膝关节磁共振成像(涂占海)

关于磁共振成像技术的学习心得体会-学习心得体会

关于磁共振成像技术的学习心得体会-学习 心得体会 每一次到医院拜访或会议上讲完课总有老师问该如何学习磁共振成像技术?到底应该看哪本书?这些的确是很多磁共振使用者一个共同的困惑。 坦率的说我和大家有着相同的困惑和痛苦。我是纯学临床医学的,当时大学课程里所学习的唯一一门影像课程就是放射诊断学。其中连CT的内容都没有,就更别提磁共振了。毕业后从事放射诊断工作,渐渐的接触到CT和磁共振诊断内容。 相比于其他影像学设备而言磁共振成像技术原理复杂,也更具多学科交叉的属性。由于我们大多数影像科医生在大学阶段渐渐淡化了数学和物理学等的学习,所以这给我们学习磁共振成像技术带来了很大挑战。那么,以我个人的经验看我们到底应不应该学习磁共振成像技术?我们又该怎样学习磁共振成像技术且能学以致用呢?在此,谈一点个人体会。需要提前声明这些绝不是什么经验,仅仅想以此抛砖引玉而已。 作为读片医生或者磁共振操作者,到底有没有必要学习磁共振技术? 显而易见,答案是肯定的。 磁共振成像技术非常复杂,学习起来耗时耗力,很容易让人望而

却步、从而采取消极抵抗策略。但是我要告诉所有有这些想法的老师如果这样做牺牲的一定是自己。大家知道随着磁共振成像设备性能的不断进步和完善,新的技术也层出不穷,然而非常遗憾的是,真正能把这些新技术用起来的医院少之又少。究其原因就是因为使用者因为不了解这些新技术就主观上产生了畏难和恐惧心理。 事实上,要能真正快速理解、掌握新技术,就必须要有扎实的基础知识。我要告诉大家一点:所有的新技术都是在常规序列基础之上衍生出来的,如果我们有夯实的基础,那么面对每一个新技术你只需了解它的革新和变化点即可,而且通过与相关传统技术对比你也更容易感觉和认识到这些新技术的临床优势可能有哪些。这些对于你的临床和科研切入都至关重要。 我常常见到一些从事某项课题研究的医生或研究生,当深入谈及其课题所采用的相关技术时却没有完整或清醒的认识,每一天都懵懵懂懂的在盲目的扫描着。我不理解这样的研究工作乐趣何在? 另一方面,磁共振本身作为一门多序列多参数对比的成像技术,充分利用好其优势不仅可以大大提高病变的检出率也能为诊断和鉴别诊断提供更特异性的信息。 举个栗子: 对于一个怀疑脊髓内病变的患者,如果你在颈椎轴位扫描时还只是墨守成规的扫描了FSE T2加权像,你就很难发现早期脊髓内改变。如果此时你深入了解到梯度回波准T2加权像更有利于显示脊髓内灰质结构,再进一步你还知道在GE磁共振平台的MERGE序列较常规梯

第三课磁共振成像基本原理和主要新技术-上海中医药大学

第三课磁共振成像基本原理和主要新技术 3.1 核磁共振物理现象 人体内含有大量氢原子核,亦称质子,质子具有自旋和磁距的特性。与地球绕太阳旋转一样,质子也不停地绕原子核旋转,称为自旋。氢原子中的质子和其外的电子在自旋过程中会产生一个小磁场,使氢质子犹如一个小磁体(Spin),其磁性大小以“磁距”表示,磁距就是反映小磁场强度的矢量,磁距具有方向性,在无外加磁场时,众多随机运动的质子的净磁距为零。与自旋强度成正比,常态下人体内众多质子的自旋方向是随机的,呈无规律状态,各方向的磁距相互抵消,因而总磁距为0。 然而,当给予一个较强大而均匀的外加磁场时,质子的自旋轴方向(磁距)会趋于平行或反平行于这个磁场方向,数秒钟后就会平衡,即为磁化,磁化的强度也就是所有质子磁距的总和。但对于某一个质子而言,其磁距的方向并不一定与磁场方向一致,而是以一种特定的方式绕磁场方向轴旋转,这种旋转运动方式称为进动或旋进。它很象一个自旋轴不平行于地心引力方向而旋转的驼螺,除了自旋之外还以一定的角度围绕地心引力轴旋转。自旋的质子,如以侧面投影方式看就很象单摆在左右摆动,此摆动频率即称进动频率,与主磁场强度直接成正比关系,可用公式进行测算,频率实际值即称为拉莫(Larmor)频率。病人被送入主磁体内后不久,其身体各部位的质子即按主磁场强度相应的拉莫频率进行旋进运动和发生磁化。磁化后的质子,在化学特性上仍然保持不变,所以对人体生理活动并无任何影响。 在特定磁场中“旋进”的质子,当受到一个频率与其旋进频率一致的外加射频脉冲(radiofrequency, RF)激发后,射频电脉冲的能量会大量地被吸收,使氢质子旋进角度增大,质子则跃迁到较高能态,磁距总量的方向将发生改变(增大),90度的RF能使纵向磁化从Z轴转到XY平面,而180度RF则从Z轴旋转180度至负Z轴方向。当RF激发停止后,有关的质子的能级和相位都在一定时间后恢复到激发前的状态,氢原子核将释放已吸收的能量,能量释放和传递的方式具有重要的利用价值,那就是被激发的质子,在RF停止后将持续发射与激励RF频率完全一致的电脉冲信号,这个现象就称为“磁共振现象”。 质子在RF中止后的变化,就像拉伸的弹簧,在拉力中止后回缩一样,这个过程称为“弛豫(relaxation)”,所需的时间称为“弛豫时间”,在弛豫过程中的能级变化和总磁距的相位变化均能被MRI信号接受装置测得,并按信号强弱进行图像的重建。 弛豫时间有两种,即T1和T2,T1弛豫时间又称为纵向弛豫时间,反映被90度RF 激发而处于横向磁化的质子,在RF停止时刻至恢复到纵向平衡状态所需的时间,一个单位时间T1指恢复纵向磁化最大值的63%所需要的时间。T2弛豫时间亦称为横向弛豫时间,指90度RF激发后处于横向磁化状态的质子在RF 停止后横向磁化丧失所需的时间,横向磁化丧失至原有水平的37%时为一个单位时间T2 ,因它不是完全依靠能量释放或传递,大部分依靠相位变化导致的相干性丧失,故时间远较T1为短。 3.2 磁共振成像技术 3.2.1 图像亮暗与信号 根据以上物理学原理,首先MRI需要一个主磁场,目前产生主磁场的磁体有超导型、阻抗型和永磁型,一般超导型的主磁场强度及均匀度均较另两型为好,MRI图像质量较高。磁体中常有匀场装备以使主磁场更均匀。

磁共振成像技术模拟题13

磁共振成像技术模拟题13 单选题 1. 部分容积效应是由于 A.病变太大 B.矩阵太小 C.信噪比太低 D.扫描层厚太薄 E.扫描层厚太厚 答案:E [解答] 层厚增加,采样体积增大,容易造成组织结构重叠而产生部分容积效应。 2. 关于矩阵的描述,不正确的是 A.矩阵增大,像素变小 B.增加矩阵可提高信噪比 C.常用的矩阵为256×256 D.增加矩阵会增加扫描时间 E.矩阵分为采集矩阵和显示矩阵两种 答案:B 3. 关于流动补偿技术的叙述,不正确的是 A.降低信号强度 B.T1加权时不用 C.常用于FSE T2加权序列 D.用于MRA扫描(大血管存在的部位) E.可消除或减轻其慢流动时产生的伪影,增加信号强度

答案:A [解答] 流动补偿技术用特定梯度场补偿血流、脑脊液中流动的质子,可消除或减轻其慢流时产生的伪影,增加信号强度。 4. 关于回波链长的描述,不正确的是 A.在每个TR周期内出现的回波次数 B.常用于FSE序列和快速反转恢复序列 C.回波链长,即ETL D.回波链与扫描的层数成正比 E.回波链与成像时间成反比 答案:D [解答] 回波链越长,扫描时间越短,允许扫描的层数也减少。 5. 下列哪一种金属物不影响MRI扫描 A.心脏起搏器 B.体内存留弹片 C.大血管手术夹 D.固定骨折用铜板 E.固定椎体的镍钛合金板 答案:E [解答] 体内具有非铁磁性置入物的患者是可以接受MRI检查的。 6. 关于细胞毒素水肿的叙述,不正确的是 A.白质、灰质同时受累 B.T2WI之边缘信号较高 C.钠与水进入细胞内,造成细胞肿胀 D.细胞外间隙减少,常见于慢性脑梗死的周围

学习心得:关于磁共振成像技术学习的点滴体会

关于磁共振成像技术学习的点滴体会 每一次到医院拜访或会议上讲完课总有老师问该如何学习磁共振成像技术?到底应该看哪本书?这些的确是很多磁共振使用者一个共同的困惑。 坦率的说我和大家有着相同的困惑和痛苦。我是纯学临床医学的,当时大学课程里所学习的唯一一门影像课程就是放射诊断学。其中连CT的内容都没有,就更别提磁共振了。毕业后从事放射诊断工作,渐渐的接触到CT和磁共振诊断内容。 相比于其他影像学设备而言磁共振成像技术原理复杂,也更具多学科交叉的属性。由于我们大多数影像科医生在大学阶段渐渐淡化了数学和物理学等的学习,所以这给我们学习磁共振成像技术带来了很大挑战。那么,以我个人的经验看我们到底应不应该学习磁共振成像技术?我们又该怎样学习磁共振成像技术且能学以致用呢?在此,谈一点个人体会。需要提前声明这些绝不是什么经验,仅仅想以此抛砖引玉而已。 Q1 作为读片医生或者磁共振操作者,到底有没有必要学习磁共振技术? 显而易见,答案是肯定的。 磁共振成像技术非常复杂,学习起来耗时耗力,很容易让人望而却步、从而采取消极抵抗策略。但是我要告诉所有有这些想法的老师如果这样做牺牲的一定是自己。大家知道随着磁共振成像设备性能的不断进步和完善,新的技术也层出

不穷,然而非常遗憾的是,真正能把这些新技术用起来的医院少之又少。究其原因就是因为使用者因为不了解这些新技术就主观上产生了畏难和恐惧心理。 事实上,要能真正快速理解、掌握新技术,就必须要有扎实的基础知识。我要告诉大家一点:所有的新技术都是在常规序列基础之上衍生出来的,如果我们有夯实的基础,那么面对每一个新技术你只需了解它的革新和变化点即可,而且通过与相关传统技术对比你也更容易感觉和认识到这些新技术的临床优势可能有哪些。这些对于你的临床和科研切入都至关重要。 我常常见到一些从事某项课题研究的医生或研究生,当深入谈及其课题所采用的相关技术时却没有完整或清醒的认识,每一天都懵懵懂懂的在盲目的扫描着。我不理解这样的研究工作乐趣何在? 另一方面,磁共振本身作为一门多序列多参数对比的成像技术,充分利用好其优势不仅可以大大提高病变的检出率也能为诊断和鉴别诊断提供更特异性的信息。 举个例子: 对于一个怀疑脊髓内病变的患者,如果你在颈椎轴位扫描时还只是墨守成规的扫描了FSE T2加权像,你就很难发现早期脊髓内改变。如果此时你深入了解到梯度回波准T2加权像更有利于显示脊髓内灰质结构,再进一步你还知道在GE 磁共振平台的MERGE序列较常规梯度回波序列更敏感,那你就会根据临床需求而加扫MERGE这个序列了。当然这其中的原因很简单就是因为这些脊髓内病变的含水量没有那么丰富,在FSE序列T2加权像一般TE时间很长导致这些髓内病变的高信号衰减掉了,而在梯度回波我们可以在相对短的时间内获取准T2加

磁共振成像技术实验

目录 第一章NM20台式磁共振成像仪硬件概述....................... 错误!未定义书签。 第一节系统硬件框图 ......................................... 错误!未定义书签。 第二节部件接插口.............................................. 错误!未定义书签。 第三节部件连线 ................................................ 错误!未定义书签。 第四节系统开关机 0 第二章NMI20台式磁共振成像仪软件概述 ...................... 错误!未定义书签。 第一节软件界面............................................... 错误!未定义书签。 第二节软件菜单栏介绍....................................... 错误!未定义书签。 第三节软件工具栏介绍 ........................................ 错误!未定义书签。 第四节功能选项卡 ............................................ 错误!未定义书签。第三章部分可开设的实验项目 (2) 实验一机械匀场和电子匀场实验 (2) 实验二测量磁共振中心频率(拉莫尔频率) (9) 实验三旋转坐标系下的FID信号 (16) 实验四自动增益实验 (24) 实验五硬脉冲回波 (29) 实验六软脉冲FID实验 (38) 实验七软脉冲回波 (43) 实验八硬脉冲CPMG序列测量T2 (49) 实验九乙醇的化学位移测量 (54) 实验十自旋回波序列质子密度像 (59) 实验十一自旋回波权重像 (66) 实验十二一维梯度编码成像 (70)

核磁共振成像技术原理及国内外发展

核磁共振成像技术原理及国内外发展 核磁共振成像(Nuclear Magnetic Resonance Imaging?,简称NMRI?),又称自旋成像(spin imaging?),也称磁共振成像(Magnetic Resonance Imaging?,简称MRI?),是利用核磁共振(nuclear magnetic resonnance?,简称NMR?)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。 核磁共振成像是随着计算机技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术。它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经计算机处理而成像的。原子核在进动中,吸收与原子核进动频率相同的射频脉冲,即外加交变磁场的频率等于拉莫频率,原子核就发生共振吸收,去掉射频脉冲之后,原子核磁矩又把所吸收的能量中的一部分以电磁波的形式发射出来,称为共振发射。共振吸收和共振发射的过程叫做“核磁共振”。核磁共振成像的“核”指的是氢原子核,因为人体的约70%是由水组成的,MRI即依赖水中氢原子。当把物体放置在磁场中,用适当的电磁波照射它,使之共振,然后分析它释放的电磁波,就可以得知构成这一物体的原子核的位置和种类,据此可以绘制成物体内部的精确立体图像。通过一个磁共振成像扫描人类大脑获得的一个连续切片的动画,由头顶开始,一直到基部。 核磁共振成像是随着电脑技术、电子电路技术、超导体技术的发展而迅速发

磁共振成像的基本原理和概念

磁共振成像的基本原理和概念 第一节磁共振成像仪的基本硬件 医用MRI仪通常由主磁体、梯度线圈、脉冲线圈、计算机系统及其他辅助设备等五部分构成。 一、主磁体 主磁体是MRI仪最基本的构件,是产生磁场的装置。根据磁场产生的方式可将主磁体分为永磁型和电磁型。永磁型主磁体实际上就是大块磁铁,磁场持续存在,目前绝大多数低场强开放式MRI仪采用永磁型主磁体。电磁型主磁体是利用导线绕成的线圈,通电后即产生磁场,根据导线材料不同又可将电磁型主磁体分为常导磁体和超导磁体。常导磁体的线圈导线采用普通导电性材料,需要持续通电,目前已经逐渐淘汰;超导磁体的线圈导线采用超导材料制成,置于液氦的超低温环境中,导线内的电阻抗几乎消失,一旦通电后在无需继续供电情况下导线内的电流一直存在,并产生稳定的磁场,目前中高场强的MRI仪均采用超导磁体。主磁体最重要的技术指标包括场强、磁场均匀度及主磁体的长度。 主磁场的场强可采用高斯(Gauss,G)或特斯拉(Tesla,T)来表示,特斯拉是目前磁场强度的法定单位。距离5安培电流通过的直导线1cm处检测到的磁场强度被定义为1高斯。特斯拉与高斯的换算关系为:1 T = 10000 G。在过去的20年中,临床应用型MRI仪主磁体的场强已由0.2 T以下提高到1.5 T以上,1999年以来,3.0 T的超高场强MRI仪通过FDA 认证进入临床应用阶段。目前一般把0.5 T以下的MRI仪称为低场机,0.5 T到1.0 T之间的称为中场机,1.0 T到2.0之间的称为高场机(1.5 T为代表),大于2.0 T的称为超高场机(3.0 T为代表)。 高场强MRI仪的主要优势表现为:(1)主磁场场强高提高质子的磁化率,增加图像的信噪比;(2)在保证信噪比的前提下,可缩短MRI信号采集时间;(3)增加化学位移使磁共振频谱(magnetic resonance spectroscopy,MRS)对代谢产物的分辨力得到提高;(4)增加化学位移使脂肪饱和技术更加容易实现;(5)磁敏感效应增强,从而增加血氧饱和度依赖(BOLD)效应,使脑功能成像的信号变化更为明显。 当然MRI仪场强增高也带来以下问题:(1)设备生产成本增加,价格提高。(2)噪音增加,虽然采用静音技术降低噪音,但是进一步增加了成本。(3)因为射频特殊吸收率(specific absorption ratio,SAR)与主磁场场强的平方成正比,高场强下射频脉冲的能量在人体内累积明显增大,SAR值问题在3.0 T的超高场强机上表现得尤为突出。(4)各种伪影增加,运动伪影、化学位移伪影及磁化率伪影等在3.0 T超高场机上更为明显。由于上述问题的存在,3.0 T的MRI仪在临床应用还有一定限制,尽管其在中枢神经系统具有优势,但是在体部应用还不太成熟,因此,目前以1.5 T的高场机最为成熟和实用。 MRI对主磁场均匀度的要求很高,原因在于:(1)高均匀度的场强有助于提高图像信噪比,(2)场强均匀是保证MR信号空间定位准确性的前提,(3)场强均匀可减少伪影(特别是磁化率伪影),(4)高度均匀度磁场有利于进行大视野扫描,尤其肩关节等偏中心部位的MRI检查,(5)只有高度均匀度磁场才能充分利用脂肪饱和技术进行脂肪抑制扫描,(6)高度均匀度磁场才能有效区分MRS的不同代谢产物。现代MRI仪的主动及被动匀场技术进步很快,使磁场均匀度有了很大提高。 为保证主磁场均匀度,以往MRI仪多采用2m以上的长磁体,近几年伴随磁体技术的进步,各厂家都推出磁体长度为1.4m~1.7m的高场强(1.5T)短磁体,使病人更为舒适,尤其适用于幽闭恐惧症的患者。 随介入MR的发展,开放式MRI仪也取得很大进步,其场强已从原来的0.2T左右上升到0.5T以上,目前开放式MRI仪的最高场强已达1.0T。图像质量明显提高,扫描速度更快,已经几乎可以做到实时成像,使MR“透视”成为现实。开放式MR扫描仪与DSA的一体

(完整版)磁共振血管成像

磁共振血管成像 一、磁共振成像 磁共振成像(Magnetic resonance imaging, MRI)是近年来应用于临床的先进影像学检查技术之一。1946年美国哈佛大学的Percell及斯坦福大学的Bloch分别独立地发现磁共振现象并接收到核子自旋的电信号,同时将该原理最早用于生物实验。1971年发现了组织的良、恶性细胞的MR信号有所不同。1972年P. C. Lauterbur用共轭摄影法产生一幅试管的MR图像。1974年出现第一幅动物的肝脏图像。随后MRI技术在此基础上飞速发展,继而广泛地应用于临床。 磁共振成像的基本原理是将受检物体置于强磁场中,某些质子的磁矩沿磁场排列并以一定的频率围绕磁场方向运动。在此基础上使用与质子运动频率相同的射频脉冲激发质子磁矩,使其发生能级转换,在质子的驰豫过程中释放能量并产生信号。MRI的接受线圈获取上述信号后通过放大器进行放大,并输入计算机进行图像重建,从而获得我们需要的磁共振影像。 磁共振成像的优势在于无辐射、无创伤;多方位、任意角度成像;成像参数多,对病变部位和性质有较强的诊断意义;软组织分辨率高等,日益受到临床的关注与欢迎。 二、磁共振血管成像 磁共振血管成像(Magnetic Resonance Angiography,MRA)是显示血

管和血流信号特征的一种技术。MRA不但可以对血管解剖腔简单描绘,而且可以反应血流方式和速度等血管功能方面的信息。近几年来该技术发展迅速,可供选择的磁共振血管成像技术有多种: (一)时间飞越法 时间飞越法(Time of Flight,TOF)血管成像的基本原理是采用了“流动相关增强’机制,是目前较广泛采用的MRA方法。TOF血管成像用具有非常短TR的梯度回波序列。由于TR短,静态组织在没有充分弛豫时就接受到下一个脉冲的激励,在脉冲的反复作用下,其纵向磁化矢量越来越小而达到饱和,信号被衰减,对于成像容积以外的血流,因为开始没有接受脉冲激励而处于完全弛豫状态,当该血流进入成像容积内时被激励而产生较强的信号。 TOF MRA极大地依赖于血管进入扫描层面的角度,所以在用TOF法进行血管成像时扫描层面一般要垂直于血管走向。另外,在TOF血管成像中,通过在成像区域远端或近端放置预饱和带,去除来自某一个方向的血流信号,因而可以选择性地对动脉或静脉成像。 1.三维(3D)单容积采集TOF法MRA 3D TOF法MRA采用同时激励一个容积,这种容积通常3~8mm厚,含有几十个薄层面。3D TOF的最大优点是可以薄层采集,可薄于l mm,最终产生很高分辨率的投影。另外,3D TOF对容积内任何方向的血流均敏感,所以对于迂曲多变的血管,如脑动脉的显示有一定优势。但是对于慢血流,因其在成像容积内停留时间较长,反复接受多个脉冲的激励,可能在流出层块远端之前产生饱和而丢失信号,所以3D TOF

MRI也就是核磁共振成像

MRI也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。 MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。 磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。磁共振成像技术正是基于这一物理现象。1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。 磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。

磁共振成像原理

磁共振成像是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。核磁共振(nuclear magnetic resonance,NMR)是一种核物理现象。早在1946年Block与Purcell就报道了这种现象并应用于波谱学。Lauterbur1973年发表了MR成像技术,使核磁共振不仅用于物理学和化学。也应用于临床医学领域。近年来,核磁共振成像技术发展十分迅速,已日臻成熟完善。检查范围基本上覆盖了全身各系统,并在世界范围内推广应用。为了准确反映其成像基础,避免与核素成像混淆,现改称为磁共振成像。参与MRI 成像的因素较多,信息量大而且不同于现有各种影像学成像,在诊断疾病中有很大优越性和应用潜力。 一、磁共振现象与MRI 含单数质子的原子核,例如人体内广泛存在的氢原子核,其质子有自旋运动,带正电,产生磁矩,有如一个小磁体。小磁体自旋轴的排列无一定规律。但如在均匀的强磁场中,则小磁体的自旋轴将按磁场磁力线的方向重新排列。在这种状态下,质子带正电荷,它们像地球一样在不停地绕轴旋转,并有自己的磁场. 正常情况下,质子处于杂乱无章的排列状态。当把它们放入一个强外磁场中,就会发生改变。它们仅在平行或反平行于外磁场两个方向上排列 用特定频率的射频脉冲(radionfrequency,RF)进行激发,作为小磁体的氢原子核吸收一定量的能而共振,即发生了磁共振现象。停止发射射频脉冲,则被激发的氢原子核把所吸收的能逐步释放出来,其相位和能级都恢复到激发前的状态。这一恢复过程称为弛豫过程(relaxationprocess),而恢复到原来平衡状态所需的时间则称之为弛豫时间(relaxationtime)。有两种弛豫时间,一种是自旋-晶格弛豫时间(spin-lattice relaxationtime)又称纵向弛豫时间(longitudinal relaxation time)反映自旋核把吸收的能传给周围晶格所需要的时间,也是90°射频脉冲质子由纵向磁化转到横向磁化之后再恢复到纵向磁化激发前状态所需时间,称T1。另一种是自旋-自旋弛豫时间(spin-spin relaxation time),又称横向弛豫时间(transverse relaxation time)反映横向磁化衰减、丧失的过程,也即是横向磁化所维持的时间,称T2。T2衰减是由共振质子之间相互磁化作用所引起,与T1不同,它引起相位的变化。 人体不同器官的正常组织与病理组织的T1是相对固定的,而且它们之间有一定的差别,T2也是如此。这种组织间弛豫时间上的差别,是MRI的成像基础。有如CT时,组织间吸收系数(CT值)差别是CT成像基础的道理。但MRI不像CT只有一个参数,即吸收系数,而是有T1、T2和自旋核密度(P)等几个参数,其中T1与T2尤为重要。因此,获得选定层面中各种组织的T1(或T2)值,就可获得该层面中包括各种组织影像的图像。 MRI的成像方法也与CT相似。有如把检查层面分成Nx,Ny,Nz……一定数量的小体积,即体素,用接收器收集信息,数字化后输入计算机处理,获得每个体素的T1值(或T2值),进行空间编码。用转换器将每个T值转为模拟灰度,而重建图像。 表1 人体正常与病变组织的T1值(ms) 肝 140~170 脑膜瘤 200~300 胰 180~200 肝癌 300~450 肾 300~340 肝血管瘤 340~370 胆汁 250~300 胰腺癌 275~400 血液 340~370 肾癌 400~450

磁共振波谱成像的基本原理精编版

磁共振波谱成像的基本原理、序列设计与临床应用 磁共振波谱(MR Spectroscopy, MRS)是医学影像学近年来发展的新的检查手段,作为一种无创伤性研究活体器官组织代谢、生化变化及化合物定量分析的方法,随着MRI、MRS装置不断改进,软件开发及临床研究的不断深入,人们通过MRS对各种疾病的生化代谢的认识将不断提高,为临床的诊断、鉴别、分期、治疗和预后提供更多有重要价值的信息。1H MRS可对神经元的丢失、神经胶质增生进行定量分析,31P磁共振波谱可对心肌梗塞能量代谢变化进行评价。MRS以分子水平了解人体生理上的变化,从而对疾病的早期诊断、预后及鉴别诊断、疗效追踪等方面,做出更明确的结论。本文从MRS波谱成像的基本原理和序列设计方面简要作一介绍。 一磁共振波谱的基本原理 在理想均匀的磁场中,同一种质子(如1H)理论上应具有相同的共振频率。事实上,当频率测量精度非常高时会发现,即使同一种核处在相同磁场中,它们的共振频率也不完全相同,而是在一个有限的频率范围内。这是由于原子核外的电子对原子核有磁屏蔽作用,它使作用于原子核的磁场强度小于外加磁场的强度,其屏蔽作用大小用屏蔽系数s来表示,被这种屏蔽作用削弱掉的磁场为sB,与外加磁场方向相反。外加磁场越强sB越大,原子核实际感受到的磁场强度与外加磁场强度之差越大。此外,s还与核的特性和化学环境有关。核的化学环境指核所在的分子结构,同一种核处在不同的分子中,甚至在同一分子的不同位置或不同的原子基团中,它周围的电子数和电子的分布将有所不同。因而,受到电子的磁屏蔽作用的程度不同,如图1所示。考虑到电子的磁屏蔽作用,决定共振频率的拉莫方程应表示为:w=gBeff=gB0(1-s) 由上式可知,在相同外加磁场作用下,样品中有不同化学环境的同一种核,由于它们受磁屏蔽的程度(s的大小)不同,它们将具有不同的共振频率。如在MRS中,水、NAA(N-乙酰天门冬氨酸)、Cr(肌酸)、Cho(胆碱)、脂肪的共振峰位置不同,这种现象就称为化学位移(Chemical Shift)。即因质子所处的化学环境不同,也就是核外电子云密度不同和所受屏蔽作用的不同,而引起相同质子在磁共振波谱中吸收信号位置的不同,如图2所示。实际上,研究某种样品物质的磁共振频谱时,常选用一种物质做参考基准,以它的共振频率作为频谱图横坐标的原点。并且,将不同种原子基团中的核的共振频率相对于坐标原点的频率之差作为该基团的化学位移。显然,这种用频率之差表示的化学位移的大小与磁场强度高低有关。在正常组织中,代谢物在物质中以特定的浓度存在,当组织发生病变时,代谢物浓度会发生改变。磁共振成像主要是对水和脂肪中的氢质子共振峰进行测量和脂肪中的氢质子共振峰进行测量,在1.5T场强下水和脂肪共振频率相差220Hz (化学位移),但是在这两个峰之间还有多种浓度较低代谢物所形成的共振峰,如NAA、Cr、Cho等,这些代谢物的浓度与水和脂肪相比非常低。MRS需要通过匀场抑制水和脂肪的共振峰,才能使这些微弱的共振峰群得以显示。 下面是研究MRS谱线时常用到的参数: (1)共振峰的共振频率的中心—峰的位置V: 化学位移决定磁共振波谱中共振峰的位置。 (2)共振峰的分裂。 (3)共振峰下的面积和共振峰的高度: 在磁共振波谱中,吸收峰占有的面积与产生信号的质子数目成正比。在研究波谱时,共振峰下的面积比峰的高度更有价值,因为它不受磁场均匀度的影响,对噪音相对不敏感。 (4)半高宽: 半高宽是指吸收峰高度一半时吸收峰的宽度,它代表了波谱的分辨率。 原子核自旋磁矩之间的相互作用称为自旋自旋耦合。高分辨率磁共振频谱可以观察到自旋自旋耦合引起的共振谱线的裂分,裂分的数目和幅度是相互耦合的核的自旋和核的数目的指征。在一个氢核和一个氢核发生自旋耦合的情况下,由于一个氢核的磁矩有顺磁场和逆磁场两种可能的取向,因此它对受耦合作用的氢核可能产生两个不同的附加磁场的作用,这引起受耦合的氢核的共振由一个单峰分裂为二重峰。如此类推,在两个氢核和一个氢核发生耦合的情况下,共振谱由一个分裂为三个。 磁共振波谱仪不仅可以描绘频谱,还可以描绘频谱的积分曲线,积分曲线对应共振峰的面积。

磁共振血管成像技术

磁共振血管成像技术 磁共振血管成像以其无创性和图像的直观清晰性,越来越受到临床的重视。近年来磁共振血管成像(MRA)技术发展迅速,可供选择的磁共振血管成像(MRA)技术有多种,充分理解MRA技术的原理及其特性,有利于日常工作中恰当地应用这些技术。 目前比较常用的普通磁共振血管造影成像方法有时间飞跃法(time-of-flight,TOF)、相位对比法(phase contrast,PC)以及对比增强磁共振血管造影法(contrast-enhanced magnetic resonance angiography,CE MRA)。在MRA 中起重要作用的流动效应有二种:饱和效应和相位效应,二者均可区分流动血液和静止组织。CE-MRA则是利用了对比剂作用,改变血液的弛豫时间 下面就几种技术作一简单的分析和比较,希望对我们临床中正确选择和使用不同的方法有帮助。 一、时间飞越法(TOF)MRA 时间飞越法血管成像采用"流动相关增强"机制,是最广泛采用的MRA方法。TOF血管成像使用具有非常短TR的梯度回波序列。由于TR 短,静态组织没有充分弛豫就接受下一个脉冲激励,在脉冲的反复作用下,其纵向磁化矢量越来越小而达到饱和,信号被衰减;对于成像容积以外的血流,因为开始没有接受脉冲激励而处于完全弛豫状态,当该血流进入成像容积内时才被激励而产生较强的信号。 TOF MRA的对比极大地依赖于血管进入的角度,所以在用TOF法进行血管成像时扫描层面一般要垂直于血管走行。另外,在TOF血管成像中,通过在成像区域远端或近端放置预饱和带,去除来自某一个方向的血流信号,因而可以选择性地对动脉或静脉成像。 目前已有效地应用于身体各部位的TOF技术有多种,并且各具特色。 1. 三维(3D)单容积采集TOF法MRA 3D TOF同时激励一个容积,这种容积通常3~8cm厚,含有几十个薄层面。3D TOF的最大优点是可以采集薄层,可薄于1mm,最终产生很高分辨率的投影。另外,3D TOF对容积内任何方向的血流均敏感,所以对于迂曲多变的血管,如脑动脉的显示有一定优势。但是对于慢血流,因其在成像容积内停留时间较长,反复接受多个脉冲的激励,可能在流出层块远端之前产生饱和而丢失信号,所以3D TOF不适于慢血流的显示,也因此不能对大范围血管(例如颈部血管)成像,这是3D TOF的主要缺陷。3D TOF一般不用于静脉以及具有严重狭窄和流速较低的动

磁共振成像原理

磁共振成像原理 K空间与图像重建方法 1.K空间填充技术一次RF激发是相同相位编码位置上的一排像 素的同时激发,这一排像素的不同空间位置是由频率编码梯度场的定位作用确 定的。因此,相位和频率的相对应就可明确某一信号的空间位置。所以,在计 算机中,按相位和频率两种坐标组成了另一种虚拟的空间位置排列矩阵,这个 位置不是实际的空间位置,只是计算机根据相位和频率不同而给予的暂时识别 定位,这就是“K空间”。K空间实际上是MR信号的定位空间。在K空间中, 相位编码是上下、左右对称的,从正值的最大逐渐变化到负值的最大,中心部 位是相位处于中心点的零位置,而不同层面中的多次激发产生的MR信号被错位记录到不同的K空间位置上。 由于一排排像素的数量在同一序列中总是恒定的,使频率变化范围也恒定,某 一排像素的频率编码起始频率低,则最末一个像素的终末频率也低。K空间中 心位置确定了最多数量的像素的信号,在傅里叶转换过程中的作用最大,处于 K空间周边位置的像素的作用要小很多。 在K空间采集中,频率和相位编码的位置一一对应,虽然图像信号采集的矩阵 为128×256或256×256,但K空间在计算机中为一个规整的正方形矩阵。如 前所述,处于K空间中心区域的各个数值对图像重建所起的作用要比周边区域 的更大,所以,在非常强调成像时间的脑弥散成像、灌注成像及心脏MRI成像时,为了节约时间,可以将周边区域的K空间全部作零处理,不花时间去采集,节约一半的时间,可能导致小于10%的图像信噪比损失。这种特殊的成像方法 就叫K空间零填充技术。 2.二维傅里叶图像重建法 二维傅里叶变换法是MRI特有且最常用的图像重建方法。二维傅里叶变换可分 为频率和相位两个部分,通过沿两个垂直方向的频率和相位编码,可得出该层 面每个体素的信息。不同频率和相位结合的每个体素在矩阵中有其独特的位置。计算每个体素的灰阶值就形成一幅MR图像。 【试题】 1.填充K空间周边区域的MR信号主要决定图像的() A.图像的边缘

磁共振成像(MRI)技术基础

磁共振成像(MRI)技术基础 MR 词汇表 ADC 图像 Apparent Diffusion Coefficent 扩散成像。ADC 图像从至少含有 2 个b- 值的扩散加权图像中计算得到的。其对比度对应于采集组织的扩散系数的空间分布,但不包含T1 或T2 * 部分。 ART Advanced RetrospectiveTechnique 图像重建。完全自动运动校正的三维技术。为将错误减到最少,3D 数据集被平移,旋转和插值,从而使之最接近于一个参照数据集。 B0 磁场 MR 物理学。磁共振系统的静态磁场,也就是主磁场。 B1 磁场 MR 物理学。发射器线圈产生的射频振荡磁场。 BOLD 成像BloodOxygenation Level Dependent Imaging MR 应用。BOLD成像使用血流中局部变化显示大脑一个区域的当前活动水平。人血液中氢离子是该信号携带者。血液是内在的造影剂:测量与血流变化相关的局部氧浓度。 (BOLD 效应 )。 BOLD 效应 神经系统活动增加时,静脉血中的氧浓度增高,并且局部血流速度增加。 由于氧的增加,红血球的磁特性近似于周围血浆的磁特性。血管的横向磁化强度衰减更慢。这BOLD 效应延长T2 和 T2 *, 使它们由于检测的血液中信号的增加而可被测量。 b- 值 扩散成像。扩散加权因子。b-值越高,扩散加权越大。 半傅里叶矩阵 MR 测量技术。原始数据矩阵具有特定对称性,从理论上这使对该矩阵取样一半数据就足够。另一半可对称地再现。在数学上这样的矩阵即为共轭矩阵。然而,由

磁场轻微不均匀性引起的不可避免的相面错误需要进行相面校正。因此,需要进行一多半的相面编码步骤。测量时间只减少50%。 饱和 MR 物理学。自旋没有净纵向磁化或横向磁化的状态。不可能从饱和组织中获得任何 MR 信号。 饱和恢复 (SR) MR 测量技术。 主要通过一系列 90 °激发脉冲产生T1 - 依赖的对比度的技术。第一个脉冲之后,由于组织被饱和,纵向磁化为零。第二个 90 °脉冲直到纵向磁化有部分恢复才使用。重复时间取决于组织的 T 常数。 饱和切片 切片定位。局部预饱和可抑制切片上的或与切片平行的特定区域的非期望的信号。-> 平行饱和 -> 预饱和 -> 移动饱和切片 被动屏蔽 MR 组件。以前,磁铁覆盖有软铁作为磁力线回路,从而显著降低杂散磁场。系统的重要性显著增加。现在首选主动屏蔽。 比吸收率 (SAR) 安全指标。单面时间每千克组织吸收的RF 能量。吸收RF 能量,可使身体变热。这对于建立安全阈值具有重要价值。未经许可的局部高度集中的RF 能量可引起灼伤。(本地SAR )。RF 能量均匀分布时,安全阈值必须观察以避免出现体温调节或心脏压力(整体SAR)。矫正方法:使用其它 RF 脉冲,减小翻转角,降低 TR,减少切片。 边缘振荡 -> 截断伪影 -> 吉布斯伪影 标记 栅格标记:横过心脏MR 图像的饱和线格子。用于查看心肌运动。

相关文档
最新文档