操作系统一个小型操作系统的设计与实现课程设计

操作系统一个小型操作系统的设计与实现课程设计
操作系统一个小型操作系统的设计与实现课程设计

南通大学计算机科学与技术学院操作系统课程设计报告

专业:

学生姓名:

学号:

时间:

操作系统模拟算法课程设计报告设计要求

将本学期三次的实验集成实现:

A.处理机管理;

B.存储器管理;

C.虚拟存储器的缺页调度。

设计流程图

主流程图

2)时间片轮转法

时间片轮转算法流程图

B.存储器管理(可变式分区管理)

1)首次适应法

分配流程图

首次适应算法回收流程图

2)最佳适应法

回收内存流程

2)LRU

实现原理

主界面

设计一个框架分别去链接处理机管理、存储器管理和缺页调度相关的程序。 A.处理机调度

1)先来先服务FCFS (一)任务

先来先服务的调度算法实现处理机调度。 (二)要求

1.实现对FCFS 算法的模拟实现

2.计算出该算法的平均作业周转时间、平均带权作业周转时间。 (三)原理

按作业到达CPU 时间先后顺序进行非剥夺式调度,先到达CPU 的作业先被执行。 (四)数据结构 structtask_struct {

charname;/*进程名称*/

intnumber;/*进程编号*/

floatcome_time;/*到达时间*/

floatrun_begin_time;/*开始运行时间*/

floatrun_time;/*运行时间*/

floatrun_end_time;/*运行结束时间*/

intpriority;/*优先级*/

intorder;/*运行次序*/

intrun_flag;/*调度标志*/

}tasks[MAX];

*/

(五)实现方法

建立一个链表按照到达CPU的时间从小到大排列,只需从第一个作业(头结点)依次调度到最后一个作业(尾结点)。

(六)运行界面

执行FCFS算法如下:

2)时间片轮转法

(一)任务

只对进程的运行模拟,将其运行时间加一,判断要求运行时间与已运行时间是否相等,若相等则表示进程结束,进程退出调度,释放资源。

(二)要求

1.实现对RR算法的模拟实现

2.显示执行完一个时间片的结果。

(三)原理

时间片轮转算法中,系统将所有的就程序按先来先服务的原则排成一个队列,每次调度时,把CPU分配给队首进程,并令其执行一个时间片。当执行的时间片用完时,调度程序停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。

(四)数据结构

temp->state='R';//初始状态每个进程均为运行态

temp->allocation=0; //初始时进程均不占用cpu

num+=temp->need_time;//用num来限制循环的次数

(五)实现方法

处理器调度总是选择标志单元指示的进程运行。执行:

已运行时间+1

来模拟进程的一次运行,表示进程已经运行过一个单位的时间。当一个进程被选中运行时,必须设置该进程可以运行的时间片值,以及恢复进程的现场,让它占有处理器运行,直到出现等待事件或运行满一个时间片进程运行一次后,应把该进程的进程控制块中的指针值送到标志单元,以指示下一个轮到运行的进程。同时,应判断该进程的要求运行时间与已运行时间,若该进程的要求运行时间 已运行时间,则表示它尚未执行结束,应待到下一轮时再运行。若该进程的要求运行时间=已运行时间,则表示它已经执行结束,应指导它的状态修改成“结束”且退出队列。此时,应把该进程的进程控

(六)运行界面

B.存储器管理(可变式分区管理)

1)首次适应法

(一)任务

通过采用首次适应算法实现内存的分配与回收,并可以查看和显示当前内存现状。

(二)要求

1.实现对FF算法的模拟实现

2.输入要进行分配内存的进程ID和相应所需内存大小,回收内存时输入已运行的进程ID。

(三)原理

FF算法要求空闲链已地址递增的次序连接。分配内存时,从链首开始顺序查找,直到找到第一个满足要求的空间并分配给进程,把分配后余下的空间仍然留在链表中。若从链首至链尾都不满足要求,则分配失败。该算法倾向于优先使用低地址的空间。

(四)数据结构

intconstMEMO=256;//初始化常类型MEMO,用MEMO表示内存大小(常类型的变量或对象的值是不能被更新的)

structFreeMemory

{

intID;intStartAdd;intSize;

boolState;//定义state为布尔型变量,其值只有真(TRUE)和假(FALSE) FreeMemory*Next;

};

FreeMemory*AllocTable=newFreeMemory;//建立全局管理表用于内与回收FreeMemory*PtrforCycleFit=AllocTable;//为循环首次适应定义的指针,此指针用于指向当前查找的起始地址;

//初始化内存函数

voidMemoryInit(FreeMemory*&tempAdd)

{

tempAdd->ID=0;//初始化当前进程为空

tempAdd->Size=MEMO;//初始化可分配空间为内存大小

tempAdd->StartAdd=0;//初始化起始地址为0

tempAdd->State=false;//初始化状态为未分配

tempAdd->Next=NULL;//初始化下一个进程也为空

}

//反馈内存现态

voidDispMemory()

{

FreeMemory*temp=AllocTable;//全局管理表反映内存状态

cout<<"系统总内存:"<

for(;temp;temp=temp->Next)

cout<<"进程ID:"<ID<<""<<"大小:"<Size<<""<<"起始地址:"<StartAdd<<""<<"是否已分配:"<State<

}//输出内存的各个变量

(五)实现方法

可变式分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需要,并且分区的个数是可以调整的。当需要装入一个作业时,根据作业需要

的贮存量,查看是否有足够的空闲空间,若有,则按需求量分割一部分给作业;若无,则作业等待。随着作业的装入、完成,主存空间被分割成许多大大小小的分区。有的分区被分配作业占用,有的分区空闲。在空闲区表中,按空闲区首地址从低到高进行登记。

当一个作业执行完成时,作业所占用的分区应归还给系统。在归还时,要考虑相邻空间区合并问题。作业的释放区与空闲区的邻接分以下4种情况考虑:

A、释放区下邻空闲区;

B、释放区上邻空闲区;

C、释放区上下都与空闲区邻接;

D、释放区上邻空闲区不邻接。

(六)运行界面

系统总内存为256时,分别为进程1、2、3分配大小为64、128、64的内存。执行首次适应算法分配内存如下:

若回收进程2的内存,执行结果如下:

2)最佳适应法

(一)任务

通过采用最佳适应算法实现内存的分配与回收,并可以查看和显示当前内存现状。

(二)要求

1.实现对BF算法的模拟实现

2.输入要进行分配内存的进程ID和相应所需内存大小,回收内存时输入需要回收的内存块。

(三)原理

最佳适应算法扫描整个未分配表或链表,从空闲区中挑选一个能满足用户进程要求的最小分区进行分配。此算法保证不会分割一个更大的区域,使得装入大作业的要求容易得到满足,同时,通常把空闲区按长度递增顺序排列,查找时总是从最小的一个空闲区开始,直至找到满足要求的分区为止,这时,最佳适应分配算法等同于首次适应算法。此算法的主存利用率好,所找出的分区如果最好满足要求则是最合适的。

(四)数据结构

intconstMEMO=256;//初始化常类型MEMO,用MEMO表示内存大小(常类型的变量或对象的值是不能被更新的)

structFreeMemory

{

intID;intStartAdd;intSize;

boolState;//定义state为布尔型变量,其值只有真(TRUE)和假(FALSE)

FreeMemory*Next;

};

boolAlloc_BestFit(intid,intTrySize)

{//查找满足此条件的x1<=TrySize<=x2的分区,然后将其放置在x2中,并将x2拆分成两个分区SortPartition(true);//使用快速排序算法,升序排序

for(;temp;temp=temp->Next)

{

/*回收操作,回收过程中,要用到三个指针,上一个Last,当前temp,下一个temp->next

当temp指向表头或表尾时需要特殊考虑*/

//当要退出工作时,就要回收//此退出的工作由执行函数调用

voidEndJob(intid)

{

Free_Memory(id);

}

(五)实现方法

若回收进程4,执行结果如下:

C.虚拟存储器的缺页调度

1)先进先出FIFO

(一)任务

采用先进先出FIFO算法实现分页管理的缺页调度,并输出每次调入调出的页号和运行结果。

(二)要求

1.实现对FIFO算法的模拟实现

2.输出每次执行的结果。

(三)原理

基于程序总是按线性顺序来访问物理空间这一假设,总是淘汰最先调入主存的页面,即淘汰在主存中驻留时间最长的页面,认为驻留时间最长的页不再使用的可能性较大。

(四)数据结构

voidFIFO(){

intlength;

intfifo[100]={0};

intpageLength;

intfifoPage[100]={0};

inti,j;

cout<<"***********************先进先出算法**************************"<

pageLength=3;

length=9;

for(i=1;i<=length;i++){

intflag=0;

for(j=1;j<=pageLength;j++){

if(fifo[i]==fifoPage[j]){

flag=1;

j=pageLength+1;

}elseif(fifoPage[j]==0){

fifoPage[j]=fifo[i];

j=pageLength+1;

flag=1;

}

}

if(flag==1)

{

}

else

{

cout<<"→淘汰"<

for(j=1;j<=pageLength;j++){

fifoPage[j]=fifoPage[j+1];

}

fifoPage[pageLength]=fifo[i];

}

(五)实现方法

当采用先进先出算法时,用一个数组构成先进先出队列,数组中各个元素为进程已在主存的页号,其队列头指针初始化为0.假设分配给每个进程的内存块数固定。当队列满需淘汰时,淘汰最先进入主存的一页。若该页修改过,还有存入磁盘。然后要把当前访问的页装入该块,并修改页表和存储分块表的对应标志。

(六)运行界面

测试数据:

页表长度:9;

页框长度:3;

页面请求数列:4,4,3,5,1,1,2,3,2

执行先进先出FIFO算法结果如下:

2)LRU

(一)任务

采用先进先出LRU算法实现分页管理的缺页调度,并输出每次调入调出的页号和运行结果。

(二)要求

1.实现对LRU算法的模拟实现

2.输出每次执行的结果。

(三)原理

最近最少使用页面替换算法淘汰的页面是在最近一段时间内最久未被访问的那一页,它是基于程序局部性原理来考虑的,认为那些刚被使用过的页面可能还有立即被使用,而那些在较长时间内未被使用的页面可能不会立即使用。在分

页虚拟存储系统中,当硬件发出缺页中断后转操作系统处理缺页中断。如果主存中已无空闲块,可采用LRU算法进行缺页处理。

(四)数据结构

voidLRU()

{

intlength;

intlru[100]={0};

intpageLength;

intlruPage[100]={0};

inti,j;

cout<<"***********************最近最少使用LRU算法

***********************"<

pageLength=3;

length=9;

for(i=1;i<=length;i++){

intflag=0;

for(j=1;j<=pageLength;j++){

if(lru[i]==lruPage[j]){

for(intcc=j;cc>0;cc--){

lruPage[cc]=lruPage[cc-1];

}

lruPage[1]=lru[i];

flag=1;

j=pageLength+1;

}elseif(lruPage[j]==0){

for(intvv=j;vv>0;vv--){

lruPage[vv]=lruPage[vv-1];

}

lruPage[1]=lru[i];

j=pageLength+1;

flag=1;

}

}

if(flag==1)

{

}

else

{

cout<<"→淘汰"<

for(j=pageLength;j>0;j--){

lruPage[j]=lruPage[j-1];

}

lruPage[1]=lru[i];

}

(五)实现方法

当采用LRU算法时,用一个数组构成堆栈,堆栈中各个元素为进程已在主存的页号,为了进行页面置换,可设置一个栈指针,初始化为0.假定分配给每个进程的内存块数固定不变。当队列满需淘汰时,操作系统选择栈底元素淘汰,其他元素向下移一个位置,将新调入页放栈指针指示的栈顶。当访问的页在栈中时,还应调整页从当前位置到栈顶。

(六)运行界面

测试数据:

页表长度:9;

页框长度:3;

页面请求数列:2,3,5,1,5,5,4,4,3

执行最近最少使用LRU算法结果如下:

总结与体会

通过本次课程设计让我对于图形界面设计有了一定的思路和看法,同时我对先来先服务、时间片轮转、首次适应算法、最佳适应算法、先进先出和最近最少使用算法有了更详尽的认识。在编程的过程中发现会用到大量的指针,用指针来操作大量的数据比较方便,但最后应该记得释放资源。从这次实验中我发现我对于c++掌握也有所不足,程序经过了多次修改才得以完善,在以后应该注重编程方面的训练。

此外我还更深入的理解了各个进程调度算法,及实现过程。在编写程序时查询了很多资料,间接提高了我的搜索能力。在此次课程设计过程中,对进程的相关知识有了一定的加深。特别是对进程的进程控制块的存在和价值有了更进一步的认识。在编写程序的过程之中,对进程自身信息的设计和管理以及调度的算法都有助于对书本知识的理解和掌握。特别是设计先来先服务调度算法和时间片轮转调度算法的时候,对进程的调度算法有了更好的深入理解。对进程管理中的等待队列,就绪队列,时间片等概念有了更深刻的印象。

在设计此模拟操作系统的课设中,也加深了对c++知识的把握。解决了一些以往在编程中遇到了困难。通过此次的课程设计,不仅提高了对操作系统的认知,也在同时提高了编程的能力,加强了实践。另外,我觉得此次课程设计虽然主要问题是在编程上,但是经过不断的去调试,还是成功的调试了出来。但是这几个程序用了多天的时间进行分析和修改,虽然出现了不少问题,但收获颇多!

源代码:

#include

#include

#include

usingnamespacestd;

intfcfsoutput();/*调度结果输出*/

intfcfsinput();//进程参数的初始化

voidkaishi();

#defineMAX10

structnode//建立链表来存放进程数据

{

charname[5];//进程名称

intneed_time;//所需要的时间

intallocation;//占用cpu的情况

charstate;//目前的状态R为运行,E为运行完毕

node*next;//链表的尾结点

};

structtask_struct

{

charname;/*进程名称*/

intnumber;/*进程编号*/

floatcome_time;/*到达时间*/

floatrun_begin_time;/*开始运行时间*/

floatrun_time;/*运行时间*/

floatrun_end_time;/*运行结束时间*/

intpriority;/*优先级*/

intorder;/*运行次序*/

intrun_flag; /*调度标志*/

}tasks[MAX];

intcounter;/*实际进程个数*/

intfcfs()/*先来先服务算法*/

{

fcfsinput();

floattime_temp=0;

inti;

intnumber_schedul;

time_temp=tasks[0].come_time;

for(i=0;i

{

tasks[i].run_begin_time=time_temp;

tasks[i].run_end_time=tasks[i].run_begin_time+tasks[i].run_time; tasks[i].run_flag=1;

time_temp=tasks[i].run_end_time;

number_schedul=i;

tasks[number_schedul].order=i+1;

}

fcfsoutput();

return0;

}

intfcfsinput()

{

task_structtt;

inti,j;

//初始化进程数

counter=3;

//初始化每个到达系统的时间为5、7、8

tasks[0].come_time=rand()%9;

tasks[1].come_time=rand()%9;

tasks[2].come_time=rand()%9;

for(i=1;i<3;i++)

{

for(j=0;j<3-i;j++)

{

if(tasks[j].come_time>tasks[j+1].come_time)

{

tt=tasks[j];

tasks[j]=tasks[j+1];

tasks[j+1]=tt;

}

}

}

//初始化每个进程估计运行的时间

tasks[0].run_time=28;

tasks[1].run_time=9;

tasks[2].run_time=3;

//初始化每个进程的名字

tasks[0].name='A';

tasks[1].name='B';

tasks[2].name='C';

cout<<"************************先来先服务算法

************************"<

for(i=0;i

{

tasks[i].run_begin_time=0;

tasks[i].run_end_time=0;

tasks[i].order=0;

tasks[i].run_flag=0;

}

return0;

}

intfcfsoutput()/*调度结果输出*/

{

inti;

floatturn_round_time=0,f1,w=0;

cout<<"作业名到达时间运行时间开始时间停止时间运行次序周转时间"<

{

f1=tasks[i].run_end_time-tasks[i].come_time;

turn_round_time+=f1;

w+=(f1/tasks[i].run_time);

cout<<""<

<

<

}

cout<<"平均周转时间:"<

cout<<"平均带权周转时间:"<

cout<<"";

return0;

}

/*-------------------------------------------------------------------------------------*/

intrr()

{

intn=3,num=0;

node*head=NULL;

node*tail=NULL;

cout<<"*********************时间片轮转调度算法*********************"<

{

node*temp=newnode;

if(i==0)strcpy(temp->name,"A");

if(i==1)strcpy(temp->name,"B");

if(i==2)strcpy(temp->name,"C");

temp->need_time=rand()%4+1;

temp->state='R';//初始状态每个进程均为运行态

temp->allocation=0; //初始时进程均不占用cpu

num+=temp->need_time;//用num来限制循环的次数

if(!head)

{

tail=head=temp;

}

else

{

tail->next=temp;

tail=temp;

tail->next=head;

}

}

node*p;

p=head;

cout<

cout<<"进程"<<'\t'<<"剩余时间"<<'\t'<<"占用cpu时间"<

while(p!=tail)

{

cout<<""<name<<'\t'<<""<need_time<<'\t'<<'\t'<allocation<<'s'<

p=p->next;

}

cout<<""<name<<'\t'<<""<need_time<<'\t'<<'\t'<allocation<<'s'<

node*q;

intlabel=1;

intm=1;

while(label==1&&m<=num)

{

cout<

label=0;

while(!p->need_time)

{

p=p->next;

}

if(p->need_time)

{

p->need_time--;

p->allocation++;

if(p->need_time==0)

{

p->state='E';

}

label=1;

p=p->next;

}

cout<<"执行"<

q=head;

cout<<"进程"<<'\t'<<"剩余时间"<<'\t'<<"占用cpu时间"<

while(q!=tail)

{

cout<<""<name<<'\t'<<""<need_time<<'\t'<<'\t'<allocation<<'s'<

q=q->next;

}

cout<<""<name<<'\t'<<""<need_time<<'\t'<<'\t'<allocation<<'s'<

m++;

}

cout<

return0;

}

/*--------------------------------------------------------------------------------*/

intconstMEMO=256;//初始化常类型MEMO,用MEMO表示内存大小(常类型的变量或对象的值是不能被更新的)

structFreeMemory

intID;intStartAdd;intSize;

boolState;//定义state为布尔型变量,其值只有真(TRUE)和假(FALSE)

FreeMemory*Next;

};

FreeMemory*AllocTable=newFreeMemory;//建立全局管理表用于内存分配与回收

FreeMemory*PtrforCycleFit=AllocTable;//为循环首次适应定义的指针,此指针用于指向当前查找的起始地址;

//初始化内存函数

voidMemoryInit(FreeMemory*&tempAdd)

{

tempAdd->ID=0;//初始化当前进程为空

tempAdd->Size=MEMO;//初始化可分配空间为内存大小

tempAdd->StartAdd=0;//初始化起始地址为0

tempAdd->State=false;//初始化状态为未分配

tempAdd->Next=NULL;//初始化下一个进程也为空

}

//反馈内存现态

voidDispMemory()

{

FreeMemory*temp=AllocTable;//全局管理表反映内存状态

cout<<"系统总内存:"<

for(;temp;temp=temp->Next)

cout<<"进程ID:"<ID<<""<<"大小:"<Size<<""<<"起始地

址:"<StartAdd<<""<<"是否已分配:"<State<

}//输出内存的各个变量

//分区排序

voidSortPartition(boolorder)//在此使用的是快速排序算法

{

FreeMemory*temp1=AllocTable;

FreeMemory*temp2=AllocTable;

FreeMemory*Last1=temp1;

FreeMemory*Last2=temp2;

if(temp2->Next)

temp2=temp2->Next;

switch(order)

{

case1://升序部分

{

for(;temp1;temp1=temp1->Next)

{

for(;temp2;temp2=temp2->Next)

{

if((temp1->Size>temp2->Size)&&!temp1->State&&!temp2->State)//找到符合条件的,则交换

Last1->Next=temp2;

Last2->Next=temp1;

FreeMemory*temp=temp2->Next;

temp2->Next=temp1->Next;

temp1->Next=temp->Next;

}

Last2=temp2;

}

Last1=temp1;

}

}

break;

case0://降序部分

{

for(;temp1;temp1=temp1->Next)

{

for(;temp2;temp2=temp2->Next)

{

if((temp1->SizeSize)&&!temp1->State&&!temp2->State)//找到符合条件的,则交换{

Last1->Next=temp2;

Last2->Next=temp1;

FreeMemory*temp=temp2->Next;

temp2->Next=temp1->Next;

temp1->Next=temp->Next;

}

Last2=temp2;

}

Last1=temp1;

}

}

}

}

/*内存分配*/

boolAlloc_FirstFit(intid,intTrySize)//定义布尔型函数Alloc_FirstFit()

{

//查找一个可用第一个满足分配请求的分区,如果满足将其写入内存分配表

//否则分配失败,返回

FreeMemory*temp=AllocTable;

for(;temp;temp=temp->Next)

{

if(TrySize<=temp->Size&&!temp->State)//第一个满足条件的分区已找到

{

操作系统课程设计

课程设计报告 2015~2016学年第一学期 操作系统综合实践课程设计 实习类别课程设计 学生姓名李旋 专业软件工程 学号130521105 指导教师崔广才、祝勇 学院计算机科学技术学院 二〇一六年一月

- 1 -

- 2 -

一、概述 一个目录文件是由目录项组成的。每个目录项包含16B,一个辅存磁盘块(512B)包含32个目录项。在目录项中,第1、2字节为相应文件的外存i节点号,是该文件的内部标识;后14B为文件名,是该文件的外部标识。所以,文件目录项记录了文件内、外部标识的对照关系。根据文件名可以找到辅存i节点号,由此便得到该文件的所有者、存取权、文件数据的地址健在等信息。UNIX 的存储介质以512B为单位划分为块,从0开始直到最大容量并顺序加以编号就成了一个文件卷,也叫文件系统。UNIX中的文件系统磁盘存储区分配图如下: 本次课程设计是要实现一个简单的模拟Linux文件系统。我们在内存中开辟一个虚拟磁盘空间(20MB)作为文件存储器,并将该虚拟文件系统保存到磁盘上(以一个文件的形式),以便下次可以再将它恢复到内存的虚拟磁盘空间中。文件存储空间的管理可采用位示图方法。 二、设计的基本概念和原理 2.1 设计任务 多用户、多级目录结构文件系统的设计与实现。可以实现下列几条命令login 用户登录 logout 退出当前用户 dir 列文件目录 creat 创建文件 delete 删除文件 open 打开文件 close 关闭文件 - 3 -

read 读文件 write 写文件 mkdir 创建目录 ch 改变文件目录 rd 删除目录树 format 格式化文件系统 Exit 退出文件系统 2.2设计要求 1) 多用户:usr1,usr2,usr3,……,usr8 (1-8个用户) 2) 多级目录:可有多级子目录; 3) 具有login (用户登录)4) 系统初始化(建文件卷、提供登录模块) 5) 文件的创建:create (用命令行来实现)6) 文件的打开:open 7) 文件的读:read8) 文件的写:write 9) 文件关闭:close10) 删除文件:delete 11) 创建目录(建立子目录):mkdir12) 改变当前目录:cd 13) 列出文件目录:dir14) 退出:logout 新增加的功能: 15) 删除目录树:rd 16) 格式化文件系统:format 2.3算法的总体思想 - 4 -

操作系统课程设计报告书

题目1 连续动态内存管理模拟实现 1.1 题目的主要研究内容及预期达到的目标 (1)针对操作系统中内存管理相关理论进行设计,编写程序并进行测试,该程序管理一块虚拟内存。重点分析三种连续动态内存分配算法,即首次适应算法、循环首次适应算法和最佳适应算法。 (2)实现内存分配和回收功能。 1.2 题目研究的工作基础或实验条件 (1)硬件环境:PC机 (2)软件环境:Windows XP,Visual C++ 6.0 1.3 设计思想 首次适应算法的实现:从空闲分区表的第一个表目起查找该表,把最先能够满足要求的空闲区分配给作业,这种方法的目的在于减少查找时间。为适应这种算法,空闲分区表中的空闲分区要按地址由低到高进行排序。该算法优先使用低址部分空闲区,在低址空间造成许多小的空闲区,在高址空间保留大的空闲区。 循环首次适应算法的实现:在分配内存空间时,不再每次从表头开始查找,而是从上次找到空闲区的下一个空闲开始查找,直到找到第一个能满足要求的的空闲区为止,并从中划出一块与请求大小相等的内存空间分配给作业。该算法能使内存中的空闲区分布得较均匀。 最佳适应算法的实现:从全部空闲区中找到能满足作业要求的、且最小的空闲分区,这种方法能使碎片尽量小。为适应此算法,空闲分区表中的空闲分区要按从小到大进行排序,从表头开始查找第一个满足要求的自由分配。 1.4 流程图 内存分配流程图,如图1-1所示。

图1-1 内存分配流程图内存回收流程图,如1-2所示。

图1-2 内存回收流程图 1.5 主要程序代码 (1)分配内存 void allocate(char z,float l) { int i,k; float ad; k=-1; for(i=0;i= l && free_table[i].flag == 1) if(k==-1 || free_table[i].length

操作系统课程设计报告

操作系统课程设计报告

东莞理工学院 操作系统课程设计报告 学院:计算机学院 专业班级: 13软件工程1班 提交时间: 2015/9/14 指导教师评阅意见: . 项目名称:进程与线程管理功能 一、设计目的 用语言来模拟进程和线程管理系统,加深对进程和线程的理解,掌握对进程和线程各种状态和管理的算法原理。

二、环境条件 系统: WindowsXP、VMWare、Ubuntu Linux 语言:C/C++ 开发工具:gcc/g++、Visual C++ 6.0 三、设计内容 1. 项目背景 计算机的硬件资源有限,为了提高内存的利用率和系统的吞吐量,就要根据某种算法来管理进程和线程的状态从而达到目的。 进程与线程管理功能完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 进程与线程管理功能 基本要求:完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 提高要求:(增加1项就予以加分) (1) 实现多种线程调度算法; (2)通过“公共信箱”进行通信的机制,规定每一封信的大小为128字节,实现两个用户进程之间通过这个“公共信箱”进行通信。 (3) 实现多用户进程并发的虚拟内存管理功能。

(4) 实现用户进程间通信功能,并用生产者/消费者问题测试进程间通信功能的正确性。 (5) 实现改进型Clock页面置换算法。 (6) 实现Cache功能,采用FIFO替换算法。 2. 扩展内容 实现多种线程调度算法:时间片轮转调度算法 四、人员分工 优先级调度算法:钟德新,莫友芝 时间片轮转调度算法:张德华,袁马龙 设计报告由小组队员共同完成。小组成员设计的代码分工如下:钟德新编写的代码:void Prinft(){ PCB *p; system("cls");//清屏 p=run; //运行队列 if(p!=NULL) { p->next=NULL; } cout<<"当前正在运行的进程:"<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<

操作系统课程设计完整版内含代码

操作系统课程设计LRU页面调度算法 学号: 姓名: 学院: 专业: 班级: 指导老师: 日期:

目录 一、实验题目 (1) 二、课程设计的目的 (1) 三、设计内容 (1) 四、设计要求 (1) 五、设计思想 (1) 六、主要数据结构及其说明 (2) 七、硬件支持 (3) 八、源程序文件 (3) 九、程序运行结果 (7) 十、实验体会 (8)

一实验题目 LRU页面调度算法 二课程设计的目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合一起,独立分析和解决实际问题的机会。 1.进一步巩固和复习操作系统的基础知识。 2. 培养学生结构化程序、模块化程序设计的方法和能力。 3.提高学生调试程序的技巧和软件设计的能力。 4.提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 三设计内容 程序应模拟实现LRU算法思想,对n个页面实现模拟调度。 四设计要求 1.不同的功能使用不同的函数实现(模块化),对每个函数的功能和调用接口要注释清楚。对程序其它部分也进行必要的注释。 2.对系统进行功能模块分析、画出总流程图和各模块流程图。 3.用户界面要求使用方便、简洁明了、美观大方、格式统一。所有功能可以反复使用,最好使用菜单。 4.通过命令行相应选项能直接进入某个相应菜单选项的功能模块。 5.所有程序需调试通过。 五设计思想 最近最久未使用(LRU)页调度算法是选择最近最久未使用的页面予以淘汰。 算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间,当所要访问的页面在内存块中时,就不淘汰页面,否则,淘汰页面中时间最长的,即淘汰最近最久未使用的页面。

操作系统课程设计报告

上海电力学院 计算机操作系统原理 课程设计报告 题目名称:编写程序模拟虚拟存储器管理 姓名:杜志豪.学号: 班级: 2012053班 . 同组姓名:孙嘉轶 课程设计时间:—— 评语: 成绩: 目录 一、设计内容及要求 (4) 1. 1 设计题目 (4) 1.2 使用算法分析: (4)

1. FIFO算法(先进先出淘汰算法) (4) 1. LRU算法(最久未使用淘汰算法) (5) 1. OPT算法(最佳淘汰算法) (5) 分工情况 (5) 二、详细设计 (6) 原理概述 (6) 主要数据结构(主要代码) (6) 算法流程图 (9) 主流程图 (9) Optimal算法流程图 (10) FIFO算法流程图 (10) LRU算法流程图 (11) .1源程序文件名 (11) . 2执行文件名 (11) 三、实验结果与分析 (11) Optimal页面置换算法结果与分析 (11) FIFO页面置换算法结果与分析 (16) LRU页面置换算法结果与分析 (20) 四、设计创新点 (24) 五、设计与总结 (27)

六、代码附录 (27) 课程设计题目 一、设计内容及要求 编写程序模拟虚拟存储器管理。假设以M页的进程分配了N

块内存(N

操作系统课程设计报告

课程设计说明书 设计题目:操作系统课程设计 班级:信息学管理与信息系统2011级 学号: 2 姓名:克乾

山东科技大学2013年12 月11 日

课程设计任务书 学院信息科学与工程专业信息学管理与信息系统班级2011-2 克乾 一、课程设计题目:操作系统课程设计 二、课程设计主要参考资料 (1)Abraham Silberschatz & Peter Baer Galvin & Greg Gagne. Operating System Concepts(第七版影印版). 高等教育. 2007.3. (2)c++面向对象程序设计电子工业 (3)计算机操作系统(第三版)电子科技大学 三、课程设计应解决的主要问题: (1)CPU调度算法的模拟实现 (2)死锁相关算法的实现 (3)磁盘调度算法的实现 四、课程设计相关附件(如:图纸、软件等): (1)程序源代码 (2) 五、任务发出日期:2013-10-1 课程设计完成日期:2014-1-1

指导教师签字:

指导教师对课程设计的评语成绩: 指导教师签字: 年月日

设计1 CPU调度算法的模拟实现一、设计目的 利用C++编写CPU调度算法,实现先来先服务调度算法FCFS、优先级调度算法PS、短作业优先调度算法SJF、时间片轮转调度算法RR的运行过程和实现的结果,针对模拟进程,利用编写的CPU调度算法对需要运行的进程进行调度。进行算法评价,计算平均周转时间和平均等待时间。 二、设计要求 针对模拟进程,利用CPU调度算法进行调度,最后要进行算法评价,计算平均周转时间和平均等待时间,并且输出调度结果和输出算法评价指标。 调度所需的进程参数由输入产生(手工输入或者随机数产生)。 三、设计说明 时间片轮转算法需要输入相应的时间片,所以独立编写一个程序,系统主体结构如下:

操作系统课程设计1

操作系统原理 课程设计报告题目:采用二级目录实现文件管理 所在学院: 班级: 学号: 姓名: 指导教师: 2013年1月15日

目录 一、课程设计目的 (1) 二、课题内容 (1) 三、总体路线 (1) 四、概要设计 (2) 1.数据结构 (2) 2.所使用函数及其功能 (3) 五、详细设计 (4) 1.主函数流程图 (4) 2.创建文件函数流程图 (5) 3.删除文件函数流程图 (7) 4.分解命令函数流程图 (10) 六、测试、修改及运行结果 (10) 七、结束语 (13) 八、参考文献 (14)

一、课程设计目的 文件系统是现代OS用来存储和管理信息机构,具有按名存取的功能,不仅能方便用户对信息的使用,也有效提高了信息的安全性。本课题模拟文件系统的目录结构,并在此基础上实现文件的各种操作方法。 通过本课题,深入理解文件文件目录的作用和功能,掌握文件打开结构,熟悉与文件有关的系统调用,从而更好地掌握文件系统概念。 二、课题内容 1.文件目录采用二级目录结构,第一级为主文件目录master_file_directory;第二级为用户文件目录user_file_directory。 图1 master_file_directory 结构 图2 user_file_directory 结构 2.为加速文件存取,为每个用户建立一张用户打开表fileTable,用以记录该 3.为该系统提供6条操作命令:创建、打开、读、写、关闭、删除等。 4.在该模拟系统中,应先建立主文件目录、用户目录和用户打开文件表,然后接受合法用户,给出一个菜单,按用户选择执行相关操作。 三、总体路线 1.在内存中开辟一个虚拟磁盘空间作为文件存储器,在其上实现一个简单的单用户文件系统。在退出这个简单的文件系统时,应将该虚拟文件系统保存到磁盘上,以便下次可以再将它恢复到内存的虚拟磁盘空间中。 2.文件存储空间的分配采用显式链接分配。为了实现创建和删除文件必

操作系统课程设计报告

东莞理工学院 操作系统课程设计报告学院:计算机学院 专业班级:13软件工程1班 提交时间:2015/9/14 指导教师评阅意见: . 项目名称:进程与线程管理功能 一、设计目的 用语言来模拟进程和线程管理系统,加深对进程和线程的理解,掌握对进程和线程各种状态和管理的算法原理。 二、环境条件 系统:WindowsXP、VMWare、Ubuntu Linux 语言:C/C++ 开发工具:gcc/g++、Visual C++ 6.0 三、设计内容 1. 项目背景

计算机的硬件资源有限,为了提高内存的利用率和系统的吞吐量,就要根据某种算法来管理进程和线程的状态从而达到目的。 进程与线程管理功能完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 进程与线程管理功能 基本要求:完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 提高要求:(增加1项就予以加分) (1) 实现多种线程调度算法; (2)通过“公共信箱”进行通信的机制,规定每一封信的大小为128字节,实现两个用户进程之间通过这个“公共信箱”进行通信。 (3) 实现多用户进程并发的虚拟内存管理功能。 (4) 实现用户进程间通信功能,并用生产者/消费者问题测试进程间通信功能的正确性。 (5) 实现改进型Clock页面置换算法。 (6) 实现Cache功能,采用FIFO替换算法。 2. 扩展内容 实现多种线程调度算法:时间片轮转调度算法 四、人员分工 优先级调度算法:钟德新,莫友芝 时间片轮转调度算法:张德华,袁马龙 设计报告由小组队员共同完成。小组成员设计的代码分工如下: 钟德新编写的代码:void Prinft(){ PCB *p; system("cls");//清屏 p=run; //运行队列 if(p!=NULL) { p->next=NULL; } cout<<"当前正在运行的进程:"<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<

操作系统课程设计

湖南科技大学计算机科学与工程学院 操作系统课程设计报告 ******** *** 目录 实验一 Windows 进程管理 实验二 Linux 进程管理 实验三 互斥与同步 实验四 银行家算法的模拟与实现 实验五 内存管理 指导老师: *** 完成时间: **** ** **

实验六磁盘调度 实验七进程间通信 实验一 Windows进程管理 一、实验目的 1 )学会使用VC编写基本的Win3 2 Consol Application (控制台应用程序)。 2)2)通过创建进程、观察正在运行的进程和终止进程的程序设计和调试操作,进一步熟 悉操作系统的进程概念,理解Windows进程的"一生”。 3)3)通过阅读和分析实验程序,学习创建进程、观察进程、终止进程以及父子进程同步 的基本程序设计方法。 二、实验内容和步骤 (1)编写基本的 Win32 Consol Application 步骤1:登录进入 Windows系统,启动VC++ 6.0。 步骤2:在“ FILE”菜单中单击“ NEW”子菜单,在“ projects ”选项卡中选择 “Win32 ConsolApplication ”,然后在“ Project name 处输入工程名,在“Location ”处输入工程目录。创建一个新的控制台应用程序工程。 步骤3:在“ FILE”菜单中单击“ NEW”子菜单,在“ Files ”选项卡中选择“ C++ Source File ” ,然后在“ File ”处输入C/C++源程序的文件名。 步骤4:将清单1-1所示的程序清单复制到新创建的C/C++源程序中。编译成可执行文件。 步骤5 :在“开始”菜单中单击“程序” -“附件”-“命令提示符”命令,进入Windows“命令提示符”窗口,然后进入工程目录中的 debug子目录,执行编译好的可执行程序,列出运行结果(如果运行不成功,则可能的原因是什么?) 如果运行不成功可能是路径有问题或者没有通过编译。

操作系统课程设计报告

东莞理工学院 操作系统课程设计报告 学院:计算机学院 专业班级:13软件工程1班 提交时间:2015/9/14 指导教师评阅意见: . 项目名称:进程与线程管理功能 一、设计目的 用语言来模拟进程和线程管理系统,加深对进程和线程的理解,掌握对进程和线程各种状态和管理的算法原理。 二、环境条件

系统:WindowsXP、VMWare、Ubuntu Linux 语言:C/C++ 开发工具:gcc/g++、Visual C++ 6.0 三、设计内容 1. 项目背景 计算机的硬件资源有限,为了提高内存的利用率和系统的吞吐量,就要根据某种算法来管理进程和线程的状态从而达到目的。 进程与线程管理功能完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 进程与线程管理功能 基本要求:完成基于优先级的抢占式线程调度功能,完成进程虚拟内存管理功能。 提高要求:(增加1项就予以加分) (1) 实现多种线程调度算法; (2)通过“公共信箱”进行通信的机制,规定每一封信的大小为128字节,实现两个用户进程之间通过这个“公共信箱”进行通信。 (3) 实现多用户进程并发的虚拟内存管理功能。 (4) 实现用户进程间通信功能,并用生产者/消费者问题测试进程间通信功能的正确性。 (5) 实现改进型Clock页面置换算法。 (6) 实现Cache功能,采用FIFO替换算法。

2. 扩展内容 实现多种线程调度算法:时间片轮转调度算法 四、人员分工 优先级调度算法:钟德新,莫友芝 时间片轮转调度算法:张德华,袁马龙 设计报告由小组队员共同完成。小组成员设计的代码分工如下:钟德新编写的代码:void Prinft(){ PCB *p; system("cls");//清屏 p=run; //运行队列 if(p!=NULL) { p->next=NULL; } cout<<"当前正在运行的进程:"<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<next; } cout<procname<<"\t\t"<pri<<"\t"<needOftime<<"\t\t"<runtime<<"\t\t"<state<

操作系统课程设计报告

; 一、概述 课程设计目的、意义: 课程设计目的使学生熟悉文件管理系统的设计方法;加深对所学各种文件操作的了解及其操作方法的特点。通过模拟文件系统的实现,深入理解操作系统中文件系统的理论知识, 加深对教材中的重要算法的理解。同时通过编程实现这些算法,更好地掌握操作系统的原理及实现方法,提高综合运用各专业课知识的能力。 主要任务: 模拟文件系统设计是设计和实现一个简单的文件系统。内容包括: 1.建立文件存储介质的管理机制 2.建立目录(采用一级目录结构) 3.文件系统功能(显示目录、创建、删除、打开、关闭、读、写) ~ 4.文件操作接口(显示目录、创建、删除、打开、关闭、读、写) 二、系统设计 课程设计的系统设计: 本系统模拟一个文件管理系统,要完成对文件的基本操作,文件的基本操作有文件、文件夹的打开、新建、删除和读取写入文件,创建更改目录,列出目录内容等信息。系统建立了文件目录树,存储文件系统中的所有文

件。对于用户名下的文件,用文件目录树的分枝来存贮。采用命令行操作界面很直观,也方便用户进行操作,用户只要按照操作界面所显示的命令来操作就行了。 整体设计框架: 系统初始化界面是由创建用户存储空间,管理文件,退出系统三个模块组成。用户创建由创建用户存储空间,进入目录,删除用户存储空间,显示所有用户存储空间,等模块组成。然后各个模块再由一些小模块组成。其中创建文件,打开关闭文件,读写文件等文件操作模块包括在进入目录模块里面。 三、系统实现 课程设计主要内容的实现程序代码: 《 #include <> #include <> #include <> typedef struct file{ char name[10]; struct file *next; }File; typedef struct content{ ! char name[10]; File *file;

操作系统(一个小型操作系统的设计与实现)课程设计

南通大学计算机科学与技术学院操作系统课程设计报告 专业: 学生姓名: 学号: 时间:

操作系统模拟算法课程设计报告 设计要求 将本学期三次的实验集成实现: A.处理机管理; B.存储器管理; C.虚拟存储器的缺页调度。 设计流程图 主流程图 开始的图形界面 处理机管理存储器管理缺页调度 先来先服务时 间 片 轮 转 首 次 适 应 法 最 佳 适 应 法 先 进 先 出 L R U 算 法

A.处理机调度 1)先来先服务FCFS N Y 先来先服务算法流程 开始 初始化进程控制块,让进程控制块按进程到达先后顺序让进程排队 调度数组中首个进程,并让数组中的下一位移到首位 计算并打印进程的完成时刻、周转时间、带权周转时间 其中:周转时间 = 完成时间 - 到达时间 带权周转时间=周转时间/服务时间 更改计时器的当前时间,即下一刻进程的开始时间 当前时间=前一进程的完成时间+其服务时间 数组为空 结束

2)时间片轮转法 开始 输入进程总数 指针所指的进程是 否结束 输入各进程信息 输出为就绪状态的进程的信息 更改正在运行的进程的已运行时间 跳过已结束的程序 结束 N 指向下一个进程 Y 如果存在下一个进程的话 Y N 输出此时为就绪状态的进程的信息 时间片轮转算法流程图

B.存储器管理(可变式分区管理) 1)首次适应法 分配流程图 申请xkb内存 由链头找到第一个空闲区 分区大小≥xkb? 大于 分区大小=分区大小-xkb,修改下一个空闲区的后向指针内容为(后向指针)+xkb;修改上一个空闲区的前向指针为(前向指针)+xkb 将该空闲区从链中摘除:修改下一个空闲区的后向地址=该空闲区后向地址,修改上一个空闲区的前向指针为该空闲区的前向指针 等于 小于延链查找下 一个空闲区 到链尾 了? 作业等待 返回是 否 登记已分配表 返回分配给进程的内存首地址 开始

操作系统课程设计报告

操作系统课程设计实验报告 实验名称:进程控制 姓名/学号: 一、实验目的 学习、理解和掌握Linux与windows的进行控制系统调用的功能,熟悉主要的几个系统调用命令的格式和如何利用系统调用命令进行编程。通过学习,理解如何创建一个进程、改变进程执行的程序、进程和线程终止以及父子进程的同步等,从而提高对进程和线程控制系统调用的编程能力。 二、实验内容 设计并实现Unix的“time”命令。“mytime”命令通过命令行参数接受要运行的程序,创建一个独立的进程来运行该程序,并记录程序运行的时间。 三、实验环境 CPU: Inter ×2 2.10GHz RAM: 3.00GB Windows 7 旗舰版 Linux Ubuntu 10.04 编译: VS2010 四、程序设计与实现 4.1进程控制系统的调用 4.1.1 windows进程控制调用程序中使用的数据结构及主要符号说明 SYSTEMTIME starttime,endtime; //进程开始时间和结束时间 PROCESS_INFORMATION pi //该结构返回有关新进程及 //其主线程的信息 STARTUPINFO si //该结构用于指定新进程的主窗口特性4.1.2 linux进程控制调用程序中使用的数据结构及主要符号说明 struct timeval starttime,endtime //进程开始时间和结束时间 pid_t pid //进程标志符

4.2 程序流程图 图1 windows进程控制调用图2 linux进程控制调用程序运行流程图程序运行流程图 五、实验结果和分析 5.1 windows实验结果和分析

操作系统课程设计

计算机科学技术学院 操作系统原理课程设计报告 题目:进程管理系统 专业: 班级: 姓名: 学号: 指导老师: 年月日

《操作系统原理》课程设计任务书 一、课程设计题目(任选一个题目) 1.模拟进程管理 2.模拟处理机调度 3.模拟存储器管理 4.模拟文件系统 5.模拟磁盘调度 二、设计目的和要求 1.设计目的 《操作系统原理》课程设计是网络工程专业实践性环节之一,是学习完《操作系统原理》课程后进行的一次较全面的综合练习。其目的在于加深对操作系统的理论、方法和基础知识的理解,掌握操作系统结构、实现机理和各种典型算法,系统地了解操作系统的设计和实现思路,培养学生的系统设计能力,并了解操作系统的发展动向和趋势。 2.基本要求: (1)选择课程设计题目中的一个课题,独立完成。 (2)良好的沟通和合作能力 (3)充分运用前序课所学的软件工程、程序设计、数据结构等相关知识 (4)充分运用调试和排错技术 (5)简单测试驱动模块和桩模块的编写 (6)查阅相关资料,自学具体课题中涉及到的新知识。 (7)课题完成后必须按要求提交课程设计报告,格式规范,内容详实。 三、设计内容及步骤 1.根据设计题目的要求,充分地分析和理解问题,明确问题要求做什么。

2.根据实现的功能,划分出合理的模块,明确模块间的关系。 3.编程实现所设计的模块。 4.程序调试与测试。采用自底向上,分模块进行,即先调试低层函数。能够熟练掌握调试工具的各种功能,设计测试数据确定疑点,通过修改程序来证实它或绕过它。调试正确后,认真整理源程序及其注释,形成格式和风格良好的源程序清单和结果; 5.结果分析。程序运行结果包括正确的输入及其输出结果和含有错误的输入及其输出结果。 6.编写课程设计报告; 设计报告要求:A4纸,详细设计部分主要叙述本人的工作内容 设计报告的格式: (1)封面(题目、指导教师、专业、班级、姓名、学号) (2)设计任务书 (3)目录 (4)需求分析 (5)概要设计 (6)详细设计(含主要代码) (7)调试分析、测试结果 (8)用户使用说明 (9)附录或参考资料 四、进度安排 设计在学期的第15、16周进行,时间安排如下:

操作系统课程设计

操作系统课程设计 Prepared on 22 November 2020

湖南科技大学计算机科学与工程学院 操作系统课程设计报告 学号: ******** 姓名:* * 班级: *** 指导老师: *** 完成时间: ****.**.** 目录 实验一 Windows进程管理 实验二 Linux进程管理 实验三互斥与同步 实验四银行家算法的模拟与实现 实验五内存管理 实验六磁盘调度 实验七进程间通信 实验一 Windows进程管理 一、实验目的 1)学会使用 VC 编写基本的 Win32 Consol Application(控制台应用程序)。 2)通过创建进程、观察正在运行的进程和终止进程的程序设计和调试操作,进一步熟悉操作系统的进程概念,理解 Windows 进程的“一生”。

3)通过阅读和分析实验程序,学习创建进程、观察进程、终止进程以及父子进程同步的基本程序设计方法。 二、实验内容和步骤 (1)编写基本的 Win32 Consol Application 步骤1:登录进入 Windows 系统,启动 VC++ 。 步骤2:在“FILE”菜单中单击“NEW”子菜单,在“projects”选项卡中选择 “Win32 ConsolApplication”,然后在“Project name”处输入工程名,在“Location” 处输入工程目录。创建一个新的控制台应用程序工程。 步骤3:在“FILE”菜单中单击“NEW”子菜单,在“Files”选项卡中选择“C++ Source File”,然后在“File” 处输入 C/C++源程序的文件名。 步骤4:将清单 1-1 所示的程序清单复制到新创建的 C/C++源程序中。编译成可执行文件。 步骤5:在“开始”菜单中单击“程序”-“附件”-“命令提示符”命令,进入Windows“命令提示符”窗口,然后进入工程目录中的 debug 子目录,执行编译好的可 (2)创建进程 本实验显示了创建子进程的基本框架。该程序只是再一次地启动自身,显示它的系统进程 ID和它在进程列表中的位置。 步骤1:创建一个“Win32 Consol Application”工程,然后拷贝清单 1-2 中的程序编译成可执行文件。 步骤2:在“命令提示符”窗口运行步骤 1 中生成的可执行文件,列出运行结果。按下ctrl+alt+del,调用 windows 的任务管理器,记录进程相关的行为属性。 步骤3:在“命令提示符”窗口加入参数重新运行生成的可执行文件,列出运行结果。按下ctrl+alt+del,调用 windows 的任务管理器,记录进程相关的行为属性。 (3)父子进程的简单通信及终止进程

操作系统课程设计论文

学年论文(课程设计)题目:操作系统课程设计 学院数学与计算机学院 学科门类工学 专业网络工程 学号 姓名 指导教师王煜 年月日

河北大学学年论文(课程设计)任务书 (指导教师用表) 指导教师签字: 系主任签字: 主管教学院长签字: 装 订 线

河北大学学年论文(课程设计)成绩评定表学院:数学与计算机学院 装 订 线

摘要 此系统实现了存储管理、设备管理和进程管理。 存储管理部分主要实现主存空间的分配和回收。存储管理采用可移动的可变分区存储管理方式。采用数组来模拟主存,大小为512个字节。 设备管理主要包括设备的分配和回收。模拟系统中有A、B、C三种独占型设备,A设备3个,B设备2个,C设备1个。设备分配时采用采用先来先服务策略。设备回收时唤醒等待设备的进程。 进程管理主要包括进程调度,进程的创建和撤销、进程的阻塞和唤醒,中断作用的实现。其中硬件中的中央处理器用不断循环的函数CPU( )模拟,重要寄存器(如:程序状态寄存器PSW、指令寄存器IR)用全局变量模拟,中断的发现是在函数CPU中加检测PSW 的方式来模拟,时钟的模拟通过timer控件实现。进程控制块的模拟通过数组,本系统最多容纳10个。进程调度时采用时间片轮转调度算法,时间片为5。 关键词:存储管理设备管理进程管理时间片

ABSTRACT The system has storage management, equipment management and process management. The storage management has achieved the allocation and recovery of the main memory space. Variable storage management is used as storage management .We simulate the main memory by array, whose size is 512 bytes. The device management, including the distribution and recovery of devicet. We simulate three devices ,A,B,C. the numbers of them are 3,2,1. The distribution of device used to adopt first-come first-service strategy. It awakes the blocking process when the device is recycled. The process management, including scheduling ,creating revocation ,blocking and waking up the process, the realization of the interruption.We simulate the central processing unit by the cycling function named CPU(),simulate the important register by global variable, simulate the recovering of interruption by checking PSW in the function of CPU(),simulate the clock by the timer control. The simulation of the process control block by array, whose number is up to 10. When the scheduling of the process happens, we use the algorithm of time piece rotation scheduling, and the time piece is 5. Key words: storage device process time

计算机操作系统课程设计

计算机操作系统课程设计 班级:计091-1 姓名: 学号: 使用语言:C++ 指导老师: 学院:

一、系统要求 1、实验目的 通过一个简单多用户文件系统的设计,加深理解文件系统的内部功能及内部实现。 2、实验内容 为linux系统设计一个简单的二级文件系统。要求做到以下几点: (1)可以实现下列几条命令(至少4条); login 用户登陆 dir 列文件目录 create 创建文件 delete 删除文件 open 打开文件 close 关闭文件 read 读文件 write 写文件 (2)列目录时要列出文件名、物理地址、保护码和文件长度; (3)源文件可以进行读写保护。

二、系统分析 1、设计思想 本文件为二级文件系统,即要实现对文件的增删改查,同时又具备登陆系统、注册用户的功能,各个用户之间的文件系统互不干扰。 本文件系统采用两级目录,其中第一级对应于用户账号,第二级对应于用户帐号下的文件。另外,为了简便文件系统未考虑文件共享,文件系统安全以及管道文件与设备文件等特殊内容。 系统采用结构体来存储用户、文件目录、文件数据内容: 0 48*5 48*5+44*50 48*5+44*50+264*200 每个分区都是由结构体组成,每个个去的结构体的个数由格式化系统是决定。

整个系统的编码构成主要分为: Allstruct.h 定义了每个分区的结构体; Mysys.h 声明了对系统操作的各种方法;Myuserfile.h 声明了对文件操作的各种方法; Mymain.cpp 整个系统的主函数,操作入口; Mysys.cpp 包含了mysys.h,实现了操作系统的各种方法;Myuserfile.cpp 包含了myuserfile.h,实现了操作文件的各种方法; 2、主要数据结构 Allstruct.h文件的内容: struct s_user //用户区结构体 { long isuse; //是否使用 char name[20]; //用户名 char psd[20]; //密码 long address; //目录地址 };

操作系统课程设计报告模板

中国石油大学(华东)操作系统课程设计报告 姓名: 学号: 成绩: 目录

实验一、螺旋矩阵 (3) 实验二、用Shell程序实现文件的批量管理 (4) 实验三、驱动下的螺旋矩阵程序 (7) 实验四、哲学家进餐问题 (10) 实验五、NCURSE程序框架 (14) 实验一、螺旋矩阵

一、实验任务 用C语言编写一个螺旋矩阵程序,实现输入行数和列数即可形成A~Z的螺旋矩阵,并用Makefile完成编译。 二、实验环境和工具 VMware Workstation红帽子 Linux-2.4.20-8 三、关键代码 1、螺旋矩阵实现代码(SpiralMatrix.c) #include #define N 10 int main() { int row,col,i,j,x,y,startNum; int dx[4]={0,1,0,-1};//方向 int dy[4]={1,0,-1,0}; int Matrix[N][N]; printf("请输入行数和列数:"); scanf("%d %d",&row,&col); for (i=0;i=0&&x=0&&y

相关文档
最新文档