双缩脲测定奶粉中蛋白质的含量

双缩脲测定奶粉中蛋白质的含量
双缩脲测定奶粉中蛋白质的含量

双缩脲法测定奶粉中的蛋白质含量

【摘要】目的尝试建立一种快速准确地测定奶粉中蛋白质含量的方法。方法使用双缩脲法测定蛋白质的含量,在540 nm波长处,分别测定标准蛋白质应用液与样品稀释液的吸光度值,基于测定液中蛋白质含量与其吸光度值呈正比关系,计算出样品中蛋白质的含量。

【关键词】奶粉;蛋白质;双缩脲法;标准曲线

1【前言】蛋白质是人类最重要的营养物质之一。因此,奶粉中蛋白质含量一直是食品检测中的重要指标。目前蛋白质定量方法较多, 如凯氏定氮法、紫外分光光度法和Lowry 法等。虽然凯氏定氮法目前是测定蛋白质含量的国家标准方法,但其操作繁琐费时,且蛋白质含量是通过测定氮的含量推算得来的,容易被其他含氮物质干扰(如2008年9月“问题奶粉”的出现源于有人利用凯氏定氮法的缺陷,向牛奶中添加三聚氰胺造成蛋白质含量虚高);Lowry法和紫外分光光度法存在显色所需时间长,灵敏度低,稳定性差等缺点[1]。为弥补这些不足,本实验利用双缩脲法快速测定奶粉中的蛋白质含量。

2 实验目的

(1)学习从奶粉中提取酪蛋白的原理和方法;

(2)掌握利用双缩脲法对蛋白质含量的测定的原理和方法;

(3)掌握利用分光光度法对物质的定性和定量测定的原理和方法;

3实验原理

3.1奶粉中提取蛋白质的原理

奶粉中主要蛋白质是酪蛋白,每100克婴幼儿奶粉中含12克~25克。酪蛋白是一些含磷蛋白质的混合物,等电点为4.7。利用等电点时溶解度最低的原理,将奶粉用蒸馏水溶解,然后将其PH调至4.7时,酪蛋白就沉淀出来。用乙醇洗涤沉淀物,除去脂质杂质后便可得到纯酪蛋白。

3.2双缩脲测定蛋白质的原理

当脲加热至180oC时,两分子脲缩合,放出一分子氨而形成双缩脲。双缩脲在碱性条件下能与硫酸铜生成紫红色络合物,即发生双缩脲反应。蛋白质分子中含有肽键,与双缩脲结构相似,故蛋白质与碱性硫酸铜也能形成紫红色络合物,在一定条件下其颜色深浅与蛋白质浓度成正比,可用来进行蛋白质定量。最大波长位于540nm处。本法测定蛋白质范围1-10mg

4实验设备

可见光分光光度计1台、离心机1台、电热器1台、电子天平(0.01 g)1台、pHS-3C 酸度计1台、烧杯、试管15支、漏斗、移液管若干、胶头滴管2~3支、离心管等。5实验材料和试剂

5.1材料与试剂

奶粉,双缩脲试剂,体积分数95%乙醇120ml,无水乙醚120ml,0.2mol/L的醋酸-醋酸钠缓冲溶液牛血清白蛋白标准溶液蒸馏水

5.2缓冲液的配制

缓冲溶液300ml(先配置A液和B液)

A液(0.2mol/L醋酸钠溶液):称NaAc·3H2O5.44g,定容200ml

B液(0.2mol/L醋酸溶液):称优级纯醋酸(含量大于99.8%)2.4g,定容至200ml 取A液177Ml,B液123ml,混合既得PH4.7的醋酸-醋酸钠缓冲溶液300ml

操作

6 奶粉中真蛋白含量的测定

6.1标准应用曲线的绘制

操作步骤:

2.各管混合后,加入双缩脲试剂

3.0mL,37oC反应30min。

3.以0号管调零,测定各管540nm光吸收值。

4.以蛋白质浓度为横坐标,吸光值为纵坐标,制作标准曲线。

:6.2样品制备与测定

1.称取一定量的奶粉,用蒸馏水将其溶解至饱和

2.将100ml奶粉溶液加热至40℃,在搅拌下慢慢加入预热至40℃、PH4.7的醋酸缓冲溶液,用精密PH试纸或酸度计调PH至4.7。将上述悬浮液冷却至室温。离心15min(3000r/min),弃去上清夜,得酪蛋白粗制品(或用细布过滤,收集沉淀)

3.用水洗沉淀3次,离心10min(3000r/min),,弃去上清夜

4.在沉淀中加入30ml体积分数95%乙醇,搅拌片刻,将全部悬浊液转移至布氏漏斗中抽虑,用乙醇-乙醚混合液(乙醇和乙醚按1:1等体积混合)200ml洗沉淀2次,最后用乙醚洗沉淀2次,抽干。

5.将沉淀摊开在表面皿上,风干,得酪蛋白纯品.

6.用生理盐水溶解提取的蛋白质,取3.0ml的待测液与双缩脲试剂反应,再用光分光光度计测其吸光值。

6.3分析结果的表述与计算

根据标准曲线,查出对应吸光值的待测液的蛋白质浓度,在乘以稀释的倍数,再计算其质量,再除以奶粉的质量,即得奶粉的蛋白质的质量分数。

7. 讨论

奶粉中蛋白质含量是奶粉检验工作的一项重要指标。目前国内主要采用常规凯氏定氮法,国外也多采用常规或改良的凯氏定氮法测定食品中蛋白质含量,但此法费时、费水、费电,操作繁琐,试剂消耗量大,且不能有效区分非蛋白氮[2、3]。常见的含氮化合物如硝酸铵和尿素比牛奶蛋白质的含氮率都高,易溶于水,很容易掺入奶粉等食物中;而三聚氰胺虽然常温和冷水状况下在水中的溶解度非常低[4],但是人们平时习惯上和奶粉说明书上都要求用温开水冲调,例如60℃时三聚氰胺在100 g水中可以溶解1.8 g,100℃时溶解6.4 g,因而掺伪问题容易受到人们的忽视。

国内已有多篇文献涉及有关乳制品中蛋白质含量测定方法的研究,例如,云南工业大学张惠芬等探讨了在奶粉、豆奶粉、鱼粉中人为掺入尿素、硫酸铵等含氮化合物对蛋白质测定的影响,结果表明:用95%乙醇能很好地将尿素与食品中蛋白进行分离,回收率较高,并能方便、快速测定掺入量。对掺入硫酸铵等无机铵盐的测定,采用加MgO调到弱碱性,直接蒸馏测定[5]。成都理工大学李海玲等通过对Lowry法、BCA法、磺基水杨酸沉淀法、Bradford法等4种常用蛋白浓度测定方法的研究认为,确定PEG-IL-6的最佳蛋白浓度测定方法为BCA法,而包涵体变性液中的蛋白浓度只能用Bradford法测定[6]。中国农业大学食品科学与营养工程学院牛巍等利用三氯乙酸沉淀蛋白法和硫酸铜沉淀蛋白法对添加了非蛋白氮的液态奶进行蛋白氮测定。结果表明,三氯乙酸沉淀法能更有效地排除非蛋白氮对液态奶蛋白氮测定的影响[7]。河北省衡水市疾病预防控制中心田志梅等分别运用紫外分光光度法及甲醛值滴定法快速测定液体奶、奶粉中蛋白质含量。结果显示,两种方法均可有效解决非蛋白质类含氮物质对牛奶中蛋白质测定结果的干扰问题[8,9]。中国农业大学侯彩云等使用三氯乙酸使蛋白质沉淀后,不同含量的蛋白氮在碱性条件下与双缩脲试剂形成深浅不同的蓝紫色的络合物,根据其色度值与蛋白氮含量高低呈线性相关关系,用计算机软件自动分析获得的样品色度值,从而计算出蛋白氮含量[10]。综上所述,目前国内用于测定奶粉中蛋白质含量的方法有多种,其测定原理及结果的准确性各不相同,每种方法都有其优点及局限性。相比较而言,本项目运用双缩脲法检测奶粉中蛋白质的含量,具有简便、快速、实用的特点,可作为检测机构和平时人们快速检测蛋白质含量时考虑运用的方法之一。8注意事项

(1)待测样品的吸光度应在标准曲线范围内,否则样品液用蒸馏水稀释再测。

(2)实验数据记录、运算时取各组数据平均值,且注意数位的取舍,减少运算误差

参考文献

1 李建武,等. 生物化学实验原理和方法.第1版.北京:北京大学出版社,1994,165.

2.钱锋张晓非郝艳茹《数理医药学杂志》2007 第3期- 维普资讯网

3.王卫国吴强胡宝坤包东武赵永亮《中国食用菌》2003 第1期- 万方数据

4. 吴文卫雷金宝张光明王青霞朱建英《中国卫生检验杂志》2008 第7期

5. 赵景云王艳芬马桂元黄积涛《天津理工大学学报》2006 第5期

(整理)6种方法测定蛋白质含量.

6种方法测定蛋白质含量 一、微量凯氏(kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: NH2CH2COOH+3H2SO4――2CO2+3SO2+4H2O+NH3(1) 2NH3+H2SO4――(NH4)2 SO4(2) (NH4)2 SO4+2NaOH――2H2O+Na2SO4+2NH3(3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret法) (一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材 1.试剂: (1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05NaOH配制。 (2)双缩脲试剂:称以1.50克硫酸铜(CuSO4?5H2O)和6.0克酒石酸钾钠(KNaC4H4O6?4H2O),用500毫升水溶解,在搅拌下加入300毫升10% NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。 2.器材: 可见光分光光度计、大试管15支、旋涡混合器等。 (三)操作方法 1.标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分

奶粉中蛋白质含量测定方法的改进

Q u a l i t y C o n t r o l□质量安全 使用说明。该文件是针对作用对象、适应症和剂量的。必须小心地按照剂量、治疗频率、治疗期和治疗途径使用。只要有一个参数被改变,如果没有预先咨询兽医的话,就不可能正确地应用停药期。兽医可以根据“层叠”法则,在标准停药期的基础上,重新固定一个新的停药期(对于重复用药的情况),并能够科学地维持这个新选择,以保证动物源食品不含有抗生素残留。在任何情况下,兽医都得负起责任。遵守治疗途径对于保证抗生素的良好扩散和控制残留风险是十分重要的。 抗生素标签外的使用(也就是说修改了权威机构提供的使用条件)只有在例外的情况下才能发生。实际上,例外的情况应该仅限于所谓的“罕见“微生物(这表示市场有限,实验室不会去为此开发一个专门的方 案)和零星的使用说明(因为有些感 染的发生几率很小,所以不是整个范 围的抗菌谱都被测试过,这造成了相 关的官方使用说明的缺失)。在任何 情况下,标签外的使用都必须符合 “层叠”决策树,使用决策树时要按 照时间顺序排列所描述的步骤。在欧 洲,使用的物质必须是记载在2377/90 (MRL)法规的附录I、II、III中的,并 且必须遵守标准的停药期(对牛奶和 鸡蛋至少7天,对肉而言至少28天)。 在这方面尤其要注意不要偏离规定的 停药期,否则对于风险预防可能是有 害的。 处方单会列出相关药品并告知农 场主施用方法,而且会修改停药期, 在修正过的停药期内,动物源的食品 都不能上市。处方以处方单的形式开 出,必须要跟养殖人员解释清楚,以 保证遵守治疗方法和停药期。另外, 可追踪性也是一个关键因素,很多国 家规定农场主必须保留处方,如在法 国,养殖户需保留处方5年,兽医需保 留处方10年。 6.3 农场记录:监控药物使用的关键 要素 在大多数国家,农场主和兽医都 必须在农场记录簿上记录他们对动物 的处置。起初这一要求被看作是一种 束缚,但现在正逐渐成为许多农场主 和兽医们的一个不可替代的牧群健康 指标。符合法规要求的记录要包含农 场主的预先评估和兽医的医学评估。 治疗方案的实施、警示限值的定义和 必要的跟踪查访都要基于上述记录。 显然数据的电脑化可以使分析变得更 简单,相关性和精确性也会更好。■ 蛋白质是乳及乳制品中的主要成分,它对乳制品的理化特性有着重要的影响。测定蛋白质的方法很多,目前最基本和最常用的方法是先测定总氮量,再乘以不同食品的蛋白质系数,即为食品中蛋白质的含量。目前,国家标准的测定总氮量的方法仍采用凯氏定氮法。该方法数值准确性和重现性较好,但检验步骤繁琐,费 时较长,不适合企业现场实时监测。 因此,一些仪器公司开发出凯氏定氮 仪测定蛋白质含量,由于仪器测定时 称样量少,消化速度较传统方法大大 提高,特别是仪器蒸馏时产生的蒸汽 量大,蒸馏速度也较传统方法快很 多,并且仪器检测得出的数据和传统 方法偏差不大。因此,很多企业,甚 至是一些检验监督机构也都采用凯氏 定氮仪测定蛋白质含量。但由于定氮 仪比较昂贵(进口设备大约需要16 万~20万元),一般小企业无法承 受,而传统方法又由于费时较长,不 利于生产过程的监控。因此,如何找 到一种既省时又经济适用,且数据准 奶粉中蛋白质含量测定方法的改进 ■ 徐亚麦 刘鑫 黑龙江龙丹乳业科技股份有限公司 【摘要】在蛋白质含量的测定中,通过将传统方法与现代仪器方法有效结合,大大节省了检测时间,节约了检验试剂。该方法和传统方法相比,测定结果的精确性和重现性较好,实验结果比较稳定,适用于乳品企业快速监控产品蛋白质指标。 关键词:蛋白质;测定原理;测定方法 59 2010.1

蛋白质的测定方法

蛋白质的测定方法 测定食物中的蛋白质含量有二种方法,一是凯氏微量法,二是自动定氮分析法。 一.凯氏微量法 有手工滴定定氮和自动定氮仪定氮,实验者可根据经济条件设备而定。 1.原理 蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用过量硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。 2NH2(CH2)2COOH+13H2SO4 (NH4)2SO4+6CO2+12SO2+16H2O (NH4)2SO4+2NaOH 2NH3+2H2O+Na2SO4 2.方法 本法参照GB 5009.5 -85 适用于各类食品及饲料中蛋白质的测定 3.试剂 所有试剂均用不含氨的蒸馏水配制。试剂均为分析纯。 3.1硫酸铜 3.2硫酸钾 3.3浓硫酸 3.4 2%硼酸溶液(或1%的硼酸) 3.5 混合指示剂:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。也可用2份0.1%甲基红乙醇溶与1份0.1%次甲基蓝乙醇溶液临用时混合。 3.6饱和氢氧化钠:500g氢氧化钠加入500ml水中,搅拌溶解,冷却后放置数日,澄清后使用。 3.7 0.01mol/L或0.05mol/L盐酸标准溶液:需标定后使用(配制及标定方法见附录) 4.仪器 消化炉凯氏定氮蒸馏装置万分之一电子天平 凯氏定氮蒸馏装置:如图所示 5. 操作步骤 5.1样品处理:精密称取0.1~2.0g固体样品或2~5g半固体样品或吸取液体样品5~20ml,放入100ml或500ml凯氏烧瓶中,加入0.2g硫酸铜,0.3g硫酸钾及3~20ml浓硫酸,放置过夜后小心加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,取下放冷后用约2~10ml蒸馏水冲洗瓶壁,混匀后继续加热至液体呈蓝绿透明,取下放冷,小心加10~20ml水混匀,放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白实验。 5.2按图装好定氮装置,于水蒸气发生瓶内装水至约2/3处,加甲基红指示液数滴及数毫升硫酸,以保持水呈酸性,加入数粒玻璃珠以防暴沸,加热煮沸水蒸气发生瓶内的水。 5.3向接收瓶内加入10ml ,1~2%硼酸溶液及混合指示液1滴,并使冷凝管的下端插入液面下,吸取10ml样品消化稀释液由小玻璃杯流入反应室,并以10ml水洗涤小烧杯使之流入反应室内,塞紧小玻璃杯的棒状玻璃塞。将3~10ml饱和氢氧化钠溶液倒入小玻璃杯中,提起玻璃塞使其缓缓流入反应室,立即将玻璃塞盖紧,并加水于小玻璃杯中以防漏气。加紧螺旋夹,开始蒸馏。蒸气通入反应室使氨通过冷凝管而进入接收瓶内,蒸馏2min,移动接收瓶,使冷凝管下端离开液面,然后用少量中性水冲洗冷凝管下端外部,再蒸馏1min取下接收瓶,以0.01或0.05mol/L盐酸标准溶液滴定至灰色或蓝紫色为终点。 同时吸取10ml试剂空白消化液按5.3操作。 6. 计算

奶粉中的主要成分讲解

1.母乳与牛奶中乳清蛋白的比例? 奶类中的蛋白质主要是由乳清蛋白和酪蛋白组成,乳清较容易被消化,母乳中的70%乳清蛋白,30%酪蛋白;牛奶中含20%乳清蛋白,80%酪蛋白。 2.a-乳清蛋白的作用? (1)提高蛋白质的生物利用度,从而降低蛋白质的总量,有效降低宝宝肾脏的负担。更容易让宝宝消化吸收。 (2)抗菌、抗病毒、抗肿瘤、抗氧化,有免疫刺激作用从而提高免疫力。(3)含有丰富的色氨酸(快乐因子),有助于促进宝宝的神经发育,调节睡眠情绪,增进食欲。 (4)可以在宝宝体内转化成牛磺酸,保证视力、心脏、大脑的正常发育,并有抗疲劳作用。 (5)是唯一能结合钙的乳蛋白成分,可紧密结合2个ca2+,有利于骨骼发育和维持骨骼健康。 (6)婴儿期重要的器官及神经系统的发育都是在高质量的睡眠中完成的。缺少α-乳清蛋白的摄入可能影响宝宝的睡眠质量,宝宝睡眠不好可能会使宝宝烦躁哭闹、消化吸收减弱奶量降低、生长发育迟缓。 3.牛磺酸 牛磺酸又称牛胆酸最初是从雄牛的胆汁中发现的,是一种非蛋白质氨基酸是婴幼儿生长发育的必需氨基酸。牛磺酸对促进大脑生长发育,增强机体免疫能力;对心血管系统有较强的保护作用,有增强心肌细胞功能等作用;可以促进脂肪乳化和视网膜的发育,帮助神经传导和视觉机能的完善。成人可以通过肝合成牛磺酸,由于婴幼儿的身体内酶类的合成的系统还没有完全发育好,还不能通过自身合成,婴幼儿体内所需要的牛磺酸只能依靠食物来提供。各种食物中包含的牛磺酸的数量也是不一样的,一般说来,植物性的食物中是不会包含牛磺酸的,动物性的食物中含有的牛磺酸却是相当的丰富,比如平均每一百克的食物中含有的牛磺酸的数量是这样的:牛奶四毫克,人初乳七十毫克,人成熟乳五十四毫克,猪肉五十毫克,牛肉三十六毫克,羊肉四十七毫克以及鸡肉三十四毫克等。母乳中含有的牛磺酸要比牛奶中多十几倍,人的初乳中的牛磺酸的含量要比成熟乳来的更加的多,母乳是婴儿体内牛磺酸的主要来源,牛乳、鸡蛋等食品中几乎不含牛磺酸。 所以喂养的时候建议尽量母乳喂养,在母乳不足的情况下,要给宝宝适量添加婴幼儿配方奶粉。以保证体内各种营养素的供给。 4.OPO结构脂 OPO目前是一种比较珍贵的成份,它的结构与母乳中脂肪非常相近,因此放在奶粉里更亲和人体,促进宝宝营养的吸收。 (1)帮助DHA、AA的有效利用,促进智力发育,使宝宝头脑更聪明; (2)与可溶性膳食纤维组合,帮助增加肠道双歧杆菌的数量,改善胃肠道,激活免疫细胞,降低胃肠道疾病发生率;

双缩脲法测定蛋白质含量

双缩脲法测定蛋白质含量 实验二十蛋白质含量测定-—双缩脲法测定蛋白质含量一、实验目的 学习和掌握用双缩脲法测定蛋白质含量的原理和方法。 二、实验原理 在碱性溶液中,双缩脲(H2N—CO-NH-CO—NH2)与二价铜离子作用形成紫红色的络合物,这一反应称双缩脲反应。凡分子中含二个或二个以上酰胺基(-CO—NH2),或与此相似的基团[如—CH2—NH2,—CS—NH2,—C(NH)NH2]的任何化合物,无论这类基团直接相连还是通过一个碳或氮原子间接相连,均可发生上述反应。蛋白质分子含有众多肽键(-CO—NH—),可发生双缩脲反应,且呈色强度在一定浓度范围内与肽键数量即与蛋白质含量成正比,可用比色法测定蛋白含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。...文档交流仅供参考... 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于快速,但并不需要十分精确的蛋白质测定。...文档交流仅供参考... 三、实验试剂和器材 [试剂] 1.双缩脲试剂: 取CuSO4·5H20(c。P。)1.5g和酒石酸钾钠(c.P.)6.0g以少量蒸馏水溶解,再加2.5m ol/L NaOH溶液300ml,KI 1。0g,然后加水至1000ml.棕色瓶中避光保存。长期放置后若有暗红色沉淀

出现,即不能使用。...文档交流仅供参考... 2。标准蛋白质溶液: 用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10g/L的标准蛋白溶液,可用BSA浓度1g/L的A280为0。66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0。05mol/L NaOH配制. ...文档交流仅供参考... [器材] 1.试管:15×150mm试管7只; 2.1ml,5ml移液管; 3.坐标纸; 4.721分光光度计。 四、实验操作 取试管7支,编号,按下表操作: 试剂(m l)\管号空白 管 12345测定 管 蛋白 标准 液(1 0g/ L) —0。10.20.30.40.5–

几种测蛋白含量方法的比较

蛋白质含量测定方法的比较及肽含量的测定 (一)蛋白质测定方法的比较(原理、优缺点)蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫 外吸收法、考马斯亮蓝法。其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20 倍,比双缩脲法灵敏100倍以上。定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫外吸收法、考马斯亮蓝法。其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20 倍,比双缩脲法灵敏100倍以上。定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。 1 微量凯氏定氮法(GB 5009.5-2010) 1.1原理样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。 1.2操作方法样品经前处理、炭化、消化、蒸馏、滴定等主要步骤 1.3特点准确度较高,适用于0.2~ I.Omg氮,误差为土2%;操作复杂费时,整个过程需要耗时8~10h,试剂消耗量大。,测得结果为总氮含量,包括蛋白氮和非蛋白氮含 量;适用范围广,几乎所有样品均可用此方法。 2双缩脲比色法

双缩脲法测定蛋白质含量

实验二十蛋白质含量测定——双缩脲法测定蛋白质含量一、实验目的 学习和掌握用双缩脲法测定蛋白质含量的原理和方法。 二、实验原理 在碱性溶液中,双缩脲(H2N-CO-NH-CO-NH2) 与二价铜离子作用形成紫红色的络合物,这一反应称双缩脲反应。凡分子中含二个或二个以上酰胺基(—CO-NH2) ,或与此相似的基团[如—CH2-NH2 ,—CS-NH2,—C(NH)NH2]的任何化合物,无论这类基团直接相连还是通过一个碳或氮原子间接相连,均可发生上述反应。蛋白质分子含有众多肽键(—CO-NH —),可发生双缩脲反应,且呈色强度在一定浓度范围内与肽键数量即与蛋白质含量成正比,可用比色法测定蛋白含量。测定范围为1?10mg蛋白质。干扰这一测定 的物质主要有:硫酸铵、Tris 缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于快速,但并不需要十分精确的蛋白质测定。 三、实验试剂和器材 [试剂] 1 ?双缩脲试剂:取CuSO4 ?5H20.)和酒石酸钾钠.)以少量蒸馏水溶解,再加/ L NaOH 溶液300ml, KI ,然后加水至1000ml。棕色瓶中避光保存。长期放置后若有暗红色沉淀出现,即不能使用。 2. 标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成 10g/L 的标准蛋白溶液,可用BSA 浓度1g/L 的A280 为来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O或%NaCl配制,酪蛋白用L NaOH配 制。 [器材] 1. 试管:15X 150mm试管7只; 2. 1ml,5ml 移液管; 3. 坐标纸;

蛋白质含量测定——双缩脲试剂法-实验报告

生物化学实验报告 姓名: 学号: 专业年级: 组别: 生物化学与分子生物学实验教学中心

实验名称蛋白质含量测定——双缩脲试剂法 实验日期实验地点 合作者指导老师 评分教师签名批改日期 一、实验目的 1.1.掌握双缩脲测定血清总蛋白的基本原理、操作; 1.2.掌握双缩脲试剂的配制; 1.3.熟悉血清总蛋白的临床意义; 1.4.了解双缩脲法测定血清总蛋白的特点和注意事项。 二、实验原理 2.1.两分子尿素加热脱氨缩合成的双缩脲(H2N-OC-NH-CO-NH2),因分子内含有两个邻接的肽键,在碱性溶液中可与Cu2+发生双缩脲反应,生成紫红色络合物。 2.2.蛋白质分子含有大量彼此相连的肽键(-CO-NH-),同样能在碱性条件下与Cu2+发生双缩脲反应,生成的紫红色络合物,且在540nm处的吸光度与蛋白质的含量在10~120g/L范围内有良好的线性关系。 三、材料与方法: 3.1.实验材料: 3.1.1.实验试剂:①小牛血清;②6.0mol/LNaOH溶液;③双缩脲试剂:硫酸酮、酒石酸钾钠、碘化钾;④蛋白质标准液(70g/L);⑤0.9%NaCl;⑥蒸馏水。 3.1.2.实验器材:①试管;②烧杯;③容量瓶;④加样枪;⑤刻度吸管;⑥玻璃棒;⑥1100分光光度计;⑦电子天平;⑧水浴锅。

3.2.实验步骤 四、结果与讨论: 4.1.实验现象: ①选取三支洁净无损的试管,从左往右依次加入0.9%氯化钠溶液、蛋白质标准液、相应的小牛血清各0.5ml,分别命名为B试管、S试管和U试管,再分别向三支试管内加入4ml的双缩脲试剂,溶液均成蓝色透明状。

测定次数 1 2 3 平均吸光度 ②将三支试管放入37℃水浴锅中加热20min,取出后,B试管呈淡蓝色,S试管和U 试管均成浅紫色,且S试管的颜色比U试管的颜色深。(如图一) 图一水浴后三支试管颜色图二分光计读数 S 0.185 0.184 0.185 0.1847 U 0.152 0.151 0.152 0.1517 结果计算:代入公式:血清总蛋白(g/L)=(Au/As)X蛋白质标准液浓度(g/L),得出结果:血清总蛋白=57.493g/L。 4.3.结果讨论 经查阅资料得:正常成人血清总蛋白含量为60~80g/L,而小牛血清总蛋白含量比正常成人血清总蛋白含量略低一点,本次结果得出小牛血清总蛋白含量为57.493g/L,符合情况。 4.3.1.成功原因: ①本次试验的试剂混合水浴后出现了预期效果:B试管呈淡蓝色,S试管和U试管均成浅紫色,且S试管的颜色比U试管的颜色深。B试管呈淡蓝色是因为B试管中没有发生任何反应,所以呈现双缩脲试剂本来的淡蓝色,而S试管和U试管呈浅紫色是因为试剂中的蛋白质和双缩脲发生了双缩脲反应而呈浅紫色。 管号

食品中蛋白质的测定方法

食品中蛋白质的测定方法 蛋白质的测定方法分为两大类:一类是利用蛋白质的共性,即含氮量,肽链和折射率测定蛋白质含量,另一类是利用蛋白质中特定氨基酸残基、酸、碱性基团和芳香基团测定蛋白质含量。但是食品种类很多,食品中蛋白质含量又不同,特别是其他成分,如碳水化合物,脂肪和维生素的干扰成分很多,因此蛋白质的测定通常利用经典的剀氏定氮法是由样品消化成铵盐蒸馏,用标准酸液吸收,用标准酸或碱液滴定,由样品中含氮量计算出蛋白质的含量。由于食品中蛋白质含量不同又分为凯氏定氮常量法、半微量法和微量法,但它们的基本原理都是一样的。 一凯氏定氮法 我们在检验食品中蛋白质时,往往只限于测定总氮量,然后乘以蛋白质核算系数,得到蛋白质含量,实际上包括核酸、生物碱、含氮类脂、叶啉和含氮色素等非蛋白质氮化合物,故称为粗蛋白质。 (一)、常量凯氏定氮法 衡量食品的营养成分时,要测定蛋白质含量,但由于蛋白质组成及其性质的复杂性,在食品分析中,通常用食品的总氮量表示,蛋白质是食品含氮物质的主要形式,每一蛋白质都有其恒定的含氮量,用实验方法求得某样品中的含氮量后,通过一定的换算系数。即可计算该样品的蛋白质含量。 一般食品蛋白质含氮量为l6%,即1份氮素相当于6.25分蛋白质,以此为换算系数6.25,不同类的食物其蛋白质的换算系数不同.如玉米、高梁、荞麦,肉与肉制品取6.25,大米取5.95、小麦粉取5.7,乳制品取6.38、大豆及其制品取5.17,动物胶5.55。 测定原理: 食品经加硫酸消化使蛋白质分解,其中氮素以氨的形式与硫酸化合成硫酸铵。然后加碱蒸馏使氨游离,用硼酸液吸收形成硼酸铵,再用盐酸标准溶液或硫酸标准溶液滴定,根据盐酸消耗量计算出总氮量,再乘以一定的数值即为蛋白质含量,其化学反应式如下。 (1) 消化反应:有机物(含C、N、H、O、P、S等元素)+H2S04 -→(NH4)2S04+C02↑+S02↑+S03+H3PO4+CO2↑ (2) 蒸馏反应:(NH4)2SO4+2NAOH-→2NH3↑+2H2O+NA2SO4 2NH3+4H3BO3-→(NH4)2B4O7+5H2O (3) 滴定反应:(NH4)2B4O7+2HCH+5H2O-→2NH4CH+4H3BO3 或 (NH4)2B407+H2S04+5H20-(NH4)9SO4+4H2BO2 试剂与仪器: 1、硫酸钾;

奶粉中蛋白质含量实验方法

【摘要】目的尝试建立一种快速准确地测定奶粉中蛋白质含量的方法。方法使用三氯乙酸沉淀蛋白质后,运用BCA(二喹啉甲酸)法,在570 nm波长处,分不测定标准蛋白质应用液与样品稀释液的吸光度值,基于测定液中蛋白质含量与其吸光度值呈正比关系,计算出样品中蛋白质的含量。结果待测溶液中蛋白质浓度在0~250 μg/ml 范围内标准曲线呈线性关系,其回归方程为:Y=301.12X-73.42,相关系数r=0.998,平均回收率为100.2%。结论结合三氯乙酸沉淀的BCA法适用于奶粉中蛋白质的快速检验和掺伪检验。

【关键词】奶粉;蛋白质;BCA法;三氯乙酸;三聚氰胺 A rapid and simple method of protein determination in powdered milk Zhang Zhiqiao, Shen Guodong, Wang Gang First Middle School of Hefei, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001 [Abstract]Objective To explore a rapid and simple method of protein determination in powdered milk without other nitrogen-containing compound disturbance in Kjeldahl determination.Methods Conjugated with protein precipitation with trichloroacetic acid, BCA (bicinchoninic acid) method was used. According to the positive relationship of protein content with the 570 nm absorbance, protein content was calculated in powdered milk.Results Protein content in milk solution showed a good linear relationship at the detection ranges of 0-250 μg/ml, with regression equation: Y=301.12X-73.42 and related coefficient: 0.998, and the average recovery rate was 100.2%.Conclusion BCA method conjugated with trichloroacetic acid is adaptable to the rapid and

6种方法测定蛋白质含量

6种方法测定蛋白质含量 [ 文章来源: | 文章作者: | 发布时间:2006-12-25| 字体: [大 中 小] 一、微量凯氏(kjeldahl )定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: nh 2ch 2cooh+3h 2so 4——2co 2+3so 2+4h 2o+nh 3 (1) 2nh 3+h 2so 4——(nh 4)2so 4 (2) (nh 4)2so 4+2naoh ——2h 2o+na 2so 4+2nh 3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得 样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret 法) (一)实验原理 双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg 蛋白质。干扰这一测定的物质主要有:硫酸铵、tris 缓冲液和某些氨基酸等。 此法的优点是较快速 ,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材

蛋白质测定方法之双缩脲法(Biuret法)

一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris 缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材 1.试剂: (1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10mg/ml 的标准蛋白溶液,可用BSA浓度1mg/ml的A280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05N NaOH配制。 (2)双缩脲试剂:称以1.50克硫酸铜(CuSO4?5H2O)和6.0克酒石酸钾钠(KNaC4H4O6?4H2O),用500毫升水溶解,在搅拌下加入300毫升10% NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。 2.器材: 可见光分光光度计、大试管15支、旋涡混合器等。 (三)操作方法 1.标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分钟,于540nm处进行比色测定。用未加蛋白质溶液的第一支试管作为空白对照液。取两组测定的平均值,以蛋白质的含量为横座标,光吸收值为纵座标绘制标准曲线。 2、样品的测定:取2~3个试管,用上述同样的方法,测定未知样品的蛋白质浓度。注意样品浓度不要超过10mg/ml。 三、Folin—酚试剂法(Lowry法) (一)实验原理

蛋白质测定实验报告

蛋白质测定方法——化学报告

蛋白质的检测 酚试剂法灵敏度较高 20~250mg 费时蛋白质在碱性溶 液中其肽键与 Cu2+螯合,形成 蛋白质一铜复合 物,此复合物使 酚试剂的磷钼酸 还原,产生蓝色 化合物 酚类、柠檬 酸、硫酸铵、 tris缓冲液、 甘氨酸、糖 类、甘油等均 有干扰作用 由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述:

1 材料与方法 1.1 仪器材料 (1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。 (2)试剂及原材料:牛奶、酸奶、豆浆、0.12mol/LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0. 050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。 1.2 实验方法 (1)凯氏定氮法测定蛋白质含量 将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。每个样品做三次重复测定,取平均值。 (2)紫外吸收法测定蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如, 生化制备中常用的(NH4)2SO4 等和大多数缓冲液不干扰测定,特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。 此法的特点是测定蛋白质含量的准确度较差,干扰物质较多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质有一定的误差,故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。 此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。取待测样品制成蛋白浓度大约在0. 1~1. 0mgPmL的蛋白质溶液,用紫外分光光度计进行比色,对照标准曲线得出样品含氮量。每个样品做3次重复测定,取平均值。 (3)双缩脲法测定蛋白质含量

紫外吸收法测蛋白质含量的方法(精)

紫外吸收法测蛋白质含量的方法 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如生化制备中常用的(NH4)2SO4等和大多数缓冲液不干扰测定。特别适用于 柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。 此法的特点是测定蛋白质含量的准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。 此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。1.280nm的光吸收法 因蛋白质分子中的酪氨酸、苯丙氨酸和色氨酸在280nm处具有最大吸收,且各种蛋白质的这三种氨基酸的含量差别不大,因此测定蛋白质溶液在280nm处的吸光度值是最常用的紫外吸收法。 测定时,将待测蛋白质溶液倒入石英比色皿中,用配制蛋白质溶液的溶剂(水或缓冲液)作空白对照,在紫外分光度计上直接读取280nm的吸光度值A280。蛋白质浓度可控制在0.1~1.0mg/ml左右。通常用1cm光径的标准石英比色皿,盛有浓度为1mg/ml的蛋白质溶液时,A280约为1.0左右。由此可立即计算出蛋白质的大致浓度。 许多蛋白质在一定浓度和一定波长下的光吸收值(A1%1cm)有文献数据可查,根据此光吸收值可以较准确地计算蛋白质浓度。下式列出了蛋白质浓度与 (A1%1cm)值(即蛋白质溶液浓度为1%,光径为1cm时的光吸收值)的关系。文献值A1%1cm,λ称为百分吸收系数或比吸收系数。 蛋白质浓度= (A280′10 )/ A1%1cm,280nm (mg/ml) (Q 1%浓度?10mg/ml)

测定奶粉中蛋白质的真实含量

凯氏定氮法测奶粉中真实蛋白质的含量 摘要 实验用凯氏定氮法测定奶粉中的蛋白质含量,将硫酸及催化剂与奶粉一同加热消化,使蛋白质分解,其中C、H形成CO2、H2O逸出,而氮以氨的形式与硫酸作用,形成硫酸铵留在酸液中。然后将消化液碱化,蒸馏,使氨游离,用水蒸气蒸出,被硼酸吸收。用标准盐酸溶液滴定所生成的硼酸铵,消耗的盐酸标准液计算出总氮量,再折算为粗蛋白含量。 关键词: 凯氏定氮法蛋白质消化蒸馏 1前言:劣质奶粉的出现严重地损害了人民群众的健康,劣质奶粉的主要特点是蛋白质含量远低于正常值。正是利用氮与蛋白质含量间的关系,实验室测定蛋白质的非直接性,一些不法人士钻了蛋白质中氮的含量。他们利用三聚氰胺含有很高的氮,将三聚氰胺残掺杂近奶粉中以提高奶粉的蛋白质含量。而长期饮用这些蛋白质含量极低的奶粉,首先会导致婴儿严重营养不良,随后会引起各种并发症,在外来细菌的侵袭之下,婴儿几乎完全丧失了自身的免疫能力,病情发展十分迅速,最后婴儿头部严重水肿,几乎看不清五官,全身皮肤也出现了大面积的高度溃烂,伤口长时间无法愈合,最后导致呼吸衰竭而死亡。因此,测定奶粉中蛋白质含量,对掌握其营养价值和品质的变化,保障人体的健康,合理配料,为乳制品深加工提供数据十分重要,此外,蛋白质分解产物对乳制品的色、香、味都有一定的作用,所以测定具有深远意义。 2实验目的 (1)学习凯氏定氮法的测定蛋白质的原理; (2)掌握凯氏定氮法的操作技术,包括样品的消化处理、蒸馏、滴定及蛋白质含量的计算等。 3实验原理 各种天然有机物的含氮量通常用微量凯氏定氮法(micro-Kjeldahl method)来测定。当有机含氮化合物与浓硫酸共热消化,氮转化为氨,氨与硫酸结合成硫酸铵。消化产生

双缩脲法蛋白质含量检测试剂盒说明书 微量法

双缩脲法蛋白质含量检测试剂盒说明书微量法 注意:正式测定前务必取2-3个预期差异较大的样本做预测定。 货号:BC3185 规格:100T/96S 产品简介: 样品可溶性蛋白质含量常常用于酶活性计算。此外,可溶性蛋白质含量也用于食品等质量分析。 强碱性溶液中,双缩脲与CuSO 形成紫色络合物;紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋 4 白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。该方法测定范围为1~10mg蛋白质,适用于蛋白质浓度高的样品,尤其是动物材料。 自备仪器和用品: 可见分光光度计/酶标仪、移液器、微量玻璃比色皿/96孔板和蒸馏水。 试剂组成和配制: 试剂一:液体20mL×1瓶,4℃保存。 标准品:液体1mL×1支,5mg/mL,-20℃保存。 样品中可溶性蛋白质提取: 1.液体样品:澄清无色液体样品可以直接测定。 2.组织样品:按照组织质量(g):提取液体积(mL)为1:5~10的比例(建议称取约0.1g组织,加入1mL 提取液(自备,根据需要选用酶提取缓冲液或者蒸馏水或者生理盐水))冰浴匀浆,10000rpm,4℃离心10min,取上清,即待测液。(动物样品常常需要稀释) 3.细菌、真菌:按照细胞数量(104个):提取液体积(mL)为500~1000:1的比例(建议500万细胞加入

1mL提取液),冰浴超声波破碎细胞(功率300w,超声3秒,间隔7秒,总时间3min);然后8000rpm,4℃,离心10min,取上清置于冰上待测。 测定步骤: 1.分光光度计/酶标仪预热30min以上,调节波长到540nm,蒸馏水调零。 2.空白管:取0.5mLEP管,加入40μL蒸馏水,200μL试剂一,混匀后室温静置15min,取200μL于 微量玻璃比色皿/96孔板,540nm比色,记为A1空白管。 3.标准管:取0.5mLEP管,加入40μL标准液,200μL试剂一,混匀后室温静置15min,取200μL于 微量玻璃比色皿/96孔板,540nm比色,记为A2标准管。 4.测定管:取0.5mLEP管,加入40μL待测液,200μL试剂一,混匀后室温静置15min,取200μL于 微量玻璃比色皿/96孔板,540nm比色,记为A3测定管。 样品中蛋白质浓度计算: 1、按液体体积计算: 蛋白质(mg/mL)=C标准管÷(A标准管-A空白管)×(A测定管-A空白管) =5÷(A标准管-A空白管)×(A测定管-A空白管) 2、按样本鲜重计算: 蛋白质(mg/g鲜重)=C标准管÷(A标准管-A空白管)×(A测定管-A空白管)×V样总÷W =5÷(A标准管-A空白管)×(A测定管-A空白管)÷W 3、按细胞数量计算: 蛋白质(mg/104cell)=C标准管÷(A标准管-A空白管)×(A测定管-A空白管)×V样总÷500 =0.01÷(A标准管-A空白管)×(A测定管-A空白管)

蛋白质含量测定方法比较

蛋白质含量测定主要有五种方法,分别是凯式定氮法、双缩脲法、紫外吸收法、酚试剂法和考马斯亮蓝法。这五种方法各有特点,优缺点明确。 凯氏定氮法 蛋白质是含氮的化合物。食品与浓硫酸和催化剂共同加热消化,使蛋白质分解,产生的氨与硫酸结合生成硫酸铵,留在消化液中,然后加碱蒸馏使氨游离,用硼酸吸收后,再用盐酸标准溶液滴定,根据酸的消耗量来乘以蛋白质换算系数,即得蛋白质含量。因为食品中除蛋白质外,还含有其它含氮物质,所以此蛋白质称为粗蛋白。 优点:重现性好,是目前分析有机化合物含氮量常用的方法,是一种蛋白质测定的经典方法, ,测试结果准确。 缺点:操作比较繁复,费时,试剂消耗量大。且此法测定的蛋白质含量实际上包括了核酸,生物碱,含氮类脂,卟啉,含氮色素等非蛋白质含氮化合物。双缩脲定氮法 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 优点:较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋

白质测定。 缺点:不太灵敏;不同蛋白质显色相似。 紫外吸收定氮法 双缩脲法是传统的分光光度法测定蛋白质的方法,当含有两个或者两个以上肽键的物质和碱性的硫酸铜反应时,形成紫色的络合物,这个颜色产物是肽键中的氮原子和铜离子配价结合的结果。蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。形成颜色产物的量取决于蛋白质的浓度。实际测定时,必须预先用标准蛋白质溶液制作一个标准校正曲线,通常用牛血清白蛋白水溶液做蛋白质标准溶液。不同浓度的标准蛋白质溶液加入双缩脲试剂后,反应生成的颜色产物用紫外-可见分光光度计在540nm 波长下测定吸光度,以双缩脲试剂加缓冲或水作空白对照。然后将测得的值分别对蛋白浓度(mg/ ml) 作图,得标准曲线。未知蛋白样品用双缩脲试剂做同样处理,根据测得吸光度值在标准曲线上直接查得未知蛋白质样品中得蛋白质浓度。 优点:对各种蛋白质呈色基本相同;特异性和准确度好,精密度好;呈色稳定性好,试剂单一,方法简便。快速,不消耗样品,测定后仍能回收使用。 缺点:准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。此外,进行紫外

相关文档
最新文档