、办事情决不能不分主次本末、不论轻重缓急,必须善于

抓根本、抓主要矛盾。抓住了根本,就能做到纲举目张。三要抓落实。再美好的蓝图,不抓落实,只能是一个“美丽的梦”,是一个“充不了饥的饼”,工作必须立足于实干。在工程项目管理工作中,对主要矛盾的控制就是对全局的掌控,而主要矛盾往往与主要工序、主要工程量、重点专业工程等密切关联,作为一名项目管理者,对主要矛盾的分析要客观、主动,在执行前运筹帷幄,统筹全局,在过程中创新突破,从而在进度上争取主动,确保里程碑节点的顺利落实。

2、提升决策决断的能力。决策决断是对管理者的基本要求。怎样提高管理者决策的艺术水平呢?古人云:“天下之事,谋之贵众,断之贵独,虑之贵祥,行之贵力”。概括来说,管理者决策贵在众谋、独断、祥虑、力行。第一,决策要依靠集体的力量。管理者高明之处,不在于他垄断一切智慧,而在于它善于集中大家的智慧。因此,在决策论证问题时,要充分发扬民主,各抒己见,不搞个人说了算,只有这样决策才能体现群体意志,才能有号召力。第二,深入调研。决策离不开信息,深入调查研究、善于捕捉利用有价值的信息是成功的前提。毛泽东说:“搞好调查研究,必须有满腔的热忱,求知的渴望,眼睛向下的决心和放下臭架子、甘当小学生的精神。”没有调查研究就没有发言权,就没有决策权和指导权。第三,处事果断。处事果断表现在决策上敢想敢断、敢于拍板,不优柔寡断;作风上雷厉风行,闻风而动、不拖泥带水;落实上,言出必行、一尺十寸,不打折扣。伴随着建筑行业的不断发展及业主对建筑功能的需求不断的提高,越来越多的难、精、尖的项目应运而生,这就对我们工程项目管理人员的管理水平提出了新的挑战,如何在竞争激烈的建筑市场大潮中立于不败,这不仅仅要求我们管理人员个人要具备足够的项目管理知识和技能,更要求我们项目管理人员要懂得如何运用群策群力的法宝,并结合现场调研,客观、科学的对技术型难题

进行分析、评定、解决,从而通过团队决策能力的提升来提升个人的决策能力。

3、提升凝聚人心的能力。凝聚人心是指按照一定宗旨、原则和形式,把组织成员凝聚起来,形成为实现总目标而奋斗的合力。如何凝聚人心,让下属甘心为你做事呢?一要具备亲和力。一个管理者,不但要有鉴别力、决断力、组织力,更应当有亲和力。这种亲和力是一种人格魅力,是最重要的影响力。它可以产生巨大的凝聚力,转化为强大的影响力和行动力。管理者的力量,不是建立在下属敬畏、恐惧的基础上,而是建立在部下信服、亲近、主动追随的基础上。二要正确授权。现代社会,管理工作千头万绪,极为繁杂,如果管理者事无巨细都事必躬亲,即使有三头六臂,也会应接不暇,难免事与愿违,还打击了下属的工作积极性。三要团结协作。团结是最重要的成功之道。俗话说,“天时不如地利,地利不如人和”。在“天时、地利、人和”这三个成功要素中,“人和”是第一位的,“天时、地利”都要通过“人和”才能发挥作用。

4、提升开拓创新的能力。邓小平指出:“没有一点闯的精神,没有一点冒的精神,没有一股气呀、劲呀,就走不出一条好路,就干不出新的事业。”一要解放思想。思想是行动的先导,解放思想是创造性实践的先导。提高开拓创新能力,首先要从解放思想做起。二要勇于担当。不敢担责任的人是小人,什么是大人呢,大人就是大人大量、勇于担当。三要敢为人先。“敢”,就是勇敢、胆量;“先”,就是先知先觉,指比别人早预知的事情,果断的作出相应的决策,敢于做别人不敢做或尚未做的事情。四要保持激情。开拓创新既是一种工作需要、工作责任,更是一种积极向上的精神状态,一种工作激情。富有激情的人在面临挑战和困难时能够坚持不懈、坚韧不拔,在工作中没有办法可以想出办法,没有条件可以创造条件。缺乏激情,精神就会萎靡不振,遇到小困难也会畏难发愁,怨天尤人,

做不好工作,办不成事情,给事业带来损失,更谈不上开拓创新。

5、提升知人善任的能力。成功管理者最主要的能力,就是发现人才,培养人才,团结人才和使用人才的能力。一要善于用人。这就要求各管理者要做慧眼识马的伯乐,充分挖掘每个下属的潜能,积极主动推荐人才、大胆使用人才。以德才兼备作为知人善任的标准,是中国文化的结晶。二要欣赏下属。古人云:“士为知己者死,女为悦己者容。”欣赏是对他人的肯定,可以激发人们的潜在力量,促使人们激情投入。一个高明的管理者,应当善于发现别人的优点,乐于欣赏别人的优点,最大限度地把大家的积极性调动出来,有效地加以组织和整合。不仅管理者本人要善于欣赏,而且要在自己的团队中营造一种相互欣赏的氛围。当人们彼此看到优点时,这个团队就是优点的集合体;当人们彼此盯着缺点时,这个团队就变成缺点的集合体了。海不辞水,故能成其大;山不辞土石,故能成其高。当一个人受到领导和周围同事的欣赏时,他的自信心和积极性就会被大大激发出来,并会进一步去展示和发展自己的优点,如果把所有人的潜能充分激发调动起来,我们的各项事业就一定能攻无不克,战无不胜,所向披糜,无往而不胜。

xxx xxx

xxxx年x月x日

体育比赛中的数学问题

体育比赛中的数学 体育比赛中的数学是组合问题的重要组成部分,主要结合逻辑推理考察孩子的分析能力和思维的灵活性,走美杯每年都会考到本知识点,这个内容也是2015年四年级学而思杯很可能考到的内容,家长可以让孩子看这个资料适当预习下,咱们这讲内容会在春季下半册书上学习。 一、对单循环赛、淘汰赛的认识 在体育比赛中,每两个人之间都要赛一场并且只赛一场,称这样的比赛为单循环赛。例如:有n 个队参加比赛,其中每个队都要和其他队各赛一场,即每个队都赛了(n- 1) 场。每一场比赛都被算在两个(n- 1) 中,也就是说在n 个(n- 1) 每一场比赛都计算了两次。那么一共进行了n ?(n- 1) ÷ 2 场比赛。 练习1 (2008 年第四届“IMC 国际数学邀请赛”(新加坡)初赛)学校进行乒乓球选拔赛,每个选手都要和其它所有选手各赛一场,一共进行了36 场比赛,有()人参加了选拔赛。 A、8 B、9 C、10 分析:36 ? 2 =72 (场)。如果有n 个选手,那么n ?(n- 1) =72。两个连续的自 然数乘积为72,n =9 。

在体育比赛中,规定每一场赛事中败者淘汰胜者晋级,称这类比赛为淘汰赛。在淘汰赛中,每一轮淘汰掉一半选手,直至产生最后的冠军。n 个队进行淘汰赛,每进行一场比赛就要淘汰一个队,最后只剩下冠军,也就是说其它选手都被淘汰 掉了,决出冠军需要进行(n- 1) 场比赛。 练习 2 16 个人进行淘汰赛, (1)决出冠军需要进行几场比赛?冠军一共参加了几场比赛? (2)要决出前三名需要进行几场比赛?分析:(1)第 16 ÷2 =8 (场),8 名胜利者晋级! 第二轮:8 ÷2 =4 (场),4 名胜利者晋级! 第三轮:4 ÷2 =2 (场),2 名胜利者晋级! 第四轮:2 ÷2 = 1 (场),决出冠军! 要决出冠军共需要进行8 +4 +2 + 1 = 15 (场)。在每一轮比赛中,冠军都参加了其中一场比赛,冠军一共参加了1 ? 4 =4 场比赛。 (2)第四轮比赛中的两位选手分别是1、2 名,3、4 名应该是第三轮中淘汰的两位选手,他们之间要再进行一场比赛才能定出来名次。决出前三名供需15 + 1 = 16 场比赛。 二、比赛中的积分 若规定比赛中胜积2 分,负积0 分,平局积1 分。从比赛结果看,每一场比赛中,若能出现胜者,对手就一定是败者,双方一共积了2 +0 = 2 分;若能出现平局,比赛的双方共积了1 +1 = 2 分。从以上分析可见,每一场比赛后,所有选手的总积分都会增加2 分。若进行了m 场比赛,比赛的总积分一定是2 m 。 若规定比赛中胜积3 分,负积0 分,平局积1 分。每一场比赛中,若有胜负,双方共积3 +0 =3 分;若能出现平局,比赛双方共积2 分,由此可见,其中每出现一场平局,总积分就会减少1 分。若进行了m 场比赛,比赛的总积分在2 m 到3 m之间。 练习 3 (09 年迎春杯决赛)A,B,C,D,E,F 六个足球队进行单循环比赛,每两个队之间都要赛一场,且只赛一场.胜者得3 分,负者得0 分,平局每队各得1 分.比赛结果,各队得分由高到低恰好为一个等差数列,获得第3 名的队得了8 分,那么这次比赛中共有场平局.

有机化学知识点全面总结

高中(人教版)《有机化学基础》必记知识点 目录 一、必记重要的物理性质 二、必记重要的反应 三、必记各类烃的代表物的结构、特性 四、必记烃的衍生物的重要类别和各类衍生物的重要化学性质 五、必记有机物的鉴别 六、必记混合物的分离或提纯(除杂) 七、必记有机物的结构 八、必记重要的有机反应及类型 九、必记重要的有机反应及类型 十、必记一些典型有机反应的比较 十一、必记常见反应的反应条件 十二、必记几个难记的化学式 十三、必记烃的来源--石油的加工 十四、必记有机物的衍生转化——转化网络图一(写方程) 十五、煤的加工 十六、必记有机实验问题 十七、必记高分子化合物知识 16必记《有机化学基础》知识点

一、必记重要的物理性质 难溶于水的有:各类烃、卤代烃、硝基化合物、酯、绝大多数高聚物、高级的(指分子中碳原子数目较多的,下同)醇、醛、羧酸等。 苯酚在冷水中溶解度小(浑浊),热水中溶解度大(澄清);某些淀粉、蛋白质溶于水形成胶体溶液。 1、含碳不是有机物的为: CO、CO2、 CO32-、HCO3-、H2CO3、CN-、HCN、SCN-、HSCN、SiC、C单质、金属碳化物等。2.有机物的密度 (1)小于水的密度,且与水(溶液)分层的有:各类烃、一氯代烃、酯(包括油脂) (2)大于水的密度,且与水(溶液)分层的有:多氯代烃、溴代烃(溴苯等)、碘代烃、硝基苯 3.有机物的状态[常温常压(1个大气压、20℃左右)] 常见气态: ①烃类:一般N(C)≤4的各类烃注意:新戊烷[C(CH3)4]亦为气态 ②衍生物类:一氯甲烷、氟里昂(CCl2F2)、氯乙烯、甲醛、氯乙烷、一溴甲烷、四氟乙烯、甲醚、甲乙醚、环氧乙烷。 4.有机物的颜色 ☆绝大多数有机物为无色气体或无色液体或无色晶体,少数有特殊颜色,常见的如下所示: ☆三硝基甲苯(俗称梯恩梯TNT)为淡黄色晶体; ☆部分被空气中氧气所氧化变质的苯酚为粉红色; ☆2,4,6—三溴苯酚为白色、难溶于水的固体(但易溶于苯等有机溶剂); ☆苯酚溶液与Fe3+(aq)作用形成紫色[H3Fe(OC6H5)6]溶液; ☆淀粉溶液(胶)遇碘(I2)变蓝色溶液; ☆含有苯环的蛋白质溶胶遇浓硝酸会有白色沉淀产生,加热或较长时间后,沉淀变黄色。 5.有机物的气味 许多有机物具有特殊的气味,但在中学阶段只需要了解下列有机物的气味: ☆甲烷:无味;乙烯:稍有甜味(植物生长的调节剂) ☆液态烯烃:汽油的气味;乙炔:无味 ☆苯及其同系物:特殊气味,有一定的毒性,尽量少吸入。 ☆C4以下的一元醇:有酒味的流动液体;乙醇:特殊香味 ☆乙二醇、丙三醇(甘油):甜味(无色黏稠液体) ☆苯酚:特殊气味;乙醛:刺激性气味;乙酸:强烈刺激性气味(酸味) ☆低级酯:芳香气味;丙酮:令人愉快的气味 6、研究有机物的方法 质谱法确定相对分子量;红外光谱确定化学键和官能团;核磁共振氢谱确定H的种类及其个数比。 二、必记重要的反应 1.能使溴水(Br2/H2O)褪色的物质

体育中数学问题

第7讲体育中的数学问题 知识要点 同学们喜欢的体育比赛吗?你知道足球世界杯要决出冠军一共要进行多少场比赛吗?你知道小组赛至少要积多少分就可以确保出线吗?……太多有趣的问题等着我们去发现了,这节课我们就一起去探索体育中的数学问题吧! 知识链接: 淘汰赛:分单淘汰赛和双淘汰赛。单淘汰赛只要输一场比赛就会被淘汰了,而双淘汰赛两支球队对之间要进行两场比赛,记总成绩来决定胜负,通常分主客场进行。 循环赛:分单循环赛和双循环赛。单循环赛小组内的每两支球队都要进行一场比赛,而双循环赛每两支球队之间都要进行两场比赛。循环赛一般通过积分来计算名次,如果积分相同则会根据比赛胜负情况或净胜球等因素来排名。 精典例题 例1:“世界杯”足球赛中,小组出线的十六支球队将按照以下单淘汰赛的规则进行比赛:分成八组两两对决,胜者晋级八强,再两两对决,胜者进入四强……最后决出冠军。那么淘汰赛阶段一共要进行多少场比赛? 模仿练习 二十支篮球队进行单淘汰赛,只要输一场就会被淘汰,那么为了决出冠军需要进行多少场比赛? 例2: 20 名羽毛球与动员参加单打比赛,比赛采用单循环赛制,即:任可以画图获列表寻找规律,也可以反向思考:每场比赛淘汰一支队伍。

四年级(上)数学思维训练 数学会让你变成一个善于发现的孩子! - 2 - 何两名队员都要比赛一场,其中冠军赛了多少场?一共要进行多少场比赛? 模仿练习 8位同学进行乒乓球比赛,比赛采用单循环赛制,那么这八个人总共要进行多少场比赛? 精典例题 例3: A 、B 、C 、D 、E 五位同学进行象棋比赛,每两个人都要赛一盘。到现在为止,A 已经赛了4盘,B 赛了3盘 ,C 赛了2盘,D 赛了1盘,那么此时E 赛了几盘? 模仿练习 画图连线解决 先思考每位运动员赛了多少场?再思考一共赛了多少场?

人工智能考试必备知识点

第三章约束推理 约束的定义:一个约束通常是指一个包含若干变量的关系表达式,用以表示这些变量所必须满足的条件。 贪心算法:贪心法把构造可行解的工作分阶段来完成。在各个阶段,选择那些在某些意义下是局部最优的方案,期望各阶段的局部最优的选择带来整体最优。 回溯算法:有些问题需要彻底的搜索才能解决问题,然而,彻底的搜索要以大量的运算时间为代价,对于这种情况可以通过回溯法来去掉一 些分支,从而大大减少搜索的次数 第四章定性推理 定性推理的定义是从物理系统、生命系统的结构描述出发,导出行为描述, 以便预测系统的行为并给出原因解释。定性推理采用系统部件间的局部结构规则来解释系统行为, 即部件状态的变化行为只与直接相邻的部件有关 第六章贝叶斯网络 贝叶斯网络的定义: 贝叶斯网络是表示变量间概率依赖关系的有向无环图,这里每个节点表示领域变量,每条边表示变量间的概率依赖关系,同时对每个节点都对应着一个条件概率分布表(CPT) ,指明了该变量与父节点之间概率依赖的数量关系。 条件概率:条件概率:我们把事件B已经出现的条件下,事件A发生的概率记做为P(A|B)。并称之为在B出现的条件下A出现的条件概率,而称P(A)为无条件概率。 贝叶斯概率:先验概率、后验概率、联合概率、全概率公式、贝叶斯公式 先验概率: 先验概率是指根据历史的资料或主观判断所确定的各事件发生的概率,该类概率没能经过实验证实,属于检验前的概率,所以称之为先验概率 后验概率: 后验概率一般是指利用贝叶斯公式,结合调查等方式获取了新的附加信息,对先验概率进行修正后得到的更符合实际的概率 联合概率: 联合概率也叫乘法公式,是指两个任意事件的乘积的概率,或称之为交事件的概率。 贝叶斯问题的求解步骤 定义随机变量、确定先验分布密度、利用贝叶斯定理计算后验分布密度、利用计算得到的厚颜分布密度对所求问题作出推断 贝叶斯网络的构建 为了建立贝叶斯网络,第一步,必须确定为建立模型有关的变量及其解释。为此,需要:(1)确定模型的目标,即确定问题相关的解释;(2)确定与问题有关的许多可能的观测值,并确定其中值得建立模型的子集;(3)将这些观测值组织成互不相容的而且穷尽所有状态的变量。这样做的结果不是唯一的。第二步,建立一个表示条件独立断言的有向无环图第三步指派局部概率分布 p(xi|Pai)。在离散的情形,需要为每一个变量 Xi 的各个父节 点的状态指派一个分布。 第七章归纳学习 归纳学习是符号学习中研究得最为广泛的一种方法。给定关于某个概念的一系列已知的 正例和反例,其任务是从中归纳出一个一般的概念描述。 归纳学习能够获得新的概念,创立新的规则,发现新的理论。它的一般的操作是泛化和特化泛化用来扩展一假设的语义信息,以使其能够包含更多的正例,

(完整版)高中有机化学基础知识点归纳(全)

一、重要的物理性质 1.有机物的溶解性 (1)难溶于水的有:各类烃、卤代烃、硝基化合物、酯、绝大多数高聚物、高级的(指分子中碳原子数目较多的,下同)醇、醛、羧酸等。 (2)易溶于水的有:低级的[一般指N(C)≤4]醇、(醚)、醛、(酮)、羧酸及盐、氨基酸及盐、单糖、二糖。(它们都能与水形成氢键)。 二、重要的反应 1.能使溴水(Br2/H2O)褪色的物质 (1)有机物①通过加成反应使之褪色:含有、—C≡C—的不饱和化合物 ②通过取代反应使之褪色:酚类注意:苯酚溶液遇浓溴水时,除褪色现象之外还产生白色沉淀。③通过氧化反应使之褪色:含有—CHO(醛基)的有机物(有水参加反应)注意:纯净的只含有—CHO(醛基)的有机物不能使溴的四氯化碳溶液褪色④通过萃取使之褪色:液态烷烃、环烷烃、苯及其同系物、饱和卤代烃、饱和酯 (2)无机物①通过与碱发生歧化反应3Br2 + 6OH- == 5Br- + BrO3- + 3H2O或Br2 + 2OH- == Br- + BrO- + H2O ②与还原性物质发生氧化还原反应,如H2S、S2-、SO2、SO32-、I-、Fe2+ 2.能使酸性高锰酸钾溶液KMnO4/H+褪色的物质 1)有机物:含有、—C≡C—、—OH(较慢)、—CHO的物质苯环相连的侧链碳上有氢原子的苯的同系物(但苯不反应) 2)无机物:与还原性物质发生氧化还原反应,如H2S、S2-、SO2、SO32-、Br-、I-、Fe2+ 3.与Na反应的有机物:含有—OH、—COOH的有机物 与NaOH反应的有机物:常温下,易与—COOH的有机物反应加热时,能与卤代烃、酯反应(取代反应) 与Na2CO3反应的有机物:含有—COOH的有机物反应生成羧酸钠,并放出CO2气体; 与NaHCO3反应的有机物:含有—COOH的有机物反应生成羧酸钠并放出等物质的量的CO2气体。 4.既能与强酸,又能与强碱反应的物质 (1)氨基酸,如甘氨酸等 H2NCH2COOH + HCl → HOOCCH2NH3Cl H2NCH2COOH + NaOH → H2NCH2COONa + H2O (2)蛋白质分子中的肽链的链端或支链上仍有呈酸性的—COOH和呈碱性的—NH2,故蛋白质仍能与碱和酸反应。 5.银镜反应的有机物 (1)发生银镜反应的有机物:含有—CHO的物质:醛、甲酸、甲酸盐、甲酸酯、还原性糖(葡萄糖、麦芽糖等) (2)银氨溶液[Ag(NH3)2OH](多伦试剂)的配制: 向一定量2%的AgNO3溶液中逐滴加入2%的稀氨水至刚刚产生的沉淀恰好完全溶解消失。 (3)反应条件:碱性、水浴加热 .......酸性条件下,则有Ag(NH3)2+ + OH- + 3H+ == Ag+ + 2NH4+ + H2O而被破坏。 (4)实验现象:①反应液由澄清变成灰黑色浑浊;②试管内壁有银白色金属析出 (5)有关反应方程式:AgNO3 + NH3·H2O == AgOH↓ + NH4NO3AgOH + 2NH3·H2O == Ag(NH3)2OH + 2H2O 银镜反应的一般通式:RCHO + 2Ag(NH3)2OH 2 A g↓+ RCOONH4 + 3NH3 + H2O 【记忆诀窍】:1—水(盐)、2—银、3—氨 甲醛(相当于两个醛基):HCHO + 4Ag(NH3)2OH4Ag↓+ (NH4)2CO3 + 6NH3 + 2H2O 乙二醛:OHC-CHO + 4Ag(NH3)2OH4Ag↓+ (NH4)2C2O4 + 6NH3 + 2H2O 甲酸:HCOOH + 2 Ag(NH3)2OH 2 A g↓+ (NH4)2CO3 + 2NH3 + H2O 葡萄糖:(过量)CH2OH(CHOH)4CHO +2Ag(NH3)2OH2A g↓+CH2OH(CHOH)4COONH4+3NH3 + H2O (6)定量关系:—CHO~2Ag(NH)2OH~2 Ag HCHO~4Ag(NH)2OH~4 Ag 6.与新制Cu(OH)2悬浊液(斐林试剂)的反应 (1)有机物:羧酸(中和)、甲酸(先中和,但NaOH仍过量,后氧化)、醛、还原性糖(葡萄糖、麦芽糖)、甘油等多羟基化合物。 (2)斐林试剂的配制:向一定量10%的NaOH溶液中,滴加几滴2%的CuSO4溶液,得到蓝色絮状悬浊液(即斐林试剂)。 (3)反应条件:碱过量、加热煮沸 ........ (4)实验现象: ①若有机物只有官能团醛基(—CHO),则滴入新制的氢氧化铜悬浊液中,常温时无变化,加热煮沸后有(砖)红色沉淀生成;②若有机物为多羟基 醛(如葡萄糖),则滴入新制的氢氧化铜悬浊液中,常温时溶解变成绛蓝色溶液,加热煮沸后有(砖)红色沉淀生成; (5)有关反应方程式:2NaOH + CuSO4 == Cu(OH)2↓+ Na2SO4 RCHO + 2Cu(OH)2RCOOH + Cu2O↓+ 2H2O HCHO + 4Cu(OH)2CO2 + 2Cu2O↓+ 5H2O OHC-CHO + 4Cu(OH)2HOOC-COOH + 2Cu2O↓+ 4H2O HCOOH + 2Cu(OH)2CO2 + Cu2O↓+ 3H2O CH2OH(CHOH)4CHO + 2Cu(OH)2CH2OH(CHOH)4COOH + Cu2O↓+ 2H2O (6)定量关系:—COOH~? Cu(OH)2~? Cu2+(酸使不溶性的碱溶解) —CHO~2Cu(OH)2~Cu2O HCHO~4Cu(OH)2~2Cu2O 7.能发生水解反应的有机物是:卤代烃、酯、糖类(单糖除外)、肽类(包括蛋白质)。 HX + NaOH == NaX + H2O (H)RCOOH + NaOH == (H)RCOONa + H2O RCOOH + NaOH == RCOONa + H2O 或 8.能跟FeCl3溶液发生显色反应的是:酚类化合物。 9.能跟I2发生显色反应的是:淀粉。 10.能跟浓硝酸发生颜色反应的是:含苯环的天然蛋白质。 三、各类烃的代表物的结构、特性 类别烷烃烯烃炔烃苯及同系物 通式C n H2n+2(n≥1) C n H2n(n≥2) C n H2n-2(n≥2) C n H2n-6(n≥6)

人工智能重点

人工智能重点 绪论 ●人工智能的定义起源和发展其他概念稍微了解 1.什么是人工智能?试从能力和学科两方面加以说明。 答:学科:人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。其近期的主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。 能力:人工智能(能力)是智能机器所执行的通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动。知识表示方法 2.人工智能的主要研究和应用领域有哪些? 答:自然语言处理、自动定理证明、智能数据检索系统、机器学习、模式识别、视觉系统、问题求解、人工智能方法和程序语言以及自动程序设计等。 3、简述人工智能的发展状况 人工智能的现状和发展呈现如下特点:多种途径齐头并进,多种方法写作互补;新思想、新技术不断涌现,新领域、新方向不断开括;理论研究更加深入,应用研究更加广泛;研究队伍日益壮大,社会影响越来越大;以上特点展现了人工智能学科的繁荣景象和光明前景。它表明,虽然在通向其最终目标的道路上,还有不少困难、问题和挑战,但前进和发展毕竟是大势所趋。 4.简述知识发现过程和知识发现的方法。 答:过程:①数据选择;②数据预处理;③数据变换;④数据挖掘;⑤知识评价方法:①统计方法;②机器学习方法;③神经计算方法;④可视化方法 ● 2.1状态空间法(重点)看例题 状态空间法的三要素:状态、算符、状态空间方法(是一个表示该问题全部可能状态及其关系的图,它包含三种说明的集合,即三元状态(S,F,G)。S:所有可能的问题初始状态集合;F:操作符集合;G:目标状态集合。) 状态图示法:状态空间的图示形式称为状态空间图 各种问题都可用状态空间加以表示,并用状态空间搜索法来求解。下面简单介绍一种产生式系统描述的搜索算法 产生式系统由三部分:一个总数据库、一套规则、一个控制策略(程序) ● 2.2问题规约法(重点) 另外一种基于状态空间的问题描述与求解方法;实质:从目标出发逆向推理,建立子问题以及子问题的子问题,直到最后把初始问题归约为一个本原问题集合。 组成部分:初始问题描述、问题变换为子问题的操作符、一套本原问题描述 与或图;与或图的搜索:目的在于表明起始节点是有解的 问题规约法举例:汉诺塔问题

高中化学有机化学知识点总结

高中化学有机化学知识点总结 1.需水浴加热的反应有: (1)、银镜反应(2)、乙酸乙酯的水解(3)苯的硝化(4)糖的水解 (5)、酚醛树脂的制取(6)固体溶解度的测定 凡是在不高于100℃的条件下反应,均可用水浴加热,其优点:温度变化平稳,不会大起大落,有利于反应的进行。 2.需用温度计的实验有: (1)、实验室制乙烯(170℃)(2)、蒸馏(3)、固体溶解度的测定 (4)、乙酸乙酯的水解(70-80℃)(5)、中和热的测定 (6)制硝基苯(50-60℃) 〔说明〕:(1)凡需要准确控制温度者均需用温度计。(2)注意温度计水银球的位置。 3.能与Na反应的有机物有:醇、酚、羧酸等——凡含羟基的化合物。 4.能发生银镜反应的物质有:醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖——凡含醛基的物质。 5.能使高锰酸钾酸性溶液褪色的物质有:(1)含有碳碳双键、碳碳叁键的烃和烃的衍生物、苯的同系物 (2)含有羟基的化合物如醇和酚类物质(3)含有醛基的化合物 (4)具有还原性的无机物(如SO2、FeSO4、KI、HCl、H2O2等) 6.能使溴水褪色的物质有: (1)含有碳碳双键和碳碳叁键的烃和烃的衍生物(加成)(2)苯酚等酚类物质(取代)(3)含醛基物质(氧化)(4)碱性物质(如NaOH、Na2CO3)(氧化还原――歧化反应)(5)较强的无机还原剂(如SO2、KI、FeSO4等)(氧化) (6)有机溶剂(如苯和苯的同系物、四氯甲烷、汽油、已烷等,属于萃取,使水层褪色而有机层呈橙红色。) 7.密度比水大的液体有机物有:溴乙烷、溴苯、硝基苯、四氯化碳等。 8、密度比水小的液体有机物有:烃、大多数酯、一氯烷烃。 9.能发生水解反应的物质有 卤代烃、酯(油脂)、二糖、多糖、蛋白质(肽)、盐。 10.不溶于水的有机物有:烃、卤代烃、酯、淀粉、纤维素 11.常温下为气体的有机物有:分子中含有碳原子数小于或等于4的烃(新戊烷例外)、一氯甲烷、甲醛。

大学计算机基础知识点复习总结

大学计算机基础知识点总结 第一章计算机及信息技术概述(了解) 1、计算机发展历史上的重要人物和思想 1、法国物理学家帕斯卡(1623-1662):在1642年发明了第一台机械式加法机。该机由齿轮组成,靠发条驱动,用专用的铁笔来拨动转轮以输入数字。 2、德国数学家莱布尼茨:在1673年发明了机械式乘除法器。基本原理继承于帕斯卡的加法机,也是由一系列齿轮组成,但它能够连续重复地做加减法,从而实现了乘除运算。 3、英国数学家巴贝奇:1822年,在历经10年努力终于发明了“差分机”。它有3个齿轮式寄存器,可以保存3个5位数字,计算精度可以达到6位小数。巴贝奇是现代计算机设计思想的奠基人。 英国科学家阿兰 图灵(理论计算机的奠基人) 图灵机:这个在当时看来是纸上谈兵的简单机器,隐含了现代计算机中“存储程序”的基本思想。半个世纪以来,数学家们提出的各种各样的计算模型都被证明是和图灵机等价的。 美籍匈牙利数学家冯 诺依曼(计算机鼻祖) 计算机应由运算器、控制器、存储器、 输入设备和输出设备五大部件组成; 应采用二进制简化机器的电路设计; 采用“存储程序”技术,以便计算机能保存和自动依次执行指令。 七十多年来,现代计算机基本结构仍然是“冯·诺依曼计算机”。 2、电子计算机的发展历程 1、1946年2月由宾夕法尼亚大学研制成功的ENIAC是世界上第一台电子数字计算机。“诞生了一个电子的大脑”致命缺陷:没有存储程序。 2、电子技术的发展促进了电子计算机的更新换代:电子管、晶体管、集成电路、大规模及超大规模集成电路 3、计算机的类型 按计算机用途分类:通用计算机和专用计算机 按计算机规模分类:巨型机、大型机、小型机、微型机、工作站、服务器、嵌入式计算机 按计算机处理的数据分类:数字计算机、模拟计算机、数字模拟混合计算机 1.1.4 计算机的特点及应用领域 计算机是一种能按照事先存储的程序,自动、高速地进行大量数值计算和各种信息处理的现代化智能电子设备。(含义) 1、运算速度快 2、计算精度高 3、存储容量大 4、具有逻辑判断能力 5、按照程序自动运行 应用领域:科学计算、数据处理、过程与实时控制、人工智能、计算机辅助设计与制造、远程通讯与网络应用、多媒体与虚拟现实 1.1.5 计算机发展趋势:巨型化、微型化、网络化、智能化

高中有机化学基础知识点归纳小结

高中有机化学基础知识点归纳小结 一、重要的物理性质 1.有机物的溶解性 (1)难溶于水的有:各类烃、卤代烃、硝基化合物、酯、绝大多数高聚物、高级的(指分子中碳原子数目较多的,下同)醇、醛、羧酸等。 (2)易溶于水的有:低级的[一般指N(C)≤4]醇、(醚)、醛、(酮)、羧酸及盐、氨基酸及盐、单糖、二糖。(它们都能与水形成氢键)。 二、重要的反应 1.能使溴水(Br2/H2O)褪色的物质 (1)有机物①通过加成反应使之褪色:含有、—C≡C—的不饱和化合物 ②通过取代反应使之褪色:酚类注意:苯酚溶液遇浓溴水时,除褪色现象之外还产生白色沉淀。 ③通过氧化反应使之褪色:含有—CHO(醛基)的有机物(有水参加反应)注意:纯净的只含有—CHO (醛基)的有机物不能使溴的四氯化碳溶液褪色 ④通过萃取使之褪色:液态烷烃、环烷烃、苯及其同系物、饱和卤代烃、饱和酯 (2)无机物①通过与碱发生歧化反应3Br2 + 6OH- == 5Br- + BrO3- + 3H2O或Br2 + 2OH- == Br- + BrO- + H2O ②与还原性物质发生氧化还原反应,如H2S、S2-、SO2、SO32-、I-、Fe2+ 2.能使酸性高锰酸钾溶液KMnO4/H+褪色的物质 1)有机物:含有、—C≡C—、—OH(较慢)、—CHO的物质苯环相连的侧链碳上有氢原子的苯的同系物(但苯不反应) 2)无机物:与还原性物质发生氧化还原反应,如H2S、S2-、SO2、SO32-、Br-、I-、Fe2+ 3.与Na反应的有机物:含有—OH、—COOH的有机物 与NaOH反应的有机物:常温下,易与含有酚羟基 ...、—COOH的有机物反应 加热时,能与卤代烃、酯反应(取代反应) 与Na2CO3反应的有机物:含有酚.羟基的有机物反应生成酚钠和NaHCO3; 含有—COOH的有机物反应生成羧酸钠,并放出CO2气体; 含有—SO3H的有机物反应生成磺酸钠并放出CO2气体。 与NaHCO3反应的有机物:含有—COOH、—SO3H的有机物反应生成羧酸钠、磺酸钠并放出等物质的量的CO2气体。4.既能与强酸,又能与强碱反应的物质 (1)2Al + 6H+ == 2 Al3+ + 3H2↑2Al + 2OH- + 2H2O == 2 AlO2- + 3H2↑ (2)Al2O3 + 6H+ == 2 Al3+ + 3H2O Al2O3 + 2OH-== 2 AlO2- + H2O (3)Al(OH)3 + 3H+ == Al3+ + 3H2O Al(OH)3 + OH-== AlO2- + 2H2O (4)弱酸的酸式盐,如NaHCO3、NaHS等等 NaHCO3 + HCl == NaCl + CO2↑ + H2O NaHCO3 + NaOH == Na2CO3 + H2O NaHS + HCl == NaCl + H2S↑NaHS + NaOH == Na2S + H2O (5)弱酸弱碱盐,如CH3COONH4、(NH4)2S等等 2CH3COONH4 + H2SO4 == (NH4)2SO4 + 2CH3COOH CH3COONH4 + NaOH == CH3COONa + NH3↑+ H2O (NH4)2S + H2SO4 == (NH4)2SO4 + H2S↑ (NH4)2S +2NaOH == Na2S + 2NH3↑+ 2H2O (6)氨基酸,如甘氨酸等 H2NCH2COOH + HCl → HOOCCH2NH3Cl H2NCH2COOH + NaOH → H2NCH2COONa + H2O

人工智能知识点归纳-老王知识点归纳

?人工智能的不同研究流派:符号主 义/逻辑主义学派--符号智能;连接主 义--计算智能;行为主义-低级智能。 人工智能的主要研究领域 (一)自动推理(二)专家系统(三)机器 学习(四)自然语言理解(五)机器人学和 智能控制(六)模式识别(七)基于模型的 诊断 产生式系统是人工智能系统中常用的一种 程序结构,是一种知识表示系统。 三部分组成:综合数据库:存放问题的状 态描述的数据结构,动态变化的。产生式规 则集、控制系统。 / 产生式规则集/ 控制系统 产生式规则形式: IF<前提条件> THEN<操作> 八数码难题的产生式系统表示 综合数据库:以状态为节点的有向图。 状态描述:3×3矩阵 产生式规则: IF<空格不在最左边>Then<左移空格>; 依次 控制系统: 选择规则:按左、上、右、下的顺序 移动空格。 终止条件:匹配成功。 产生式系统的基本过程: Procedure PROCUCTION 1.DATA←初始状态描述 2.until DATA 满足终止条件,do: 3.begin 4.在规则集合中,选出一条可用于 DATA的规则R(步骤4是不确定的, 只要求选出一条可用的规则R,至于这 条规则如何选取,却没有具体说明。) 5. DATA←把R应用于DATA所得的结果 6.End 产生式系统的特点:1.模块性强,2.产生式 规则相互独立,3.规则的形式与逻辑推理相近,易懂。 产生式系统的控制策略:1.不可撤回的控制 策略:优点是空间复杂度小、速度快;缺点 是多数情况找不到解 2.试探性控制策略: 回溯方式:占用空间小,多数情况下能找到解;缺点是如果深度限制太低就找不到解; 和图搜索方式:优点总能找到解,缺点时间 空间复杂度高。 产生式系统工作方式:正向、反向和双向产 生式系统 可交换产生式系统:1.可应用性,每一条对 D可应用的规则,对于对D应用一条可应用 的规则后,所产生的状态描述仍是可应用的。 2.可满足性,如果D满足目标条件,则对D 应用任何一条可应用的规则所产生的状态描 述也满足目标条件。3.无次序性,对D应用 一个由可应用于D的规则所构成的规则序列 所产生的状态描述不因序列的次序不同而改变。可分解的产生式系统:能够把产生式系统综 合数据库的状态描述分解为若干组成部分, 产生式规则可以分别用在各组成部分上,并 且整个系统的终止条件可以用在各组成部分 的终止条件表示出来的产生式系统,称为可 分解的产生式系统。基本过程: Procedure SPLIT 1.DATA ←初始状态描述 2.{Di} ← DATA的分解结果;每个Di看成 是独立的状态描述 3.until 对所有的Di ∈{Di}, Di都满足终 止条件,do: 4.begin 5. 在{Di}中选择一个不满足终止条件的D* 6. 从{Di}中删除D* 7.从规则集合中选出一个可应用于D*的规则 R 8.D ←把R应用于D*的结果 9.{di} ← D的分解结果 10.把{di}加入{Di}中 11.end 回溯算法BACKTRACK过程:Recursive Procedure BACKTRACK(DATA) 1.if TERM(DATA),return NIL; 2.if DEADEND(DATA),return FAIL; 3.RULES←APPRULES(DATA); 4.LOOP:if NULL(RULES),return FAIL; 5.R←FIRST(RULES); 6.RULES←TAIL(RULES); 7.RDATA←R(DATA); 8.PATH←BACKTRACK(RDATA); 9.if PATH=FAIL,go PATH; 10.return CONS(R,PATH). Procedure GRAPHSEARCH 1.G←{s}, OPEN ←(s). 2.CLOSED ←NIL. 3.LOOP:IF OPEN=NIL,THEN FAIL. 4. n ← FIRST(OPEN),OPEN ← TAIL(OPEN),CONS(n, CLOSED) . 5. IF TERM(n),THEN 成功结束 (解路径可通过追溯G中从n到 s的指针获得)。 6.扩展节点n, 令M={m︱ m是n的子节点,且m不是n的祖先} , G ←G ∪M 7.(设置指针,调整指针)对于m M, (1)若m CLOSED, m OPEN, 建立m 到n的指针,并CONS(m, OPEN). (2)(a)m OPEN, 考虑是否修改m的 指针. (b)m CLOSED,考虑是否修改m 及在G中后裔的指针。 8.重排OPEN表中的节点(按某一 任意确定的方式或者根据探索信息)。 9. GO LOOP 无信息的图搜索过程:深度优先搜索:排列OPEN表中的节点时按它们在搜索树中的深度 递减排序。深度最大的节点放在表的前面,

有机化学知识点总结归纳(全)

催化剂 加热、加压 有机化学知识点归纳 一、有机物的结构与性质 1、官能团的定义:决定有机化合物主要化学性质的原子、原子团或化学键。 2、常见的各类有机物的官能团,结构特点及主要化学性质 (1)烷烃 A) 官能团:无 ;通式:C n H 2n +2;代表物:CH 4 B) 结构特点:键角为109°28′,空间正四面体分子。烷烃分子中的每个C 原子的四个价键也都如此。 C) 物理性质:1.常温下,它们的状态由气态、液态到固态,且无论是气体还是液体,均为无色。 一般地,C1~C4气态,C5~C16液态,C17以上固态。 2.它们的熔沸点由低到高。 3.烷烃的密度由小到大,但都小于1g/cm^3,即都小于水的密度。 4.烷烃都不溶于水,易溶于有机溶剂 D) 化学性质: ①取代反应(与卤素单质、在光照条件下) , ,……。 ②燃烧 ③热裂解 C 16H 34 C 8H 18 + C 8H 16 ④烃类燃烧通式: O H 2 CO O )4(H C 222y x y x t x +++????→?点燃 ⑤烃的含氧衍生物燃烧通式: O H 2 CO O )24(O H C 222y x z y x z y x +-+ +????→?点燃 E) 实验室制法:甲烷:3423CH COONa NaOH CH Na CO +→↑+ 注:1.醋酸钠:碱石灰=1:3 2.固固加热 3.无水(不能用NaAc 晶体) 4.CaO :吸水、稀释NaOH 、不是催化剂 (2)烯烃: A) 官能团: ;通式:C n H 2n (n ≥2);代表物:H 2C=CH 2 CH 4 + Cl 2CH 3Cl + HCl 光 CH 3Cl + Cl 2CH 2Cl 2 + HCl 光 CH 4 + 2O 2 CO 2 + 2H 2O 点燃 CH 4 C + 2H 2 高温 隔绝空气 C=C 原子:—X 原子团(基):—OH 、—CHO (醛基)、—COOH (羧基)、C 6H 5— 等 化学键: 、 —C ≡C — C=C 官能团 CaO △

足球中的数学问题

足球中的数学问题 ************************************************************* 众所周知,足球是世界第一大体育运动,全世界有将近30亿人参与足球运动或关心足球的发展。它的最高水平的赛事——世界杯足球赛,是只有奥运会才能比拟的最大赛事。 足球是一项综合性的体育运动,它不仅考验队员们的身体素质,包括速度、体力、柔韧、技术等,还要求队员有良好的心理素质,更包括球员和教练对足球的理解,以至训练水平,甚至一个地区的经济状况和文化背景。但有很多人都认为足球只是一种体力运动,很少能和脑力劳动,甚至自然科学联系起来。这也正是我在本文中要向大家说明的。 1.退离距离的问题 足球比赛中,有一项规则是:在进攻方主罚定位球的时候,如果离球门的距离足够大,防守一方都要退到离球9.15米以外。这不仅因为为保证球能顺利发出,其实也是为了保护防守的球员。在较高水平的比赛中,最矮球员大概是1.65米。设足球的半径为1Ocm 。人在用脚踢球时,脚面与触球部位所在的大圆是不能垂直的,经过实践体验,其夹角大约为78°到80°。假设人就按照这样的角度将球踢出,且力量足够大,使球能按照直线运动。为了让球不能踢到人的身上,球员必须退到一定的距离之外。 设人与球的距离为xm ,则有 80cos 165.1≤+x , x ≥1.65/cos80°-O .1=9.13m 。

如果按照78°进行计算,就能够得到9.15m 的结论。当然,如果个子越高就越需要有一段较长的距离。可见,如果没有这项规则,也许有的球员就会换一个脑袋了。 这个问题主要应用了平面几何的知识。 2.阵型和阵容问题 将10名队员分配到场上的十个位置,往往是教练员最头疼的问题。这不仅是安排哪些球员上场的问题,也因为需要选择一个合适的阵型。足球场上到底有多少可能的阵型呢?我们不妨数一数,有如下的66种:(分别为后卫、前卫、前锋的人数)10-0-0,9-0-1,9-1-0,8-0-2,8-1-1,8-2-0,7-0-3,7-1-2,7-2-1,7-3-0,6-0-4,6-1-3,6-2-2,6-3-1,6-4-0,5-0-5,5-1-4,5-2-3,5-3-2,5-4-1,5-5-0,4-0-6,4-1-5,4-2-4,4-3-3,4-4-2,4-5-1,4-6-0,3-0-7,3-1-6,3-2-5,3-3-4,3-4-3,3-5-2,3-6-1,3-7-0,2-0-8,2-1-7,2-2-6,2-3-5,2-4-4,2-5-3,2-6-2,2-7-1,2-8-0,1-0-9,1-1-8,1-2-7,1-3-6,1-4-5,1-5-4,1-6-3,1-7-2,1-8-1,1-9-0,0-0-10,0-1-9,0-2-8,0-3-7,0-4-6,0-5-5,0-6-4,0-7-3,0-8-2,0-9-1,0-10-0, 能否不用一一列举出来呢?我们在12个位置中,选出两个,那么就可以把剩下 的十个位置分成三段,代表三条线上的人数。所以共有 66212 C 种。 当然其中大多数是不可行的。其中只有九种在比赛中比较常见,即5-2-3,5-3-2,5-4-1,4-3-3,4-4-2,4-5-1,3-4-3,3-5-2,3-6-1。怎样能得到这九种阵型呢?我们发现在后卫线上最多布置五个人,最少须布置三个人,在前锋线上最多布置三个人,最少为一人,在前卫线上最多为六人。我们先假设已经选出了五名后卫,六名前卫,三名前锋。这样,已选出14个人。这就需要在他们中间挑出四人。在这四人中,可以选后卫0、1、2名,前锋0、1、2名,剩下的就从前卫线上找了。这样,显然就有3×3=9种选法了。 在今年的甲A 比赛中,每支队伍允许注册30名球员,为了保证能够顺利的完成比赛,每个位置都至少应配备两人,即有22人已经固定,在余下的8人中,可以根据需要选定。 同上理,有311C =165种配备方式。 如果要求安排出场阵容,就需要根据所有的要求,进行排列。比如,有些队员不宜同时出场,有些队员相互之间配合很好,有些队员可以在多种位置出现等。情况会很复杂,但也是一定能够求出来的。 这个问题主要是应用了排列组合的知识。

人工智能重点总结

人工智能重点总结 第一章:发展简史(此处为简答题) 1.人工智能的萌芽(1956年以前) 1936年,图灵创立了自动机理论(后人称为图灵机),提出一个理论计算机模型,为电子计算机设计奠定了基础,促进了人工智能,特别是思维机器的研究。 麦克洛克和皮茨于1943年提出“拟脑模型”是世界上第一个神经网络模型(MP模型),开创了从结构上研究人类大脑的途径。 1948年维纳发表《控制论—关于动物与机器中的控制与通信的科学》,不但开创了近代控制论,而且为人工智能的控制学派树立了里程碑。 1、古希腊伟大的哲学家思想家亚里士多德的主要贡献是为形式逻辑奠定了基 础。形式逻辑是一切推理活动的最基本的出发点。在他的代表作《工具论》中,就给出了形式逻辑的一些基本规律,如矛盾律、排中律,并且实际上已经提到了同一律和充足理由律。此外亚里士多得还研究了概念、判断问题,以及概念的分类和概念之间的关系判断问题的分类和它们之间的关系。其最著名的创造就是提出人人熟知的三段论。 2、英国的哲学家、自然科学家 Bacon(培根)(1561-1626),他的主要贡献是 系统地给出了归纳法,成为和 Aristotle 的演绎法相辅相成的思维法则。 Bacon 另一个功绩是强调了知识的作用。 Bacon 的著名警句是"知识就是力量"。 3、德国数学家、哲学家 Leibnitz(莱布尼茨)(1646-1716),他提出了关于数 理逻辑的思想,把形式逻辑符号化,从而能对人的思维进行运算和推理。他曾经做出了能进行四则运算的手摇计算机 4、英国数学家、逻辑学家 Boole(布尔)(1815-1864),他初步实现了布莱尼 茨的思维符号化和数学化的思想,提出了一种崭新的代数系统--布尔代数。 5、美籍奥地利数理逻辑学家Godel(哥德尔)(1906-1978),他证明了一阶谓词 的完备性定理;任何包含初等数论的形式系统,如果它是无矛盾的,那么一定是不完备的。此定理的意义在于,人的思维形式化和机械化的某种极限,在理论上证明了有些事是做不到的。

大学有机化学知识点总结(推荐文档)

有机化学复习总结 一.有机化合物的命名 1. 能够用系统命名法命名各种类型化合物: 包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。 2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。 立体结构的表示方法: 1 )伞形式: COOH OH H 3 2)锯架式:CH 3 OH H H OH C 2H 5 3) 纽曼投影式: H H 4)菲舍尔投影式:COOH CH 3 OH H 5)构象(conformation) (1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。 (2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。 (3) 环己烷构象:最稳定构象是椅式构象。一取代环己烷最稳定构象是e 取代的椅 式构象。多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。 立体结构的标记方法 1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一侧,为Z 构型, 在相反侧,为E 构型。 CH 3 C H C 2H 5CH 3C C H 2H 5Cl (Z)-3-氯-2-戊烯 (E)-3-氯-2-戊烯 2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式; 在相反侧,则为反式。

大学有机化学复习重点总结

有机化学复习总结 一.有机化合物的命名 1. 能够用系统命名法命名各种类型化合物: 包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。 2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。 立体结构的表示方法: 1)伞形式:C COOH OH H 3C H 2)锯架式:CH 3 OH H H OH C 2H 5 3) 纽曼投影式: H H H H H H H H H H H H 4)菲舍尔投影式:COOH CH 3 OH H 5)构象(conformation) (1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。 (2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。 (3) 环己烷构象:最稳定构象是椅式构象。一取代环己烷最稳定构象是e 取代的椅 式构象。多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。 立体结构的标记方法 1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一 侧,为Z 构型,在相反侧,为E 构型。 CH 3 C C H Cl C 2H 5CH 3C C H C 2H 5Cl (Z)-3-氯-2-戊烯 (E)-3-氯-2-戊烯 2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧, 则为顺式;在相反侧,则为反式。 CH 3C C H CH 3H CH 3C C H H CH 3顺-2-丁烯 反-2-丁烯CH 3 H CH 3 H CH 3 H H CH 3顺-1,4-二甲基环己烷反-1,4-二甲基环己烷 3、 R/S 标记法:在标记手性分子时,先把与手性碳相连的四个基团按次序规则排序。然后将最不优先的基团放在远离观察者,再以次观察其它三个基团,如果优先顺序

相关文档
最新文档