蛋白质的提取及浓度测定

蛋白质的提取及浓度测定
蛋白质的提取及浓度测定

浙江大学宁波理工学院生化分院实验报告

专业:制药091 学号:3090502111 姓名:陈松泽实验蛋白质的提取及浓度测定(紫外吸收法)

一、目的与要求

掌握蛋白质的提取方法;学习紫外分光光度法测定蛋白质含量的原理;熟练掌握紫外分光光度计的使用方法。

二、实验原理

大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。

由于蛋白质中存在着含有共轭双键的酪氨酸和色氨酸,因此蛋白质具有吸收紫外光的性质,最大吸收峰在280 nm波长处。在此波长范围内,蛋白质溶液的光密度OD280nm与其浓度呈正比关系,可作定量测定。

三、实验材料、主要仪器和试剂

1. 试验材料:萌发3天的小麦种子

2. 主要仪器:(1)紫外分光光度计,(2)离心机(3)试管与试管架,(4)刻度吸量管(5)研钵(6)100 mL容量瓶

3.试剂:标准牛血清蛋白溶液:准确称取经凯氏定氮法校正的结晶牛血清蛋白,配制成浓度为1mg/ mL(0.5克标准牛血清蛋白纯水定容至500 mL)的溶液。

四、操作步骤

1.蛋白质(淀粉酶)的提取

称取1g萌发3天的小麦种子(芽长约1cm),置于研钵中,加入少量石英砂和2 mL蒸馏水,研磨匀浆。将匀浆倒入离心管中,用6 mL蒸馏水分次将残渣洗入离心管。提取液在室温下放置提取15~20 min,每隔数分钟搅动1次,使其充分提取。然后在3,000 r/min转速下离心10 min,将上清液倒入100 mL容量瓶中,加蒸馏水定容至刻度,摇匀,即为蛋白质原液,用于蛋白质浓度的测定。

2. 标准曲线制作

按表1分别向每支试管内加入各种试剂,混匀。以光程为1 cm的石英比色杯,在280 nm波长处测定各管溶液的光密度值OD280nm。以蛋白质浓度为横坐标,光密度值为纵坐标,绘出标准曲线。

管号标准蛋白质溶液(mL)蒸馏水(mL)蛋白质浓度(mg/mL)OD280nm

1040

20.5 3.50.125

3 1.0 3.00.25

4 1.

5 2.50.375

5 2.0 2.00.50

6 2.5 1.50.625

7 3.0 1.00.75

8 4.00 1.0

表1 蛋白质标准曲线制作

3.样品测定

取提取的蛋白质溶液,按上述方法测定280 nm的光密度,并从标准工作曲线上查出提取蛋白质溶液的浓度。若提取蛋白质溶液的浓度大于2.0,超出测量范围,则稀释后再测,计算蛋白质浓

对于不含核酸污染的蛋白溶液(如果样品光吸收值大于 2.0,应将样品稀释至光吸收值小于2.0):选择蛋白缓冲液作为空白对照,测定280 nm波长处的光吸收值,一般来说, 1 A280 Unit ≈ 1mg/ml (对于浓度位于0.02 mg/ml ~ 3 mg/ml范围之内的蛋白样品而言如此,对于浓度小于0.1 mg/ml的蛋白样品,可以采用以下的方法估算:蛋白浓度≈ A205/31)

对于存在核酸污染的蛋白溶液:选择蛋白缓冲液作为空白对照,测定280 nm和260 nm波长处的光吸收值,或280 nm和205 nm波长处光吸收值,按照以下公式计算:

蛋白浓度(mg/ml)= [1.55 × A280] -[0.76 × A260]

蛋白浓度(mg/ml)= A205 ÷ (27 +A280/A205)度时乘以稀释倍数。

五、思考题

1. 为何要在280 nm波长下测定蛋白质浓度?在其它波长下测定可以吗?

蛋白质分子中常含有酪氨酸、色氨酸、苯丙氨酸等苯环结构,在紫外280nm波长处有最大吸收峰,其光吸收值与蛋白质浓度成正比,故用280nm波长吸收值大小来测定蛋白质含量。优点:

①. 快速;

②. 对蛋白质无破坏性。

缺点:

①. 不是严格的定量方法。因为此法是根据酪氨酸(Tyr)、苯丙氨酸(Phe)、色氨酸(Trp)残基的强吸收值来测定的,不同的蛋白质具有不同的消光系数。另外,当蛋白质分子中不含Tyr、Phe或Trp残基时,该方法就不能检出蛋白。(此法用于测粗提总蛋白浓度较为适宜)

②. 核酸可引起强烈干扰。

灵敏度:

0.2 mg/ml ~ 2 mg/ml;比色杯最小测量体积为0.1 ml。

注意事项:

实验室通常认为用1cm的比色杯所测光吸收值为1.0时,蛋白浓度约为1mg/ml,这是非常不精确的。如果实验所用的缓冲液和水有较高的光吸收值,说明缓冲液中有干扰物质存在。

2. 如果考虑核酸的存在,蛋白质浓度的实际的值比测量值是大还是小?为什么?

蛋白质浓度的实际的值要比测量值偏大。因为核酸里含有N(氮元素),而测量蛋白质浓度时主要就是测N(氮元素)的含量,所以核酸的存在会导致N(氮元素)含量的增加,最终导致蛋白质浓度的测量值偏大。

蛋白质的提取与检测

蛋白质的提取与检测

蛋白质的提取与检测 第一节细胞总蛋白的提取及含量测定 【基本原理】 蛋白质含量测定法是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种经典的方法,即定氮法、双缩脲法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有两种近年普遍使用起来的测定法,即考马斯亮蓝法(Bradford法)与二辛可宁酸法(BCA法)。值得注意的是,上述方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这几种方法测定有可能得出不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。 Lowry法:蛋白质与碱性铜溶液中的二价铜离子络和使得肽键伸展,从而使暴露出的酪氨酸和色氨酸在碱性铜条件下与磷钼钨酸反应并产生深蓝色,在750nm有最大光吸收值。在一定浓度范围内,反应液颜色的深浅与蛋白质中的酪氨酸和色氨酸的含量成正比,由于各种蛋白质中的酪氨酸和色氨酸的含量各不相同,因此在测定时需使用同种蛋白质作标准。 Bradford法:蛋白质与染料考马斯亮蓝G-250结合,使得染料最大吸收峰从465nm变为595nm,溶液的颜色由棕黑色变为蓝色。在一定的线性范围内,反应液595nm处吸光度的变化量与反应蛋白量成正比,测定595nm处吸光度的增加即可进行蛋白定量。

BCA (Bicinchoninic acid)法:二价 铜离子在碱性 的条件下,可以 被蛋白质还原 成一价铜离子 (Biuret reaction)并与 BCA相互作用 产生敏感的颜 色反应。两分子 的BCA螯合一 个铜离子,形成 紫色的反应复 合物。该水溶性 的复合物在 562nm处显示 强烈的吸光性, 吸光度和蛋白 浓度在广泛范 围内有良好的 线性关 0.118 0.05 0.154 0.1 0.213 0.2 0.283 0.3 0.329 0.4 0.404 0.5 第二节SDS-PAGE电泳 【基本原理】

蛋白质浓度的测定

蛋白质浓度的测定 一.紫外吸收法 1. 近紫外吸收光谱法(280 nm) 原理:蛋白质中含有色氨酸与酪氨酸残基,这两种氨基酸残基具有吸收紫外光的性质,它们的紫外光吸收谱峰值在280 nm附近。某些蛋白质含有二硫键,也会在280 nm附近吸收紫外光。近紫外吸收法就是根据这个性质,对蛋白质进行定量。因为不同的蛋白质中所含有的色氨酸与酪氨酸的数量存在很大的差异,所以蛋白质在280 nm处的吸光度A280也存在非常大的差异。比如,当蛋白质浓度为1 mg/ml时,吸光度A280可为0-4之间的任何值。但是,大部分的蛋白质的吸光度A280时0.5-1.5之间的某个值。 该方法测定蛋白质的浓度具有明显的优缺点。这种方法操作简单,测定完成后,样品可以被回收,对buffer没有特殊要求,这是该方法的优点。该方法的缺点是:其他的生色基团会影响蛋白质吸收光谱的测定,比如核酸在该波长的紫外吸收能力非常强,少量的核酸就会对蛋白质吸光值的测定造成很大的干扰。同时,不同的蛋白质的消光系数需要在实验前确定。 蛋白质浓度的计算: 朗伯比尔定律:A(absorbance) = ε c l,因此:c(mg/ml)= A/ε l (cm)。 消光系数:当蛋白质浓度为1 mg/ml,光径为1 cm时,所测得的吸收值为该蛋白质的消光系数。 蛋白质的消光系数计算公式:A280 (1 mg/mL) = (5690n w + 1280n y + 120n c)/M。其

中M为蛋白质分子质量,5690、1280与120分别是色氨酸、酪氨酸与半胱氨酸的消光系数,n是该氨基酸残基的数目。 2. 远紫外吸收光谱法 在190-210 nm范围内,蛋白质中的肽键具有非常强的吸收紫外光的能力。此波长范围内,肽键在190 nm处的吸收值是其在205 nm的2倍,而且在190 nm,氧气对紫外光的吸收非常强,因此,通常取205 nm处的吸收值对蛋白质进行定量。对于1 mg/ml的蛋白质溶液,它们的消光系数通常在30-35之间。对于不同的蛋白质,其消光系数差别很小。 该方法的优点是操作简单,灵敏度高,样品可以回收。缺点:在使用前,必须对分光光度计进行准确校正,多种buffer,heme or pyridoxal groups在该波长具有很强的吸收紫外光的能力。 测定: 1.用生理盐水溶解蛋白质样品,确保其在215 nm处的吸收值小于1.5。 2.磷酸钾buffer不影响吸收值的测定。 3.计算公式:A2051 mg/mL = 27 + 120 (A280/A205) 或Protein concentration (μg/mL) = 144 (A215– A225)。 Notes: 1.使用这两个方法进行蛋白质定量时,最佳的吸收值范围为0.05-1,当吸收值 为0.3时,测定的结果最精确。 2.如果样品浑浊,可以扣除310 nm处的吸收值。

(整理)6种方法测定蛋白质含量.

6种方法测定蛋白质含量 一、微量凯氏(kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: NH2CH2COOH+3H2SO4――2CO2+3SO2+4H2O+NH3(1) 2NH3+H2SO4――(NH4)2 SO4(2) (NH4)2 SO4+2NaOH――2H2O+Na2SO4+2NH3(3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret法) (一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材 1.试剂: (1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05NaOH配制。 (2)双缩脲试剂:称以1.50克硫酸铜(CuSO4?5H2O)和6.0克酒石酸钾钠(KNaC4H4O6?4H2O),用500毫升水溶解,在搅拌下加入300毫升10% NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。 2.器材: 可见光分光光度计、大试管15支、旋涡混合器等。 (三)操作方法 1.标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分

几种测蛋白含量方法的比较

蛋白质含量测定方法的比较及肽含量的测定 (一)蛋白质测定方法的比较(原理、优缺点)蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫 外吸收法、考马斯亮蓝法。其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20 倍,比双缩脲法灵敏100倍以上。定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫外吸收法、考马斯亮蓝法。其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20 倍,比双缩脲法灵敏100倍以上。定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。 1 微量凯氏定氮法(GB 5009.5-2010) 1.1原理样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。 1.2操作方法样品经前处理、炭化、消化、蒸馏、滴定等主要步骤 1.3特点准确度较高,适用于0.2~ I.Omg氮,误差为土2%;操作复杂费时,整个过程需要耗时8~10h,试剂消耗量大。,测得结果为总氮含量,包括蛋白氮和非蛋白氮含 量;适用范围广,几乎所有样品均可用此方法。 2双缩脲比色法

蛋白质提取及纯化

蛋白质提取及纯化 提取蛋白质的当天早晨去后把高速离心机和超高速离心机都打开冷却 1、前一天晚上用Resuspension Buffer重悬4L菌体,然后离心于4C保存,第 二天使用。 2、用少量预冷的Resuspension Buffer重悬细菌,1 protease inhibitor tablets(EDTA Free),1mM PMSF, 然后用玻璃Homogenizer做均一化处理,将总体积调至80ml; 3、High Pressure Homogenizer破壁,特别注意样品一定要在不加压力的情况 下运行一个循环(2min);然后1200bar,6min三个循环,整个过程冰水冷却; 4、DNaseI处理:加入2.5mg DNaseI,10mM MgCl2, 室温处理30min; 5、 11.000rpm,4℃,15min; then 11.000rpm,4℃,15min; 6、 1mM PMSF, 45.000rpm,4℃,90min; 7、用Resuspension Buffer洗两次以除去可溶性的蛋白质,然后预热分光光度 计; 8、用3-4ml Binding Buffer重悬Membrane pellets,动作一定要轻缓,重悬 后的总体积不超过8ml,取出300ul测定OD800和OD850(以OD850为准),测定时候是逐步稀释,每次吸光值小于1; 9、调整OD850≤30-50,在缓慢搅拌(速度一定要慢)的情况下逐滴加入30%的 LDAO使其终浓度达到0.5%,1mM PMSF,26℃黑暗条件下重悬1h,期间注意观察颜色变化; 10、45.000rpm, 4℃, 30min,注意观察颜色的变化以及沉淀是否发生明显的变化。 Charge and Equilibrate Resin (1)用蒸馏水冲洗柱子以除去20%酒精,注意不要用buffer,1ml/min,至紫外 吸收和电导稳定; (2)用0.1M NiSO4 Charge Resin,1ml/min,10倍柱体积,尽量使得紫外吸收 和电导稳定; (3)用蒸馏水冲洗,1ml/min,至紫外吸收和电导稳定;

蛋白质浓度测定集合

一、蛋白浓度的直接测定(UV法) 这种方法是在280nm波长,直接测试蛋白。选择Warburg 公式,光度计可以直接显示出样品的浓度,或者是选择相应的换算方法,将吸光值转换为样品浓度。蛋白质测定过程非常简单,先测试空白液,然后直接测试蛋白质。从而显得结果很不稳定。蛋白质直接定量方法,适合测试较纯净、成分相对单一的蛋白质。紫外直接定量法相对于比色法来说,速度快,操作简单;但是容易受到平行物质的干扰,如DNA 的干扰;另外敏感度低,要求蛋白的浓度较高。 (1)简易经验公式 蛋白质浓度(mg/ml) = [1.45*OD280-0.74*OD260 ] * Dilution factor (2)精确计算 通过计算OD280/OD260的比值,然后查表得到校正因子F,再通过如下公式计算最终结果: 蛋白质浓度(mg/ml) = F *(1/d) *OD 280 * D 其中d为测定OD值比色杯的厚度 D为溶液的稀释倍数

二.紫外吸收法测定蛋白质含量 【实验目的】 1. 学习紫外吸收法测定蛋白质含量的原理。 2. 掌握紫外分光光度计的操作方法。 【实验原理】 大多数蛋白质分子结构中含有芳香族氨基酸(酪氨酸和色氨酸)残基,使蛋白质在280nm的紫外光区产生最大吸收,并且这一波长范围内的吸收值与蛋白质浓度的成正比,利用这一特性可定量测定蛋白质的含量。 紫外吸收法可测定0.1-0.5mg/ml的蛋白质溶液,此操作简便,测定迅速,不消耗样品,低浓度盐类不干扰测定。因此,此法在蛋白质的制备中广泛应用。 【实验材料】 1.实验器材 试管及试管架;50毫升容量瓶 2只;移液管;紫外分光光度计。 2.实验试剂 (1)标准蛋白质溶液:精确配制2mg/ml的酪蛋白溶液。 (2)样品溶液:配制约0.5mg/ml的酪蛋白溶液作为未知样品溶液。

蛋白质含量测定方法汇总

实验七蛋白质含量测定 测定蛋白质的定量方法有很多,目前常用的有染料法,双缩脲(Biuret)法,酚试剂法(Lowry)法及紫外吸收法。 [目的要求] 1.掌握测定蛋白质的含量基本方法。 2.了解染料法、双缩脲法、Lowry法和紫外吸收法测定原理。 一、染料法 [实验原理] 在酸性溶液中染料考马斯亮蓝G-250与蛋白质结合,此时考马斯亮蓝G-250颜色从红色变为蓝色,吸收高峰从460nm移至595nm。利用这个原理可以测定蛋白质含量。 该法近年在某些方面有取代经典的Lowry法趋势,因为它操作简单,反应时间短,染料-蛋白质颜色稳定,抗干扰性强。本法的缺点是:对于那些与标准蛋白氨基酸组成有较大差异的蛋白质,有一定误差,因为不同的蛋白质与染料的结合是不同的,故该法适合测定与标准蛋白质氨基酸组成相近的蛋白质。 [器材] 吸量管;试管;721型分光光度计 [试剂] 1.标准牛血清白蛋白溶液:配成0.1mg/ml的溶液。 2.待测蛋白质溶液。 3.染料溶液:称取考马斯亮蓝G-250 0.1g溶于95%的酒精50ml,再加入85%的浓磷酸100ml,用水稀释至1000ml,混匀备用。 [操作步骤] 按上表分别向各支试管内加入各种试剂,充分混匀,5min后在595nm波长处以0号管调零,测定各管吸光度值(A)。以吸光度值为纵坐标,蛋白质浓度为横坐标绘制标准曲线。 2.样品测定:

取1ml样品溶液(约含25~250微克蛋白质),加入染料溶液5ml混匀,5min后测定其595nm吸光度值,对照标准曲线求得蛋白质浓度。 二、双缩脲(Biuret)法测定蛋白质含量 [实验原理] 在碱性溶液中,双缩脲(H2N-CO-NH-CO-NH2)与二价铜离子作用形成紫红色的络合物,这一反应称双缩脲反应。凡分子中含二个或二个以上酰胺基(—CO-NH2),或与此相似的基团[如—CH2-NH2,—CS-NH2,—C(NH)NH2]的任何化合物,无论这类基团直接相连还是通过一个碳或氮原子间接相连,均可发生上述反应。蛋白质分子含有众多肽键(—CO-NH—),可发生双缩脲反应,且呈色强度在一定浓度范围内与肽键数量即与蛋白质含量成正比,可用比色法测定蛋白含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于快速,但并不需要十分精确的蛋白质测定。 [试剂] 1.双缩脲试剂:取CuSO4·5H20(c.P.)1.5g和酒石酸钾钠(c.P.)6.0g以少量蒸馏水溶解,再加2.5mol/L NaOH溶液300ml,KI 1.0g,然后加水至1000ml。棕色瓶中避光保存。长期放置后若有暗红色沉淀出现,即不能使用。 2.标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10g/L的标准蛋白溶液,可用BSA浓度1g/L的A280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05mol/L NaOH配制。 [器材] 1.试管:15×150mm 试管7只; 2.1ml,5ml移液管; 3.坐标纸; 4.721分光光度计。 [操作步骤]

6种方法测定蛋白质含量

6种方法测定蛋白质含量 [ 文章来源: | 文章作者: | 发布时间:2006-12-25| 字体: [大 中 小] 一、微量凯氏(kjeldahl )定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: nh 2ch 2cooh+3h 2so 4——2co 2+3so 2+4h 2o+nh 3 (1) 2nh 3+h 2so 4——(nh 4)2so 4 (2) (nh 4)2so 4+2naoh ——2h 2o+na 2so 4+2nh 3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得 样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret 法) (一)实验原理 双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg 蛋白质。干扰这一测定的物质主要有:硫酸铵、tris 缓冲液和某些氨基酸等。 此法的优点是较快速 ,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材

蛋白质提取综合性实验

生物化学综合性实验 蛋白质的提取(沉淀法)和定量分析之 鸡蛋中卵清蛋白的提取和定量测定 一、实验目的 研究盐析沉淀和等电点沉淀法的基本原理和技术。 一、二、实验原理 1、沉淀法粗分离蛋白质[1][2] 沉淀法是分离纯化生物大分子物质常用的一种经典方法,可分盐析法、等电点沉淀法和有机溶剂沉淀法等。 蛋白质分子表面含有带电荷的基团,这些基团与水分子有较大的亲和力,故蛋白质在水溶液中能形成水化膜,增加了蛋白质水溶液和稳定性。如果在蛋白质溶液中加入大量中性盐,导致蛋白质分子表面电荷被中和,水化膜被破坏,最终引起蛋白质分子间相互聚集并从溶液中析出,这就是盐析作用。 由于各种蛋白质分子表面的极性基团所带电荷数目不同,它们在蛋白质表面上的分布情况也不一样,因此,将不同蛋白质盐析出来所需要的盐浓度也各异,盐析法就是通过控制盐的浓度,使蛋白质混合液中的各个成分分步盐析出来,达到粗分离蛋白质的目的。 盐析法是1878年Hammarster首次使用的,可用作盐析的中性盐有过硫酸钠、氯化钠、磷酸钠、硫酸铵等,其中应用最广的是硫酸铵,硫酸铵在水中溶解度大,25℃可达4.1mol/L的浓度,化学性质稳定,溶解度的温度系数变化较小,价廉易得;分段效果较其他盐好,性质温和,即使浓度很高时也不会影响蛋白质的生物学活性。 鸡蛋清的主要成分是球蛋白和白蛋白(卵清蛋白),球蛋白可在半饱和硫酸铵溶液中析出,而清蛋白则在饱和硫酸铵溶液中才能析出。 蛋白质的盐析作用是可逆过程,由盐析获得的蛋白质沉淀,当降低其盐类浓度时,又能再溶解,因而可初步纯化蛋白质。 等电点沉淀法是利用蛋白质在其等电点时溶解度最小来分离具有不同等电点蛋白质的方法。蛋白质是两性电解质,蛋白质分子的电荷性质和数量因PH不同而变化,蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀,因此,在其他条件相同时,它的溶解度达到最低点。 卵清蛋白的等电点为4.6-4.8,而球蛋的等电点是5.1。 2、蛋白质的测定 根据蛋白质的物理化学性质,测定蛋白质的方法有凯氏定氮法、紫外吸收法、Folin-酚法、考马斯亮蓝G-250染色法等。 由于蛋白质分子中酪氨酸和色氨酸残基的苯环含有共轭双键,因此蛋白质具有吸收紫外线的性质,吸收高峰在280nm波长处。在此波长范围内,蛋白质溶液的光吸收值(A280)与其含量呈正比关系,可用作定量测定。 由于核酸在280波长处也有光吸收,对蛋白质的测定有干扰作用,但核酸的最大吸收峰在260nm处,如同时测定260nm的光吸收,通过计算可能消除其对蛋白质测定的影响,因此溶液中存在核酸时必须同时测定280nm及260nm之光密度,方可通过计算测得

实验一 蛋白质浓度的测定实验报告

蛋白质浓度的测定 一.实验原理 考马斯亮蓝能与蛋白质的疏水微区相结合,这种结合具有高敏感性。考马斯亮蓝G250的磷酸溶液呈棕红色,最大吸收峰在465nm。当他与蛋白质结合形成复合物时呈蓝色,其最大吸收峰改变为595nm。考马斯亮蓝G250—蛋白质复合物的高消光效应导致了蛋白质定量测定的高敏感性。 在一定范围内,考马斯亮蓝G250—蛋白质复合物呈色后,在595nm下,吸光度与蛋白质含量呈线性关系。故可用于蛋白质浓度的测定。 二.实验设备与试剂 设备:普通离心机,721型分光光度计 试剂:标准蛋白液(100ug/ml) 三.实验材料 新鲜绿豆芽 四.实验内容 1.标准曲线的制备 取9支干净的试管,按表进行编号并加入试剂。 2.样品蛋白的测定 (1)样品蛋白液制备 准确称取2g新鲜绿豆芽胚轴的部分,研磨成匀浆,离心分离(4000r/min,10min)。取上清液用0.9%nacl定容到10ml。 (2)含量测定 另取两只干净的试管,加入样品液0.1ml,0.9mlnacl和考马斯亮蓝染液4.0ml,混匀。室温静置3min,与波长595nm处比色,读取吸光度。 五.实验结果 1.标准曲线 结果如表所示,并以吸光度为纵坐标,个标准液含量为横坐标做标准曲线。

2.样品蛋白含量的测定 样品蛋白的比色结果如表,根据直线方程求出每支试管中蛋白质含量。 根据公式求出样品绿豆芽蛋白质含量 样品蛋白的体积 蛋白质含量(ug/g鲜重)= 测定时取样的体积 称取样品的重量 六.结果与讨论 结果:绿豆芽蛋白质含量=1233.0ug/g 讨论: 1.试液为混合均与就取样 2.量取溶液时读数有误差 3.读取A值时有读数误差 4.比色杯中的误差

蛋白质含量测定方法及其比较资料2

蛋白质含量测定法(一) 蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种古老的经典方法,即定氮法,双缩脲法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。 五种蛋白质测定方法比较

值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。 考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。 一、微量凯氏(Kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: NH2CH2COOH+3H2SO4——2CO2+3SO2+4H2O+NH3 (1) 2NH3+H2SO4——(NH4)2SO4 (2) (NH4)2SO4+2NaOH——2H2O+Na2SO4+2NH3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(Biuret法) (一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材

可溶性蛋白质含量的测定

植物体内可溶性蛋白质含量的测定 植物体内的可溶性蛋白质含量是一个重要的生理生化指标,如在研究每一种酶的作用时常以比活(酶活力单位/毫克蛋白质,unIT/Mg ProTeIn)表示酶活力大小及酶制剂纯度,这就需要测定蛋白质含量。常用的测定方法有LoWry法和考马斯亮蓝G-250染色法,本实验将分别介绍这两种方法。 方法一:LoWry法(劳里法) 【原理】 LoWry法是双缩脲法(BIureT)和福林酚法(FolIn-酚)的结合与发展。其原理是蛋白质溶液用碱性铜溶液处理后,碱性铜试剂与蛋白质中的肽键作用产生双缩脲反应,形成铜—蛋白质的络合盐。再加入酚试剂后,在碱性条件下,这种被作用的蛋白质上的酚类基团极不稳定,很容易还原酚试剂中的磷钨酸和磷钼酸(PHosPHoMolyBdATe &PHosPHoTungsTATe),使之生成磷钨蓝和磷钼蓝的混合物。这种溶液蓝色的深浅与蛋白的含量成正相关,所以可以用于蛋白质含量的测定。LoWry法除使肽链中酪氨酸、色氨酸和半胱氨酸等显色外,还使双缩脲法中肽键的显色效果更强烈,其显色效果比单独使用酚试剂强3~15倍,约是双缩脲法的100倍。由于肽键显色效果增强,从而减少了因蛋白质种类不同引起的偏差。LoWry法适于微量蛋白的测定,对多个样品同时测定较为方便。但对不溶性蛋白和膜结合蛋白必须进行预处理(如加入少量的SDS)。

1.双缩脲法的原理双缩脲(NH2-CO-NH-CO-NH2)在碱性溶液中可与铜离子产生紫红色的络合物,这一反应称为双缩脲反应。因为蛋白质中有多个肽键,也能与铜离子发生双缩脲反应,且颜色深浅与蛋白质的含量的关系在一定范围内符合比尔定律,而与蛋白质的氨基酸组成及分子量无关,所以可用双缩脲法测定蛋白质的含量。 双缩脲反应主要涉及肽键,因此受蛋白质特异性影响较小。且使用试剂价廉易得,操作简便,可测定的范围为1~10Mg蛋白质,适于精度要求不太高的蛋白质含量的测定,能测出的蛋白质含量须在约05Mg以上。双缩脲法的缺点是灵敏度差、所需样品量大。干扰此测定的物质包括在性质上是氨基酸或肽的缓冲液,如TrIs缓冲液,因为它们产生阳性呈色反应,铜离子也容易被还原,有时出现红色沉淀。 2.福林-酚法的原理该方法是双缩脲法的发展,包括两步反应: (1)在碱性条件下,蛋白质与铜作用生成蛋白质—铜络合物。 (2)此络合物将试剂磷钼酸—磷钨酸(FolIn试剂)还原,混合物深蓝色(磷钼蓝和磷钨蓝混合物),颜色深浅与蛋白质含量成正比。此方法操作简便,灵敏度比双缩脲法高100倍,定量范围为5~100μg蛋白质。FolIn试剂显色反应由酪氨酸、色氨酸、半胱氨酸引起,因此样品中若含有酚类、柠檬酸和巯基化合物,均有干扰作用。此方法的缺点是有蛋白质的特异性影响,即不同蛋白质因络氨酸、色氨酸含量的不同而使显色强度稍有不同,标准曲线也不是严格的直线形式。

【1】生物样本中蛋白质的提取及测定(分子医学实验)

《分子生物学实验》 实验报告 实验名称:生物样本中蛋白质的提取及测定 姓名:杰 学号:3140104666 组别: 同组同学:唐曦

带教教师:伟俞萍 实验日期:2015年9月15日 目录 1.原理: (3) 1.1生物样本中蛋白质的提取 (3) 1.2生物样本中蛋白质的测定 (3) 1.2.1 Lowry法 (3) 1.2.2 考马斯亮蓝法 (4) 1.2.3 紫外吸收法 (4) 2.操作步骤 (4) 2.1生物样本中蛋白质的提取 (4) 2.2生物样本中蛋白质的测定 (5) 2.2.1 Lowry法 (5) 2.2.2 考马斯亮蓝法 (5) 2.2.3紫外吸收法 (5) 3、实验结果 (6) 3.1 原始数据 (6) 3.1.1 Lowry法 (6) 3.1.2 考马斯亮蓝法 (7) 3.1.3 紫外吸收法 (7)

3.2 数据处理 (8) 3.2.1 Lowry法 (8) 3.2.2 考马斯亮蓝法 (9) 3.2.3 紫外吸收法 (10) 4.讨论: (11) 1.原理: 1.1生物样本中蛋白质的提取 离体不久的组织,在适宜的温度及pH等条件下,可以进行一定程度的物质代谢。因此,在生物化学实验中,常利用离体组织来研究各种物质代谢的途径与酶系作用,也可以从组织中提取各种代谢物质或酶进行研究。但生物组织离体过久,其所含物质的含量和生物活性都将发生变化。例如,组织中的某些酶在久置后会发生变性而失活;有些组织成分如糖原、ATP等,甚至在动物死亡数分钟至十几分钟,其含量即有明显的降低。因此,利用离体组织作代谢研究或作为提取材料时,都必须迅速将它取出,并尽快地进行提取或测定。一般采用断头法处死动物,放出血液,立即取出实验所需的脏器或组织,除去外层的脂肪及结缔组织后,用冰冷的生理盐水洗去血液(必要时可用冰冷的生理盐水灌注脏器以洗去血液),再用滤纸吸干,即可用于实验。取出的脏器或组织,可根据不同的方法制成不同的组织样品。包括组织糜、组织匀浆、组织浸出液。由于动物肝脏细胞比较脆弱,易于破碎,故本实验选用小鼠肝脏细胞作为实验材料,采用匀浆法法将其破碎,然后加入样品提取液使蛋白质溶解,用高速离心法弃去细胞碎片。收集上清液后可进行蛋白质定量分析。 1.2生物样本中蛋白质的测定 1.2.1 Lowry法 1921年,Folin发明了Folin-酚试剂法测定蛋白质的浓度,反应原理是利用蛋白质分子中的酪氨酸和色氨酸残基还原酚试剂(磷钨酸-磷泪酸)生成蓝色

蛋白质含量测定方法比较

. 蛋白质含量测定主要有五种方法,分别是凯式定氮法、双缩脲法、紫外吸收法、酚试剂法和考马斯亮蓝法。这五种方法各有特点,优缺点明确。 凯氏定氮法 蛋白质是含氮的化合物。食品与浓硫酸和催化剂共同加热消化,使蛋白质分解,产生的氨与硫酸结合生成硫酸铵,留在消化液中,然后加碱蒸馏使氨游离,用硼酸吸收后,再用盐酸标准溶液滴定,根据酸的消耗量来乘以蛋白质换算系数,即得蛋白质含量。因为食品中除蛋白质外,还含有其它含氮物质,所以此蛋白质称为粗蛋白。 优点:重现性好,是目前分析有机化合物含氮量常用的方法,是一种蛋白质测定的经典方法, ,测试结果准确。 缺点:操作比较繁复,费时,试剂消耗量大。且此法测定的蛋白质含量实际上包括了核酸,生物碱,含氮类脂,卟啉,含氮色素等非蛋白质含氮化合物。 双缩脲定氮法 双缩脲(NHCONHCONH)是两个分子脲经180℃左右加热,放出一个33分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO形成紫色络合物,称4为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 优点:较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的

缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋1 / 5 . 白质测定。 缺点:不太灵敏;不同蛋白质显色相似。 紫外吸收定氮法 双缩脲法是传统的分光光度法测定蛋白质的方法,当含有两个或者两个以上肽键的物质和碱性的硫酸铜反应时,形成紫色的络合物,这个颜色产物是肽键中的氮原子和铜离子配价结合的结果。蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。形成颜色产物的量取决于蛋白质的浓度。实际测定时,必须预先用标准蛋白质溶液制作一个标准校正曲线,通常用牛血清白蛋白水溶液做蛋白质标准溶液。不同浓度的标准蛋白质溶液加入双缩脲试剂后,反应生成的颜色产物用紫外-可见分光光度计在540nm 波长下测定吸光度,以双缩脲试剂加缓冲或水作空白对照。然后将测得的值分别对蛋白浓度(mg/ ml) 作图,得标准曲线。未知蛋白样品用双缩脲试剂做同样处理,根据测得吸光度值在标准曲线上直接查得未知蛋白质样品中得蛋白质浓度。 优点:对各种蛋白质呈色基本相同;特异性和准确度好,精密度好;呈色稳定性好,试剂单一,方法简便。快速,不消耗样品,测定后仍能回收使用。 缺点:准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。此外,进行紫外吸收

蛋白含量测定及western步骤

蛋白的提取和定量 肺组织用预冷1×TBS洗净后,加入含PMSF的RIPA buffer(冰上操作,310ul,决定未来的蛋白浓度和蛋白液体积),50-60mg肺组织砸碎放入1.5ml离心管,冰上孵育1h,10000转4℃离心10min,转上清至新管。裂解液分装后保存于-70℃ 蛋白质定量:BCA蛋白测定法 ①根据样品数量,按50体积BCA试剂A加1体积BCA试剂B(50:1)配制适量BCA工作液,充分混匀。BCA工作液室温24小时内稳定。 ②完全溶解蛋白标准品(BCA试剂盒中,BSA原浓度2mg/mL),稀释到1mg/mL。 ③将标准品按0,2,5,10,15,20,25 ul标准品孔中,加蒸馏水稀释标准品的 ④加样品2uL加到96孔板的样品孔中,加蒸馏水23微升。 ⑤各孔加入200微升BCA工作液,37o C放置30分钟。同时打开酶标仪预热。 注:也可以室温放置2小时,或60o C放置30分钟。BCA法测定蛋白浓度时,吸光度会随着时间的延长不断加深。并且显色反应会因温度升高而加快。如果浓度较低,适量在较高温度孵育,或延长孵育时间。 ⑥测定A570的波长,根据标准曲线计算出蛋白浓度。 ⑦计算调蛋白时所需TBS和RSB的体积(调所有样品浓度至3-5ug/ul): 总体积=蛋白体积*蛋白浓度/3(ul) RSB=1/5*总体积(ul) TBS=总体积-RSB-蛋白体积(ul) 先加RSB(对蛋白有保护作用),后加TBS。最后放于-70℃保存。 Western Blot SDS-PAGE 1. 玻璃板:注意对齐、夹紧,防止漏出,短板朝前。 灌至距绿线1cm左右,用dd水封顶,放置30-40min。状况好时往往能观察到

蛋白质测定实验报告

蛋白质测定方法——化学报告

蛋白质的检测 酚试剂法灵敏度较高 20~250mg 费时蛋白质在碱性溶 液中其肽键与 Cu2+螯合,形成 蛋白质一铜复合 物,此复合物使 酚试剂的磷钼酸 还原,产生蓝色 化合物 酚类、柠檬 酸、硫酸铵、 tris缓冲液、甘 氨酸、糖类、 甘油等均有干 扰作用

由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述: 1 材料与方法 1.1 仪器材料 (1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。 (2)试剂及原材料:牛奶、酸奶、豆浆、0.12mol/LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0. 050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。 1.2 实验方法 (1)凯氏定氮法测定蛋白质含量 将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。每个样品做三次重复测定,取平均值。 (2)紫外吸收法测定蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如,

几种蛋白质含量测定方法的比较

几种蛋白质含量测定方法的比较 【摘要】:蛋白质含量测定方法,是生物化学研究中最常用、最基本的分析之一。目前常 用的方法有凯氏定氮法、双缩脲法(Biuret)、紫外吸收法、考马斯亮蓝法(Bradford),Folin —酚试剂法(Lowry)杜马斯燃烧法。其中Bradford 法灵敏度颇高,比紫外吸收法灵敏10~20 倍,比Biuret法灵敏100 倍以上。凯氏定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。过去Folin—酚试剂法法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以在本公司订购),近年来逐渐被考马斯亮兰法所取代。测定农产品中全氮的凯氏定氮法在许多国家已被杜马斯然烧定氮法所代替,杜马斯燃烧法是基于在高温下(大约 900 ℃),通过控制进氧量、氧化消解样品的原理而进行氮测定的。这6种方法并不能在任何条件下适用于任何形式的蛋白质,每种方法都有其优缺点,在选择方法时应考虑:⑴实验对测定所要求的灵敏度和精确度;⑵蛋白质的性质;⑶溶液中存在的干扰物质;⑷测定所要花费的时间 【关键词】:凯氏定氮法双缩脲法紫外吸收法考马斯亮蓝法 Folin—酚试剂法杜马斯燃烧法 一、凯氏定氮法 1.1原理 凯氏定氮法测定蛋白质分为样品消化、蒸馏、吸收和滴定4 个过程。其原理是样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化,含氮有机物分解产生氨,氨又与硫酸作用,变成硫酸铵。然后加碱蒸馏放出氨, 氨用过量的硼酸溶液吸收,再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。 1.2特点 凯氏定氮法是目前分析有机化合物含氮量常用的方法,是测定试样中总有机氮最准确和最简单的方法之一,被国际国内作为法定的标准检验方法。凯氏定氮法样品的最佳消化条件为硫酸铜2.50 g, 硫酸钾0.10 g,浓硫酸4.00 mL;硫酸铜的用量为影响消化时间的主要因素,硫酸钾和浓硫酸用量为第二和第三主要因素;用此最佳条件做实验, 消化时间仅为12 min;与其他硫酸铜、硫酸钾、浓硫酸用量方法对比,该法所需消化时间最短,试剂用量减少,可降低实验成本,也降低了对环境的污染。 凯氏定氮法适用范围广泛,测定结果准确,重现性好,但操作复杂费时,试剂消耗量大。若采用模块式消化炉代替传统的消化装置, 可同时测定几份样品,节省时间,提高了工作效率,适用于批量蛋白质的测定,具有准确、快速、简便、低耗、稳定的优点。 二、双缩脲法(Biuret ) 2.1原理 双缩脲(NH3CONHCONH3)是两个分子脲经180 ℃左右加热,放出1 个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4 形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能够以1 个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

蛋白质浓度测定——考马斯亮蓝染色法(实验报告)

蛋白质浓度测定——考马斯亮蓝染色法 (实验报告) 实验日期:2015年4月28日实验温度:室温 实验地点:生物化学与遗传学实验室指导老师:*** 班级:2013级生物技术1班姓名:** 学号:******** I. 实验目的 1.学习考马斯亮蓝法测定蛋白质浓度的原理和方法; 2.熟悉蛋白质含量测定的影响因素。 II. 实验原理 考马斯亮蓝是根据蛋白质与染料相结合的原理设计的,这是一种迅速、可靠的通过染色法测定溶液中蛋白质浓度的方法。 考马斯亮蓝G-250在酸性游离状态下呈棕红色,最大吸收波长465nm,与蛋白质结合后变为蓝色,最大吸收波长595nm,在一定的蛋白质浓度范围内吸光度与蛋白质含量成正比。 蛋白质与考马斯亮蓝G-250结合,反应2min即可到达平衡,复合物在室温下1h内保持稳定。蛋白质—考马斯亮蓝G-250复合物吸光系数,使得在测定蛋白质浓度时灵敏度很高,可测微克级蛋白质含量。 III. 实验试剂与仪器 1.实验试剂

(1) 100μg/mL标准蛋白质溶液 5mg酪蛋白溶于50mL 的0.1mol/L氢氧化钠溶液。 (2)考马斯亮蓝G-250试剂 50mg考马斯亮蓝G-250溶于25mL的95%乙醇中,加85%的磷酸50mL,蒸馏水定容至500mL。 (3)正常人血浆。 2.实验器材 可见分光光度计,100μL微量移液器16支,5mL刻度吸管8支,中试管。 IV. 实验操作步骤 1.绘制标准曲线取中试管8支,按下表加入各种试剂 混匀,室温放置5min后即可比色。以“0”号管为空白,记录于下表,绘制标准曲线。 标准曲线绘制数据表

012345样1样2标准蛋白μg 数 020********* A59500.51 70.80 5 0.94 1 1.15 7 1.19 2 1.46 5 1.44 2.样品测定中试管2支分别加未知浓度蛋白质(或人正常血浆)0.4mL,各加5.0mL考马斯亮蓝试剂摇匀,室温放置5min,以“0”号管为空白比色,以所测A595于标准曲线查蛋白质含量。 V. 实验结果分析 结果分析:实验未能达到预期的一条直线,原因可能为:①血浆样本放置时间太久,蛋白质变性;②实验比色杯由于使用后未及时擦洗,导致比色误差(原因小);③人为操作不当,导致误差。

相关文档
最新文档