cass工艺设计计算

cass工艺设计计算
cass工艺设计计算

CASS 的计算 1

4 CASS 池

采用容积符合计算法

污水进水量Q=2000m 3/d ;

进水BOD=1590mg/l,COD=3825mg/l ; 出水BOD=238mg/l ,COD=573mg/l ;

1.1 4.1 选定参数

污泥负荷率Ls=0.5Kg COD/(Kg MLSS·d ); 反应池池数N=4座; 反应池水深H=5.0m ;

排出比1/m 一般采用1/4~1/2,设计中采用1/2; 活性污泥界面以上最小水深ε=0.5m ; MLSS 浓度C A =5000mg/l 。

1.2 4.2 运行周期及时间的确定

曝气时间取T A =6h

沉降时间 max

1

s H

m T V ε+=

其中4 1.26

max 4.610 1.00/A

V C m s -=??= 所以50.50.5

31.00

s T h ?+=

=,

排水闲置时间,取T D =2h , 一周期所需时间 T C ≥T A +T s +T D =11h ,

周期数n 取2,每周期为12h ,进水时间T F -2h 。

1.3 4.3 设计计算

根据运行周期时间安排和自动控制特点,CASS 反应池设置4个,2个一组交替运行1天。 1.3.1

4.3.1 CASS 池反应池容积

单池面积32200050024

i m V Q m nN =

=?=?, 反应池容积3

445002000i V V m ==?=

式中 n — 周期数;

N — 池子个数。

1.3.2

4.3.2 CASS 反应池的构造尺寸

CASS 反应池为满足运行灵活及设备安装需要,设计为长方形,一端为进水区,另一端为出水区。 CASS 单池有效水深H=5.0m ,超高h c =0.5m ,保护水深ε=0.5m 。 则单池体积V i =LB i H , 据资料B/H=1~2,取 B/H=1

L/B=4~6,取L/B=4 单池面积2500

1005

i Vi S m H =

==。 CASS 池沿长度方向设一道墙,将池底分为预反应区和主反应区两部分,据资料反应区比预反应区应为9:1,预反应区作为兼氧吸附区和生物选择区。 根据资料,预反应区长()10.16

0.25L L =,取1L =3m 。

CASS 反应池尺寸21×21.6×5.5(壁厚200mm )。 1.3.3

4.3.3 反应池液位控制

CASS 反应池总有效水深为5.0m ,

排水结束时最低水位1121

5.0 5.0 2.52

m h m m --=?

=?=, 基准水位h 2为5m ,超高h c 为0.5m ,保护水深ε=0.5m ,

污泥层高度1 2.50.5 2.0s h h m ε=-=-= 验证池容:

两池一次进水2h ,Q h =83.33m 3/h ,

所以每周期的进水量3

83.332166.67w h F Q Q T m ==?=

CASS 反应池一周期内能纳水

()()321225.0 2.583.33416.65b i V h h S m =-=-?=

所以CASS 反应池的建造符合水量要求。

保护水深ε的设置是为了避免排水时对沉淀剂排泥的影响,进水开始与结束由水位控制,曝气开始由水位和时间控制,曝气结束由时间控制,沉淀开始与结束由时间控制,排水开始由时间控制,排水结束由水位控制。

1.4 4.4 排水口高度和排出装置

1.4.1

4.4.1 排水口高度

为保证每次换水Q h =83.33m 3/h 的水量及时快速排出以及排水装置运行的需要,排水口应设在反应池最低水位之下约0.5~0.7m 处,本工程设计排水口在最低水位0.6m 处。 1.4.2

4.4.2 排出装置

每池派出负荷3383.332

41.556/0.69/min 222

h F D D Q T Q m h m T ?=

===?,每池设滗水器(规格DN=200mm ),一套,出水口2个。选用旋臂式程控制能滗水器,型号为BSQ —12,排水堰长2m ,最大排水量215m 3/h ,滗水深度为2m 。

1.5 4.5 产泥量及排泥量 1.5.1 4.5.1 CASS 池产泥量

CASS 池的剩余污泥主要来自微生物代谢的增值污泥,还有很少部分由进水悬浮物沉淀形成。 CASS 生物代谢产泥量为:

r r r r r s s QS b

x aQS bX V aQS b

a QS L L ??

=-=-=- ???

式中 a — 微生物代谢增值系数,Kg VSS/Kg COD ;

b — 微生物自身氧化率,d -1;

r X — 回流污泥浓度,mg/l ;

V — 反应池容积,m 3;

r S — 去除的COD 浓度,Kg COD/m 3; s L — COD 污泥负荷,Kg COD/Kg VSS 。

根据资料选0.90,0.12a b ==,

0.120.902000 3.2524292.640.5x ?

?=-??= ???

Kg/d

1.5.2

4.5.2 CASS 排泥量

假定剩余污泥含水率为99%,则排泥量为,

()()

3

33

4292.64429.264/10110199%s x Q m d p =

==-?- 考虑一定的安全系数,则每天排泥一次,排泥量为429.2643

/m d 。

1.6 4.6 排泥系统

每池池底坡向排泥坑坡度i=0.01,在每池出水端池底设1.0m×1.0m×0.5m 排泥坑一个,每个排泥坑中接排泥管DN200的一根排泥管安装高程为相对地面+1.5m ,相对于最低水位为-1.5m ,剩余污泥排入集泥井。

1.7 4.7 需氧量及曝气系统设计计算

1.7.1

4.7.1 需氧量计算 每个曝气池需氧量

()2'' 1.710.12r v t e a O a QS b VX N N Q S =++--????

式中 'a — 活性污泥微生物对有机污染物氧化分解过程的需氧率;

'b — 活性污泥微生物通过内源代谢的自身氧化过程的需氧率;

v X — 单位曝气池容积内的挥发性悬浮固体(MLVSS ), Kg/m 3,

取3000 Kg/m 3。

t N — 进水氨氮量,mg/l ;

e N — 出水氨氮量,Mg/l ;

()280241590573300015900.5520000.122000 1.7120000.121000100010001000O -??-??

=??+??

+?-??? ????

? 2029.894/kg d = 1.7.2

4.7.2 供气量计算

设计采用W M -180型网状膜型微孔空气扩散器,

各项参数如下:每个扩散器的服务面积0.5m 2,动力效率2.7~3.7KgO 2/KWh ,氧利用率12~15%,

膜片平均孔隙率80~100m μ,扩散装置安装深度H=4.5m,计算温度定为30℃, 查资料得,水中溶解氧饱和度()209.17/s C mg l =,()307.63/s C mg l =。

⑴ 空气扩散器出口处的绝对压力P b

53

1.013109.810b P H =?+?

()535

1.013109.810 4.5 1.45410pa =?+??=?

⑵ 空气离开曝气池面时氧的百分比

()

()

211100%79211A t A E O E -=

?+-

式中 E A — 空气扩散器的氧转移效率,对网状膜型中微孔空气扩散器取值15%。

()

()

21115%100%18.43%7921115%t O -=?=+-

⑶ 曝气池混合液中平均氧饱和度(按最不利温度30℃考虑)

()30 2.02610542b t sb s P O C C ?

?=+

????

55

1.4541018.437.638.828/

2.0261042mg l ??

?=?+= ????

⑷ 换算为在20℃条件下,脱氧清水的充氧量

()

()()

02020 1.024

s T sb T RC R C C αβρ-=

??-???

取值α=0.82,β=0.95,C =2.0,ρ=1.0 []()

030202029.8949.17

116.796/0.820.95 1.08.828 2.0 1.024

R Kg h -?=

=??-? ⑸ 曝气池供气量

1000.3s A

R G E =? 3116.796

1002595.476/0.315

m h =

?=?

⑹ 本系统空气总用量

除采用鼓风曝气外,还采用空气在回流污泥井提升污泥,空气量按回流污泥8倍考虑,污泥回流比R 取值60%,则提升回流污泥所需空气量为

380.62000

400/24

m h ??=

总需气量3

2595.4764002595.476/m h += 1.7.3

4.7.3 空气管系统计算

因每个扩散器的服务面积为0.5m 2, 曝气池平面面积为20×5×4=400m 2,

则所需空气扩散器的总数为400/0.5=800个,

本设计采用800个空气扩散器,如下图布置空气管道,每个池子引入一根总管,共4根干管。在每根干管上设5对配气竖管,共10条配气竖管。全曝气池共设40条配气竖管。

每根竖管的供气量为2595.476/40=64.887m 3/h , 每个竖管上安设的空气扩散器的数目为800/40=20个, 每个空气扩散器的配器量为2595.476/800=3.24m 3/h ,

将已布置得空气管路及布设的空气扩散器绘制成空气管路计算图,用以进行计算。 具体管路布置请看图4-1:

选择一条从鼓风机房开始最远最长的管路作为计算管路,在空气流量变化处设计算节点,统一编号列表进行空气管道计算。

CASS工艺计算

目录: 第一章设计原始资料----------------------2 第二章工艺流程-------------------------4 第三章计算-----------------------------4 第一节污染物去除率--------------------------4 第二节格栅计算------------------------------5 第三节调节池计算----------------------------8 第四节配水井设计计算------------------------9 第五节工艺比选-----------------------------10 第六节 CASS池计算---------------------------12 第七节接触池计算---------------------------16 第八节加氯间计算---------------------------17 第九节压滤机房计算-------------------------19 第四章参考文献------------------------20

第一章设计原始资料: 1.某制浆造纸厂,以落叶松为原料,采用硫酸盐法制浆,生产新闻纸,年总产量约3万吨。废水来源与生产安排同上。设计废水流量10000 m3/d,混合废水水质如下: CODcr BOD5 SS pH 800 mg/L 400 mg/L 200 mg/L 6~9 2.要求应根据该废水的水质和排放量,按照我国2008年8月1日实施的《制浆造纸工业水污染物排放标准》(GB3544-2008)规定,污染物排放限值: CODcr BOD5 SS pH 150 mg/L 30 mg/L 50 mg/L 6~9 3污水设计流量 Q=10000m3/d =416.67m3/h =0.1157m3/s 3 m s 0.116/ 4. 造纸废水来源: 造纸废水性质: 1.在制浆蒸煮工序,废水量少而浓度高,约占总污染负荷的80%。主要有可生物降解的有机物,如纤维分解生成的糖类、醇类、有机酸等;木质素及其衍生物,蒸煮废液中含有粗硫酸盐如树脂酸、脂肪酸钠。 2.漂白废水即白液中含有的木质素降解产物与含氯漂白剂反应产生的酚类及其

南方CASS方格网计算土方步骤

南方CASS方格网计算土方步骤 一:现场采集数据: 已知坐标点和高程,可以直接利用数据采集来采集要计算土方范围里的点(要算十米格子土方图,实际中采集点为5-8米一点,二十米格子为12-16米一点,中间地形变化比较大的全部要采集,砍高砍底要全部采集),同时范围边采集,而对于没坐标点的可以利用一个固定点为零平台,坐标全假设为0,利用0位角定向即可采集数据,方法和上面一样,再后一个不同之处就是会要采集个平整到哪处位置点的高程将成为你计算土方量的设计高程。 二:开始计算: 传好数据会出现记事本格式的DAT文件如图 , 在南方CASS绘图处理菜单中展野外测点点号,就会出现如图

然后把范围用多段线框出来,如图 把范围框线改别图层并关闭图层,删掉展点号,后打开关闭的图层。 打开CASS菜单里工程应用里方格网计算,会出现下图

接着就是采集原地面高程点数据文件输入如图 再后看到有三个设计面和一个方格网格子距离输入 你将可以选择是有坡度计算还是平整计算和十米格子或二十米格子计算等。 一般情况多用设计面第一个和第二个,第一个平整很简单直接输入设计高程,如图 接着就是你选择方格宽度,下图为20米

第二种有坡度的计算,设计面不同如图 基准点就是坡度开始位置点击平面会出现坐标,向下方向上一点就是坡度结束点点击平面出现的坐标,基准点设计高程就是坡度开始位置设计高程,接着也是选择格子距离10米或20米,下图为20米,

有坡比的和平整的不同之处就是设计高程会不同,如下图对比 有坡比的蓝色设计高程呈现不同值

平整的蓝色设计高程全为32米。 第三种设计面计算和第二种一样,就是一个坡度后接着再一个坡度。下面给个例子做下: 条件:已知采集好了原地面数据,平整高度为35米计算。 已知采集好了原地面数据,从左到右正直坡度为1.5℅,左边开始设计高程为32米计算。 比如电子版图,就在图上面把土方范围框出来后用命令G加点(是保存到你自己文件里)来采集原地面高程点,后面计算都一样。

CASS池的设计计算

CASS 池的设计计算 1. BOD------污泥负荷(S N ) 25**0.0168*30.0*0.750.44/(*0.85 S k Se f N kgBOD kgMLSS d η=== 式中:2k =0.0168,2k ------为有机物基质降解速率常数 Se=30.0,se------为混合液中残留成分的有机基质,/mg L f =0.75,f ------为溶液中挥发性悬浮物固体浓度与总悬浮物固体浓度的比值 η=0.85,η------有机基质降解率 121200300.85200 BOD BOD BOD η--=== 2.曝气时间 02424*200 1.45**0.44*3*2500 A S S T N m X === 式中 :0S ------进水BOD 浓度 X------混合污泥浓度,取25003 /g m 1/m ------排水比,取m=3 3:活性污泥界面的初始沉降速率 4 1.74 1.77.4*10**7.4*10*10*2500 1.24MAX V t X --=== 水温10℃,MLSS ≤3000/mg L 4 1.264.6*10* 2.41MAX V X -== 水温20℃,MLSS >3000/mg L 式中:t------水温,℃ 4:沉淀时间 max 1[*()][6*0.33 1.5] 2.81.24 S H m T V ε++=== h 水温10℃ max 1[*()][6*0.33 1.5] 1.42.41 S H m T V ε++=== h 水温20℃

式中:H------反应器有效水深,取6m ε-----安全高度,取1.5m 5:运行周期 1.45 1.4 1.0 3.85A S D T T T T =++=++=h 式中:D T -----排水时间,h ,取1.0h 因此,取一周期时间为4小时 周期数,6次/天 6:CASS 池容积 采用负荷计算法,3 *()100000*(20030)*1010303.0**0.44*5.0*0.75 a e e w Q S S V m N N f ---=== 本水厂设计CASS 池N=10座,每座容积310303.01030.310 i V m = = 排水体积法进行复核,单池容积为33*1000005000*6*10i m V Q m n N === 反应池总容积3*5000*1050000i V N V m === 式中:i V ------单池容积,3 m n------周期数 N------池数 Q------平均日流量,3/m d 7:CASS 池的容积负荷 7.1池内设计最高水位和最低水位之间的高度 1*100000*62n*6*50000 Q H H m V === 7.2滗水结束时泥面高度,3(m)H 已知撇水水位和泥面之间的安全距离,H2=ε=1.5m 312()6(2 1.5) 2.5H H H H m =-+=-+= 7.3 SVI —污泥体积指数, /ml g 3 3 2.5*1083.3/*6*5.0 W H SVI ml g H N === 此数值反映出活性污泥的凝聚、 沉降性能良好。 8:CASS 池外形尺寸 8.1**V L B H N = 式中:B 为池宽,m ,B:H=1~2; L 为池长,m ,L :B=4~6

污水处理CASS池设计计算

2.5 生物反应池(CASS反应池) 2.5.1 CASS反应池的介绍 CASS是周期性循环活性污泥法的简称,是间歇式活性污泥法的一种变革,并保留了其它间歇式活性污泥法的优点,是近年来国际公认的生活污水及工业污水处理的先进工艺。 CASS工艺的核心为CASS池,其基本结构是:在SBR的基础上,反应池沿池长方向设计为两部分,前部为生物选择区也称预反应区,后部为主反应区,其主反应区后部安装了可升降的自动撇水装置。整个工艺的曝气、沉淀、排水等过程在同一池子内周期循环运行,省去了常规活性污泥法中的二沉池和污泥回流系统,同时可连续进水,间断排水。 CASS工艺与传统活性污泥法的相比,具有以下优点: ●建设费用低。省去了初次沉淀池、二次沉淀池及污泥回流设备,建设费用可 节省20%~30%。工艺流程简单,污水厂主要构筑物为集水池、沉砂池、CASS 曝气池、污泥池,布局紧凑,占地面积可减少35%; ●运转费用省。由于曝气是周期性的,池内溶解氧的浓度也是变化的,沉淀阶 段和排水阶段溶解氧降低,重新开始曝气时,氧浓度梯度大,传递效率高,节能效果显著,运转费用可节省10%~25%; ●有机物去除率高。出水水质好,不仅能有效去除污水中有机碳源污染物,而 且具有良好的脱氮除磷功能; ●管理简单,运行可靠,不易发生污泥膨胀。污水处理厂设备种类和数量较少, 控制系统简单,运行安全可靠; ●污泥产量低,性质稳定。

2.5.2 CASS 反应池的设计计算 图2-4 CASS 工艺原理图 (1)基本设计参数 考虑格栅和沉砂池可去除部分有机物及SS ,取COD,BOD 5,NH 3-N,TP 去除率为20%,SS 去除率为35%。 此时进水水质: COD=380mg/L ×(1-20%)=304mg/L BOD 5=150mg/L ×(1-20%)=120mg/L NH 3-N=45mg/L ×(1-20%)=36mg/L TP=8mg/L ×(1-20%)=6.4mg/L SS=440mg/L ×(1-35%)=286mg/L 处理规模:Q=14400m 3/d,总变化系数1.53 混合液悬浮固体浓度(MLSS ):Nw=3200mg/L 反应池有效水深H 一般取3-5m,本水厂设计选用4.0m 排水比:λ= m 1 =5 .21 =0.4 (2)BOD-污泥负荷(或称BOD-SS 负荷率)(Ns ) Ns= η f S K ??e 2 Ns ——BOD-污泥负荷(或称BOD-SS 负荷率),kgBOD 5/(kgMLSS ·d); K 2——有机基质降解速率常数,L/(mg ·d),生活污水K 2取值范围为

(完整版)南方CASS工程应用道路断面土方计算实例教程

南方CASS工程应用--道路断面土方计算实例教程 一、系统环境: (1)操作系统WIN XP ; (2)应用环境:南方CASS7.0 FOR CAD2004或CAD2006 二、实例数据:坐标高程数据文件:dgx.dat (路径:\Program Files\CASS70\DEMO\dgx.dat ) 三、准备工作: 展绘坐标数据文件dgx.dat 中的测点点号,并绘制等高线。基本操作如下:( 1 )【绘图处理】菜单-- 【展野外测点点号】;弹出“输入坐标数据文件名”对话框中,打开dgx.dat 文件,展绘出测点点号; (2)【等高线】菜单--【建立DTM ;弹出“建立DTM对话框中, “选择建立DTM方式”中单选“又数据文件生成”;“坐标数据文件名”中打开dgx.dat 文件;“结果显示”中单选“显示建三角网结果”; 单击【确定】完成DTM勺建立。 (3)【等高线】菜单-- 【绘制等高线】;弹出“绘制等值线”对话框,修改“等高距”为0.5米;“拟合方式”中单选“三次B样条拟合”;单击【确定】完成等高线勺绘制。 (4)【等高线】菜单--【删三角网】。

四、道路断面设计阶段工作: 1. 设计线路走向,即确定纵断面线:在等高线地形图中绘制道路的纵断面剖面线:使用pline绘多段线命令,连接dgx.dat中测点点号421 和227,起点测点421,终点测点227。如图所示: 2. 绘制道路的纵断面图,以便下一步中确定“横断面设计文件”中的各个横断面的中桩设计高。基本操作如下:

【工程应用】菜单- 【绘断面图】- 【根据已知坐标】,弹出“断面线上取值”对话框,在“选择已知坐标获取方式”中单选“由数据文件生成”;在“坐标数据文件名”中打开dgx.dat 文件;注意在“采样间距”中输入25 米(该值可输入与横断面间距相同的数值,便于查看横断面个数及其中桩处的地面高程,并最终确定各里程处横断面的中桩设计高程);单击【确定】按钮。 弹出“绘制纵断面图”对话框,在“断面图比例”中默认横向1:500;纵向1: 100;在“断面图位置”中单击“ ??? ”按钮,用鼠标在绘图 区空白处指定纵断面图左下角坐标,返回“绘制纵断面图”对话框后,单击【确定】按钮。 3. 在纵断面图中“拉坡”大致确定道路中桩设计高:使用pline 多段线从纵断面图图左侧高程标尺1375米处,连接右侧高程标尺1 380米处。如图所示:图中红色曲线即为道路地面断面,白色直线为人工绘制的道路设计断面,每隔25米处有横断面的中桩地面高程,并可大致判断各里程处横断面的中桩设计高程,该纵断面按25 米的间距有6个横断面。

CASS池设计计算

------------------- 时需Sr彳-------- ---- ---- -- 2.5生物反应池(CASS反应池) 2.5.1 CASS反应池的介绍 CASS是周期性循环活性污泥法的简称,是间歇式活性污泥法的一种变革,并保留了其它间歇式活性污泥法的优点,是近年来国际公认的生活污水及工业污水处理的先进工艺。 CASS工艺的核心为CASS池,其基本结构是:在SBR的基础上,反应池沿池长方向设计为两部分,前部为生物选择区也称预反应区,后部为主反应区,其主反应区后部安装了可升降的自动撇水装置。整个工艺的曝气、沉淀、排水等过程在同一池子内周期循环运行,省去了常规活性污泥法中的二沉池和污泥回流系统,同时可连续进水,间断排水。 CASS工艺与传统活性污泥法的相比,具有以下优点: 建设费用低。省去了初次沉淀池、二次沉淀池及污泥回流设备,建设费用可 节省20%~30%。工艺流程简单,污水厂主要构筑物为集水池、沉砂池、CASS 曝气池、污泥池,布局紧凑,占地面积可减少35%; 运转费用省。由于曝气是周期性的,池内溶解氧的浓度也是变化的,沉淀阶段和排水阶段溶解氧降低,重新开始曝气时,氧浓度梯度大,传递效率高,节能效果显著,运转费用可节省10%~25%; 有机物去除率高。出水水质好,不仅能有效去除污水中有机碳源污染物,而 且具有良好的脱氮除磷功能; 管理简单,运行可靠,不易发生污泥膨胀。污水处理厂设备种类和数量较少,控制系统简单,运行安全可靠; 污泥产量低,性质稳定。

布晶忖呎 2.5.2 CASS反应池的设计计算 图2-4 CASS工艺原理图 (1)基本设计参数 考虑格栅和沉砂池可去除部分有机物及SS,取COD,BQ[NH-N,TP去除率为20% SS去除率为35% 此时进水水质: COD=380mg/L (1-20%) =304mg/L BOI5=150mg/L X( 1-20%) =120mg/L NH_N=45mg/L X( 1-20%) =36mg/L TP=8mg/L X( 1-20%) =6.4mg/L SS=440mg/L X( 1-35%) =286mg/L 处理规模:Q=14400r/d,总变化系数1.53 混合液悬浮固体浓度(MLSS:Nw=3200mg/L 反应池有效水深H —般取3-5m,本水厂设计选用4.0m 1 1 排水比:入=—= =0.4 m 2.5 (2)BOD-污泥负荷(或称BOD-SS负荷率)(Ns) =K^^ Ns——BOD污泥负荷(或称BOD-SS负荷率),kgBOD/(kgMLSS ? d);

[VIP专享]CASS工艺概述及原理

CASS工艺概述及原理 CASS(Cyclic-Activated-Sludge-System)工艺是近年来国际公认的处理生活污水及工业废水的先进工艺。其基本结构是:在序批式活性污泥法(SBR)的基础上,反应池沿池长方向设计为两部分,前部为生物选择区也称预反应区,后部为主反应区,其主反应区后部安装了可升降的自动撇水装置。整个工艺的曝气、沉淀、排水等过程在同一池子内周期循环运行,省去了常规活性污泥法的二沉池和污泥回流系统;同时可连续进水,间断排水。 该工艺最早在国外应用,为了更好地将其引进、消化,开发出适合我国国情的新型污水处理新工艺,总装备部工程设计研究总院环保中心于1994年在实验室进行了整套系统的模拟试验,分别探讨了CASS工艺处理常温生活污水、低温生活污水、制药和化工等工业废水的机理和特点以及水处理过程中脱氮除磷的效果,获得了宝贵的设计参数和对工艺运行的指导性经验。我院将研究成果成功地应用于处理生活污水及不同种工业废水的工程实践中,取得了良好的经济、社会和环境效益。我院开发的CASS工艺与ICEAS工艺相比,负荷可提高1-2倍,节省占地和工程投资近30%。 CASS工艺是将序批式活性污泥法(SBR)的反直池沿长度方向分为两部分,前部为生物 选择区也称预反应区,后部为主反应区+在主反应区后部安装了可升降的滗水装置,实现了连续进水间歇排水的周期循环运行,集曝气沉淀、排水于一体。CASS工艺是一个好氧/缺 氧/厌氧交替运行的过程,具有一定脱氮除磷效果,废水以推流方式运行,而各反应区则以完全混合的形式运行以实现同步硝化一反硝化和生物除磷。 对于一般城市污水,CASS工艺并不需要很高程度的预处理,只需设置粗格栅、细格栅和沉砂池,无需初沉池和二沉池,也不需要庞大的污泥回流系统(只在CASS反应器内部有约20%的污泥回流)国内常见的CASS工艺流程如图1所示:

南方CASS9.0 土方量的计算操作流程

南方CASS9.0 土方量的计算操作流程 DTM法土方计算 由DTM模型来计算土方量是根据实地测定的地面点坐标(X,Y,Z)和设计高程,通过生成三角网来计算每一个三棱锥的填挖方量,最后累计得到指定范围内填方和挖方的土方量,并绘出填挖方分界线。 DTM法土方计算共有三种方法,一种是由坐标数据文件计算,一种是依照图上高程点进行计算,第三种是依照图上的三角网进行计算。前两种算法包含重新建立三角网的过程,第三种方法直接采用图上已有的三角形,不再重建三角网。下面分述三种方法的操作过程: 1. 根据坐标计算 ●用复合线画出所要计算土方的区域,一定要闭合,但是尽量不 要拟合。因为拟合过的曲线在进行土方计算时会用折线迭代,影响计算结 果的精度。 ●用鼠标点取“工程应用\DTM法土方计算\根据坐标文件”。 ●提示:选择边界线用鼠标点取所画的闭合复合线弹出如图7-3 土方计算参数设置对话框。 图7-3土方计算参数设置 区域面积:该值为复合线围成的多边形的水平投影面积。 平场标高:指设计要达到的目标高程。 边界采样间隔:边界插值间隔的设定,默认值为20米。 边坡设置:选中处理边坡复选框后,则坡度设置功能变为可选,选中放坡的方式(向上或向下:指平场高程相对于实际地面高程的高低,平场高程 高于地面高程则设置为向下放坡不能计算向内放坡。不能计算向范围线内部 放坡的工程)。然后输入坡度值。 ●设置好计算参数后屏幕上显示填挖方的提示框,命令行显示: 挖方量= XXXX立方米,填方量=XXXX立方米 同时图上绘出所分析的三角网、填挖方的分界线(白色线条)。 如图7-4所示。计算三角网构成详见cass\system\dtmtf.log文件。

南方CASS方格网计算土方量流程总结

南方CASS方格网计算土方量流程总结 一、方格网计算由三个要素组成:计算范围+原地面标高数据文件+完成面标高三角网 二、计算范围 计算范围一定要用复合线(PL)画,且最后闭合(CAD按c闭合); 三、生成原地面标高数据文件要将原地面标高生成高程点坐标数据文件(*.dat ),方法有以下 2 种: 1对有坐标数据(X,Y,H )的,直接在记事本上按以下格式(序号,编码,Y, X,H)操作: 1,,Y,X,H 2 ,,Y,X,H 另存为*.dat 文件。 2、对于CAD图上有原地面标高的,可以直接在图上导出来建立数据文件(*.dat) 步骤:工程应用——高程点生成数据文件——无编码文件;注意:原地面高程点所在图层不要有完成面标高存在,否则计算结果不准确! 四、生成完成面标高三角网文件要将完成面标高生成三角网文件(*.sjw ) 1、首先要生成完成面标高数据文件(*.dat ), 步骤同上生成原地面标高数据文件; 2、接着生成三角网: 第一步:建立DTM模型,可以由已有设计标高数据文件或图面高程点生成。步骤:等高线一一建立DTM(由已有数据文件或图面高程点生成); 第二步:建立三角网并生成三角网文件;步骤:等高线——三角网存取——写入文件(*.sjw ) 五、方格网法计算过程 步骤:工程应用——方格网法土方计算——确定范围——高程点数据文件*.dat (原地面)——三角网文件*.sjw(完成面)。 特别注意问题:1、计算范围一定要是复合闭合线; 2、对于直接在CAD导出标高数据生成文件时候,原地面标高数据和完成面标高数据不要在同一图层。 土方量计算 一、方格网法Cass7.0 软件中的方格网法,需要提供计算区域的“高程点数据坐标文件”作为计算的依据,其具体计算操作如下:首先是导入“高程点坐标数据文件”,然后选择设计面:1)、当设计面为平面时,需要输入“目标高程”,在“方格宽度”一项中输入你需要设 置的方格网规格,例如输入20m则为才用20m >20m方格网进行土方计算; 2 )、当设计 面为斜面时,有“基准点”和“基准线”两种方法,其原理是相同的,只是计算条件不同而已。我们以 “基准点”法为例,它需要确定斜面的“坡度”,然后是“基准点”,也就是坡顶点的“坐标”和“高程”,再者就是坡线的“下边点”的坐标了,也就是斜坡方向,最后确定“方格宽度”即可计算出土方量;3)、当设计面非平面也非斜面时,这种情况在土方工程比较常见,场地经开挖或回填后变得杂乱无章就属于这种情况,假如我们有场地前期的“高程点坐标 数据文件”,那么我们则可利用它生成“三角网文件”,然后在设计面选项中选择“三角网文件”,然后导入文件,最后确定“方格宽度”即可计算出土方量(把设计高输入cass 做成三角网文件,场地设计高选择三角网就可以)。 通过对Cass7.0 软件中的方格网法的了解,我们不难看出其计算理论与传统的方格网法事一样的。只是用户在提交相关的计算条件,如设计面高程、坡度、方格宽度、三角网文件等计算条件后,电脑自动在设计面及待计算场地平面设置相同的方格网,根据“高程点坐标数据文件”、设计面高程、坡度等内插出各方

CASS工艺计算(DOC)

第二章 工艺流程 工艺流程图 工艺说明:处理水主要分三部分:一、物理处理部分:进水经格栅后,大部分悬浮物被阻截,之后进沉淀池,水质水量得到调节,大部分污泥下沉。再进沉淀池,调节水质水量。二、生化处理部分:污水由泵抽入CASS 池,进入生化处理阶段,经CASS 池进水、曝气、沉淀、出水四阶段后水质几近可达到要求。加药后外排。三、污泥处理部分,从沉淀池和CASS 池出来的污泥进污泥浓缩池,上清液直接外排。含泥量多的由污泥泵抽入脱水机房,由袋式压滤机压滤成泥饼外运。 第三章 计算 第一节 污染物去除效率: 2.主要的计算公式: (1) 格栅的间隙数 0.5(sin )/n Q bvh θ= (2) 格栅宽度 (1)B S n bn =-+ (3) 栅后槽总高度 12H h h h =++ (4) 栅前扩大段长度 11()/2tan L B B α=- (5) 栅后收缩段长度 21/2L L =

(6) 栅前渠道深 12 H h h =+ (7) 栅槽总长度 21210.51.0/tan L L L H θ=++++ (8) 每日栅渣量 max 1/1000f W Q W k = 3.计算过程: 日平均污水流量Q=6500m 3/d 流量变化系数K Z =1.10 h m d m d m Q /298/715010.1/6500333max ==?= 设栅前水深h=0.4m ;过栅流速V=0.6m/s ;倾角a=600;b=0.018m <1>188.174.06.0018 .060sin 08278.00 ≈=???=n 取18根 <2>s=0.01 m B 5.0494.018018.01701.0≈=?+?= <3>进水渠道渐宽部分长度:(进水渠道宽度:B 1=0.4m ,20α=? 进水渠道 内的流速为0.5m/s ) <4>m L 14.020tan 2/)4.05.0(01=-= m L 07.02/14.02== m 11.1018.001.042.23 /41=? ? ? ???=ξ

南方cass各种计算土方汇总

各种土方量的计算方法汇总 8.2.1 DTM法土方计算 由DTM模型来计算土方量是根据实地测定的地面点坐标(X,Y,Z)和设计高程,通过生成三角网来计算每一个三棱锥的填挖方量,最后累计得到指定范围内填方和挖方的土方量,并绘出填挖方分界线。 DTM法土方计算共有三种方法,一种是由坐标数据文件计算,一种是依照图上高程点进行计算,第三种是依照图上的三角网进行计算。前两种算法包含重新建立三角网的过程,第三种方法直接采用图上已有的三角形,不再重建三角网。下面分述三种方法的操作过程: 1. 根据坐标计算 ●用复合线画出所要计算土方的区域,一定要闭合,但是尽量不要拟合。 因为拟合过的曲线在进行土方计算时会用折线迭代,影响计算结果的精 度。 ●用鼠标点取“工程应用\DTM法土方计算\根据坐标文件”。 ●提示:选择边界线用鼠标点取所画的闭合复合线弹出如图8-3土方计 算参数设置对话框。 图8-3土方计算参数设置 区域面积:该值为复合线围成的多边形的水平投影面积。 平场标高:指设计要达到的目标高程。 边界采样间隔:边界插值间隔的设定,默认值为20米。 边坡设置:选中处理边坡复选框后,则坡度设置功能变为可选,选中放坡的方式(向上或向下:指平场高程相对于实际地面高程的高低,平场高程高于地面高程则设置为向下放坡)。然后输入坡度值。 ●设置好计算参数后屏幕上显示填挖方的提示框,命令行显示: 挖方量= XXXX立方米,填方量=XXXX立方米 同时图上绘出所分析的三角网、填挖方的分界线(白色线条)。 如图8-4所示。计算三角网构成详见dtmtf.log文件。

图8-4 填挖方提示框 关闭对话框后系统提示: 请指定表格左下角位置:<直接回车不绘表格> 用鼠标在图上适当位置点击,CASS 7.0会在该处绘出一个表格,包含平场面积、最大高程、最小高程、平场标高、填方量、挖方量和图形。 如图8-5所示。 图8-5 填挖方量计算结果表格

CASS工艺设计计算

沈阳化工大学 水污染控制工程 三级项目 题目:小区生活污水回用处理设计 院系:环境与安全工程学院 专业:环境工程 提交日期: 2020 年 5 月 26 日

摘要 本文主要介绍了小区生活污水回用处理设计的过程,其中包括工艺流程、以及流程中各个构筑物的设计计算、高程和平面布置。循环式活性污泥法(CASS)是序批式活性污泥法工艺(SBR)的一种变形。它综合了活性污泥法和SBR工艺特点,与生物选择器原理结合在一起,具有抗冲击负荷和脱氮除磷的功能。本次设计采用了CASS工艺进行设计计算。其中包括池体的计算和格栅等辅助物尺寸计算,处理后水质达到一级B标准。 关键词:小区生活污水回用循环式活性污泥法设计计算 Abstract This paper mainly introduces the design process of residential sew age reuse treatment, including the process flow, as well as the design of e ach structure in the process, elevation and plane layout. Circulating activa ted sludge process (CASS) is a variation of sequential batch activated slu dge process (SBR). It integrates the characteristics of activated sludge pro cess and SBR process, combines with the principle of biological selector, and has the functions of impact load resistance and denitrification and de phosphorization. This design adopts CASS technology to design and calc ulate. It includes the calculation of the pool body and the size calculation of the grid and other auxiliary objects. After treatment, the water quality r eaches the standard of grade a B.

CASS工艺毕业设计文献综述

燕山大学 本科毕业设计(论文)文献综 述 课题名称:2万吨/日城市污水处理厂CASS工艺设计学院(系):环境与化学工程学院 年级专业: 13级环境工程 学生姓名:刘欣超 指导教师:张晓春 完成日期: 2017.03.19

目录 一.CASS工艺国内外现状 (3) 二.研究主要成果 (4) 2.1 CASS工艺原理介绍 (4) 2.2 CASS工艺运行 (5) 三.发展趋势 (6) 四.存在的问题 (7) 五.参考文献 (8)

一.CASS工艺国内外现状 CASS(cyclic activated sludge system)也称CAST(technaoloy)或CASP(process),是循环活性污泥系统的一种形式,是SBR 工艺的一种改进型,是在其他的循环活性污泥技术如IDEA(intermittently decanted extended aeration),IDAL(intermittently decanted aerated lagoons),ICEAS(intermittently cyclic extended aeration system)的基础上发展而来。 1969年,Goronszy教授从连续进水间歇运行的氧化沟工艺入手,进行可变容积活性污泥法的研究和开发,1975年将连续进水间歇运行的工艺应用于矩形鼓风曝气池,并由美国川森维柔公司申请专利并推广应用,1978年将生物选择器和SBR工艺有机结合,成功开发出CASS工艺。目前,在美国、加拿大、澳大利亚等国家,已经有270多个污水处理厂应用此工艺,其中城镇污水处理厂200多家,工业废水处理厂70多家,国内也已经有了相关应用。

CASS工艺课程设计

目录 目录 (1) 摘要 (3) 第一章:污水处理工艺的选择 (4) 1.1 基本资料 (4) 1.2 处理程度计算 (5) 1.2.1 COD cr的处理程度 (5) 1.2.2 溶解性BOD5的处理程度 (5) 1.2.3 SS的处理程度 (6) 1.3CASS工艺 (6) 1.3.1 工艺原理: (6) 1.3.2 工艺优点: (6) 第二章设计计算 (7) 2.1城市污水水量的确定 (7) 2.2粗格栅设计计算 (8) 2.2.1 设计说明 (8) 2.2.2 栅条的间隙数 (8) 2.2.3 栅槽宽度 (9) 2.2.4 过栅水头损失 (9) 2.2.5 栅后槽总高度 (9) 2.2.6 栅前渠道 (10) 2.2.7 栅槽总长度 (10) 2.2.8 每日栅渣量计算W (10) 2.3 泵站的设计计算 (10) 2.3.1 泵房规范要求 (10) 2.2.2 集水池 (11) 2.3.3 污水泵计算 (11) 2.4 沉砂池的选择计算 (11) 2.4.1 沉砂池的选择 (11) 2.4.2 沉砂池设计计算一般规定 (12) 2.4.3 设计参数 (12) 2.4.4 设计计算 (13) 2.5 厌氧生物池的计算 (14) 2.5.1 生物选择器(厌氧池) (14) 污泥中活性微生物的增长都符合Monod方程: (14) (1/X).(dX/dt)=μ=μmax[S/(KS+S)] (14) 2.5.2厌氧池体积计算 (14) 2.5.3 潜水搅拌器 (15) 2.6 配水井的设计 (16) 2.6.1 设计要求 (16)

2.6.2 设计计算 (17) 2.7 CASS池的设计计算 (18) 2.7.1 基本设计参数 (18) 2.7.2 曝气时间T A (19) 2.7.3 沉淀时间T S (20) 2.7.4 排水时间T D (20) 2.7.5 周期数的确定 (20) 2.7.6 进水时间T F (20) 2.7.7 CASS反应池容积计算 (20) 2.7.8 CASS反应池的构造尺寸 (21) 2.7.9 反应池液位控制 (21) 2.7.10 需氧量 (22) 2.7.11 曝气器及空气管计算 (23) 2.7.12 产泥量及排泥系统 (26) 2.7.13 回流污泥泵 (27) 2.7.14 滗水器: (28) 2.7.15 进出水管路计算 (28) 2.9 污泥浓缩池计算 (29) 2.9.1 设计参数 (29) 2.9.2 设计与计算 (30) 2.10 污泥脱水设计计算 (32) 2.10.1 压滤机设计计算 (32) 2.10.2 附属设备 (32) 2.11 其它构筑物 (33) 第三章污水处理厂配套工程设计 (34) 3.1 厂区平面设计 (34) 3.1.1 平面布置原则 (34) 3.1.2 总平面布置 (34) 3.2 厂区高程设计 (35) 3.2.1 高程布置注意事项 (35) 3.2.2 高程计算 (36) 致谢 (40) 参考文献 (41) 1250m3/d城市污水处理厂设计

cass断面法土方计算详细步骤

一、系统环境: (1)操作系统 WIN XP ; (2)应用环境:南方CASS7.0 FOR CAD2004 或CAD2006 二、实例数据:坐标高程数据文件:dgx.dat (路径:\Program Files\CASS70\DEMO\dgx.dat ) 三、准备工作: 展绘坐标数据文件dgx.dat 中的测点点号,并绘制等高线。基本操作如下: (1)【绘图处理】菜单--【展野外测点点号】;弹出“输入坐标数据文件名”对话框中,打开dgx.dat文件,展绘出测点点号; (2)【等高线】菜单--【建立DTM】;弹出“建立DTM”对话框中,“选择建立DTM方式”中单选“又数据文件生成”;“坐标数据文件名”中打开dgx.dat文件;“结果显示”中单选“显示建三角网结果”;单击【确定】完成DTM的建立。 (3)【等高线】菜单--【绘制等高线】;弹出“绘制等值线”对话框,修改“等高距”为0.5米;“拟合方式”中单选“三次B样条拟合”;单击【确定】完成等高线的绘制。 (4)【等高线】菜单--【删三角网】。 四、道路断面设计阶段工作: 1. 设计线路走向,即确定纵断面线:在等高线地形图中绘制道路的纵断面剖面线:使用pline绘多段线命令,连接dgx.dat 中测点点号421和 227,起点测点421,终点测点227。如图所示:

2. 绘制道路的纵断面图,以便下一步中确定“横断面设计文件”中的各个横断面的中桩设计高。基本操作如下: 【工程应用】菜单-【绘断面图】-【根据已知坐标】,弹出“断面线上取值”对话框,在“选择已知坐标获取方式”中单选“由

数据文件生成”;在“坐标数据文件名”中打开dgx.dat文件;注意在

CASS工艺计算表(全)

CASS工艺计算表(全) 序号 一1设计流量Q=720日最大变化系数Kz=1 30.00 最大流量Qmax=720.00日最大变化系数Kz= 30.00 BOD 5=250COD=500SS= NH 4--=200 TP=32)出水水质 BOD 5=20COD=60SS= NH 4--N=15 TP=1二1污泥负荷-Ns N S =K 2*S e *f/ηK 2=0.0168K 2-为有机基质降解速率常数,L/(mg·d),0.0168-0.0281;Se=20.00Se-为混合液中残留的有机基质浓度,mg/L ;f=0.7f-为混合液中挥发性悬浮物固体浓度与总悬浮物固体浓度的比值,η=0.92η-有机基质降解率,η=(BOD 进-BOD 出)/BOD 进N S =0.26一般来讲,生活污水Ns=0.05kgBOD5/(kgMLSS·d)~1.0kgBOD 5/(k 2曝气时间 T A =24S 0/(N S *m*X)S 0=250.00S 0-进水BOD 浓度;X=2500X-混合液污泥浓度,2.5kg/m 3-4.0kg/m 31/m=0.31/m-排水比,≤1/3

T A =2.82 3活性污泥界面的初始沉降速度 Vmax=7.4*104*t*X 0-1.7 水温10℃,MLSS ≤3000mg/L V max =4.6*104*X 0-1.26 水温20℃,MLSS ﹥3000mg/L t=10.00t-水温; Vmax=1.24水温10℃ Vmax=2.41水温20℃ 4沉淀时间 T s =[H*(1/m)+ε]/V max H=6H-反应器有效水深; ε=0.5ε-活性污泥界面上最小水深 Ts=1.86水温10℃ Ts=0.96水温20℃ 5一周期所用时间Tc ≥T A +T S +T D Tc=6.17 T D =1.5T D -排水时间 一周期时间 8h CASS 设计计算表(全) 设计依据及参考资料 1)进水水质 工艺计算 周期数3次/天6 CASS 池需要总容积V=m*n*Q*C*T C /Lv*Ta

41、南方CASS工程应用--道路断面土方计算实例教程

一、系统环境: (1)操作系统WIN XP ; (2)应用环境:南方CASS7.0 FOR CAD2004 或CAD2006 二、实例数据: 坐标高程数据文件:dgx.dat (路径:\Program Files\CASS70\DEMO\dgx.dat ) 三、准备工作: 展绘坐标数据文件dgx.dat 中的测点点号,并绘制等高线。基本操作如下: (1)【绘图处理】菜单--【展野外测点点号】;弹出“输入坐标数据文件名”对话框中,打开dgx.dat文件,展绘出测点点号; (2)【等高线】菜单--【建立DTM】;弹出“建立DTM”对话框中,“选择建立DTM方式”中单选“又数据文件生成”;“坐标数据文件名”中打开dgx.dat文件;“结果显示”中单选“显示建三角网结果”;单击【确定】完成DTM的建立。 (3)【等高线】菜单--【绘制等高线】;弹出“绘制等值线”对话框,修改“等高距”为0.5米;“拟合方式”中单选“三次B样条拟合”;单击【确定】完成等高线的绘制。 (4)【等高线】菜单--【删三角网】。 四、道路断面设计阶段工作: 1. 设计线路走向,即确定纵断面线:在等高线地形图中绘制道路的纵断面剖面线:使用pline绘多段线命令,连接dgx.dat 中测点点号421和227,起点测点421,终点测点227。如图所示:

2. 绘制道路的纵断面图,以便下一步中确定“横断面设计文件”中的各个横断面的中桩设计高。基本操作如下: 【工程应用】菜单-【绘断面图】-【根据已知坐标】,弹出“断面线上取值”对话框,在“选择已知坐标获取方式”中单选“由数据文件生成”;在“坐标数据文件名”中打开dgx.dat文件;注意在“采样间距”中输入25米(该值可输入与横断面间距相同的数值,便于查看横断面个数及其中桩处的地面高程,并最终确定各里程处横断面的中桩设计高程);单击【确定】按钮。 弹出“绘制纵断面图”对话框,在“断面图比例”中默认横向1:500;纵向1:100;在“断面图位置”中单击“···”按钮,用鼠标在绘图区空白处指定纵断面图左下角坐标,返回“绘制纵断面图”对话框后,单击【确定】按钮。 3.在纵断面图中“拉坡”大致确定道路中桩设计高:使用pline多段线从纵断面图图左侧高程标尺1375米处,连接右侧高程标尺1380米处。如图所示:

南方CASS道路断面法土方计算

道路断面法土方计算。第一步:生成里程文件。 里程文件用离散的方法描述了实际地形。接下来的所有工作都是在分析里程文件里的数据后才能完成的。 生成里程文件常用的有四种方法,点取菜单“工程应用”,在弹出的菜单里选“生成里程文件”,CASS 提供了四种生成里程文件的方法,如图8-10: 图8-10 生成里程文件菜单 1.由纵断面生成 在CASS 2008中综合了以前由图面生成和由纵断面生成两者的优点。在生成的过程中充分体现灵活、直观、简捷的设计理念,将图纸设计的直观和计算机处理的快捷紧密结合在一起。 l 在使用生成里程文件之前,要事先用复合线绘制出纵断面线。 l 用鼠标点取“工程应用\生成里程文件\由纵断面生成\新建”。 l 屏幕提示: 请选取纵断面线:用鼠标点取所绘纵断面线弹出如图8-11所示对话框: 图8-11由纵断面生成里程文件对话框 中桩点获取方式:结点表示结点上要有断面通过;等分表示从起点开始用相同的间距;等分且处理结点表示用相同的间距且要考虑不在整数间距上的结点。 横断面间距:两个断面之间的距离此处输入20 横断面左边长度:输入大于0的任意值,此处输入15。 横断面右边长度:输入大于0的任意值,此处输入15。

选择其中的一种方式后则自动沿纵断面线生成横断面线。如图8-12所示 图8-12由纵断面生成横断面 其他编辑功能用法如下: 图8-13横断面线编辑命令 添加:在现有基础上添加横断面线。执行“添加”功能,命令行提示: 选择纵断面线用鼠标选择纵断面线; 输入横断面左边长度:(米) 20 输入横断面右边长度:(米) 20 选择获取中桩位置方式:(1)鼠标定点(2)输入里程<1> 1表示直接用鼠标在纵断面线上定点。2表示输入线路加桩里程。 指定加桩位置:用鼠标定点或输入里程。 变长:可将图上横断面左右长度进行改变;执行“变长”功能,命令行提示:选择纵断面线: 选择横断面线: 选择对象:找到一个 选择对象: 输入横断面左边长度:(米) 21 输入横断面右边长度:(米) 21,输入左右的目标长度后该断面变长。 剪切:指定纵断面线和剪切边后剪掉部分断面多余部分。 设计:直接给横断面指定设计高程。首先绘出横断面线的切割边界,选定横断面线后弹出设计高程输入框:

污水处理厂CASS工艺设计计算书

污水处理厂设计计算书 1.污水处理厂处理规模 1.1处理规模 污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。 1.2污水处理厂处理规模 污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。最高日水量为生活污水最高日设计水量和工业废水的总和。 Q设= Q1+Q2 = 5000+5000 = 10000 m3/d 总变化系数:K Z=K h×K d=1.6×1=1.6 2.城市污水处理工艺流程 污水处理厂CASS工艺流程图 3.污水处理构筑物的设计 3.1泵房、格栅与沉砂池的计算 3.1.1 泵前中格栅 格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。 3.1.1.1 设计参数:

(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ; (4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个 max Q n bhv = 式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ; (2)栅槽宽度B ,m 取栅条宽度s=0.01m B=S (n -1)+bn (3)进水渠道渐宽部分的长度L 1,m 式中,B 1-进水渠宽,m ; α1-渐宽部分展开角度,(°); (4)栅槽与出水渠道连接处的渐窄部分长度L 2,m (5)通过格栅的水头损失h 1,m 式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ; k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3; 1 112tga B B L -= 1 25.0L L =αε sin 22 01g v k kh h ==

相关文档
最新文档