弦切角定理

弦切角定理
弦切角定理

数学教学设计

Simson定理

几何表示 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线, 则三垂足共线. □ 一阶描述 基本定义: 选定 A,B,C 三点 □ 取外接圆上任意一点 P □ 得到三个垂足 D,E,F □ 基本描述: : A,B,C 三点不共线 西姆松定理 它们的坐标分别为 这三点构成的三角形的外接圆心及半径分别为 P 点的坐标为 . 全部 (x 1,y 1),(x 2,y 2),(x 3,y 3).l 1=AB,l 2=BC,l 3=CA.(u,v),r.(a,b)D(a 1,b 1),E(a 2,b 2),F(a 3,b 3). 91

□ ● : P 在三角形 ABC 的外接圆上 □ ● : P 不同于 A,B,C □ ● : D 是 P 到 BC 的垂足 □ ● : E 是 P 到 CA 的垂足 □ l 1l 2l 3(l 21=(x 1-x 2)2+(y 1-y 2 )2 [l 22=(x 2-x 3)2+(y 2-y 3)2 [l 23=(x 3-x 1)2+(y 3-y 1 )2[l 1+l 2>l 3[l 2+l 3>l 1[l 3+l 1> l 2)92^uvr ((x 1-u)2 +(y 1-v)2=r 2 [ (x 2-u)2+(y 2-v)2=r 2[(x 3-u)2 +(y 3-v)2 =r 2 [(u-a)2+(v-b)2=r 2) 93\(a=x 1[b=y 1)[\(a=x 2[b=y 2)[\(a=x 3[b=y 3) 94(a 1-x 2)(b 1-y 3)-(a 1-x 3)(b 1-y 2)=0[(a 1-a)(x 2-x 3)+(b 2-b)(y 2-y 3)=0 95^

切线长定理弦切角定理切割线定理相交弦定理

切线长定理弦切角定理切割线定理相交弦定理 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直 线,它不可以度量长度。 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相 等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆 外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆 外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5) 圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定 理。 7.与圆有关的比例线段 定理图形已知结论证法 相交弦 定理 ⊙O中,AB、CD为 弦,交于P. PA·PB= PC·PD. 连结AC、BD,证: △APC∽△DPB.

相交弦定理的推论⊙O中,AB为直 径,CD⊥AB于P. PC2=PA·PB.用相交弦定理. 切割线定理⊙O中,PT切⊙O于 T,割线PB交⊙O于 A PT2=PA·PB连结TA、TB,证: △PTB∽△PAT 切割线定理推论PB、PD为⊙O的两 条割线,交⊙O于 A、C PA·PB= PC·PD 过P作PT切⊙O于 T,用两次切割线定 理 圆幂定理⊙O中,割线PB交 ⊙O于A,CD为弦 P'C·P'D=r2- OP'2 PA·PB=OP2- r2 r为⊙O的半径 延长P'O交⊙O于 M,延长OP'交⊙O 于N,用相交弦定理 证;过P作切线用 切割线定理勾股定 理证 8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。 图1 解:由切线长定理知:AF=AB=1,EF=CE 设CE为x,在Rt△ADE中,由勾股定理

弦切角定理及其推论

弦切角定理及其推论 定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。 弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 证明:设圆心为O,连接OC,OB,。 ∵∠TCB=90°-∠OCB ∵∠BOC=180°-2∠OCB ∴∠BOC=2∠TCB (定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍) ∴∠TCB=∠CAB (定理:弦切角的度数等于它所夹的弧的圆周角) 弦切角定理推论:两弦切角所夹的弧相等,则这两个弦切角也相等。 应用举例:

第一个算出地球周长的人 ──埃拉托色尼 2000多年前,有人用简单的测量工具计算出地球的周长。这个人就是古希腊的埃拉托色尼。 埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长。 细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因而这时候所有地面上的直立物都应该没有影子。但是,亚历山大城地面上的直立物却有一段很短的影子。他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成。从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角。按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长。埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几。他还算出太阳与地球间距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近。这充分反映了埃拉托色尼的学说和智慧。 埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专著。书中描述了地球的形状、大小和海陆分布。埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学。

弦切角定理试题

C B O A D C E O A B D 弦切角定理测试卷 姓名 _____ 1.已知一个圆的弦切角等于50°,那么这个弦切角所夹的弧所对的圆心角的度数为 _______ . 2.如图,AB 是直径,点D 在AB 的延长线上,BD=OB ,若CD 切⊙O 于C 点,则∠CAB 的度数为 ,∠DCB 的度数为 ,∠ECA 的度数为 ___ . 3.如图,AB , AC 是⊙O 的两条切线,切点分别为 B 、 C 、 D 是优弧BC 上的点,已知 ∠BAC=800,那么∠BDC =______. 4.如图,AB 是⊙ O 的弦, AD 是⊙ O 的切线,C 为弧AB 上任一点,∠ACB=1080,那么∠BAD =______. 5.如图,PA , PB 切⊙ O 于 A , B 两点, AC ⊥PB ,且与⊙ O 相交于 D ,若∠DBC=220,则∠APB==________. 2题图 3题图 4题图 5 题图 6、如图,CD 是⊙O 的直径,AE 切⊙O 于点B ,连接DB ,若20D ? ,则DBE D的大小为( ) A. 20° B. 40° C. 60° D. 70° 7、如图,AB 是半圆O 的直径,C 、D 是半圆上的两点,半圆O 的切线PC 交AB 的延长线于点P ,∠PCB =25°,则∠ADC 为( ) A.105° B.115° C.120° D.125° 8、如图,AB 是⊙O 的直径,EF 切⊙O 于C ,AD ⊥EF 于D ,AD=2,AB=6,则AC 的长为( ) A.2 B.3 C.23 D.4 9、如图,AB 是⊙ O 的直径, AC , BC 是⊙ O 的弦, PC 是⊙ O 的切线,切点为 C ,∠BAC=350 ,那么∠ACP 等于( )A. 350 B. 550 C. 650 D. 125 6题图 7题图 8题图 9题图 10、如图,在⊙ O 中, AB 是弦, AC 是⊙ O 的切线, A 是切点,过 B 作BD ⊥AC 于D ,BD 交⊙ O 于 E 点,若 AE 平分∠BAD ,则∠BAD=( ) A. 300 B. 450 C. 500 D. 600 11、如图,E 是⊙O 内接四边形 ABCD 两条对角线的交点,CD 延长线与过 A 点的⊙ O 的切线交于F 点,若 ∠ABD=440,∠AED=1000 ,弧AD=弧AB , 则∠AFC 的度数为( ) A.780 B.920 C.560 D. 1450 C B A D C B A D P O C B D E O A F B P C O A C B D A P O A E B C O D

弦切角定理证明方法

弦切角定理证明方法 弦切角定理证明方法连oc、oa,则有oc⊥cd于点c。得oc‖ad,知∠oca=∠cad。 而∠oca=∠oac,得∠cad=∠oac。进而有∠oac=∠bac。 由此可知,0a与ab重合,即ab为⊙o的直径。 连接bc,且作ce⊥ab于点e。立即可得△abc为rt△,且∠acb=rt∠。 由射影定理有ac2=ae*ab。又∠cad=∠cae,ac公用,∠cda=∠cea,得△cea ≌△cda,有ad=ae,所以,ac2=ab*ad。 第一题重新证明如下: 首先证明弦切角定理,即有∠acd=∠cba。

连接oa、oc、bc,则有 ∠acd+∠aco=90° = = =∠aco+∠aoc, 所以∠acd=∠aoc, 而∠cba=∠aoc, 得∠acd=∠cba。 另外,∠acd+∠cad=90°,∠cad=∠cab, 所以有∠cab+∠cba=90°,得∠bca=90°,进而ab为⊙o的直径。 2 证明一:设圆心为o,连接oc,ob,。 ∵∠tcb=90-∠ocb ∵∠boc=180-2∠ocb ∴,∠boc=2∠tcb ∵∠boc=2∠cab ∴∠tcb=∠cab 证明已知:ac是⊙o的弦,ab是⊙o 的切线,a为切点,弧是弦切角∠bac所夹的弧.

求证: 证明:分三种情况: 圆心o在∠bac的一边ac上 ∵ac为直径,ab切⊙o于a, ∴弧cma=弧ca ∵为半圆, ∴∠cab=90=弦ca所对的圆周角圆心o在∠bac的内部. 过a作直径ad交⊙o于d, 若在优弧m所对的劣弧上有一点e 那么,连接ec、ed、ea 则有:∠ced=∠cad、∠dea=∠dab ∴∠cea=∠cab ∴ 圆心o在∠bac的外部, 过a作直径ad交⊙o于d 那么∠cda+∠cad=∠cab+∠cad=90 ∴∠cda=∠cab ∴ 编辑本段弦切角推论 推论内容 若两弦切角所夹的弧相等,则这两

(答案)奥赛经典-奥林匹克数学中的几何问题---第六章西姆松定理及应用答

第六章西姆松定理及应用 习题A 1.由西姆松定理,知L ,M ,N 三点共线,注意到P ,L ,N ,B 及P ,M ,C ,L 分别四点共圆,知LPN B ∠=∠,LPM C ∠=∠.又由张角定理,有() sin sin sin B C B C PL PM PN ∠+∠∠∠= + ,即 sin sin sin mn A ln B lm C ?∠=?∠+?∠再应用正弦定理,得mn a ln b lm c ?=?+?. 2.根据直径所对的圆周角是直角,知90BDP ADP ∠=∠=?,90BFP CFP ∠=∠=?,90CEP AEP ∠=∠=?,即知D ,A ,B ;B ,F ,C ;C ,E ,A 分别三点共线. 又PD AB ⊥于D ,PE AC ⊥于E ,PF BC ⊥于F ,P 是ABC △外接圆周上一点,由西姆松定理,知D ,E ,F 三点共线. 3.延长BE ,CD 相交于点K ,延长CG ,BF 相交于点L .设CG 与BE 相交于点I ,则I 为ABC △的 内心.由12CAI BAC ∠=∠,而()11 909022 CKI CIK B C BAC ∠=?-∠=?-∠+∠=∠,从而A ,I ,C , K 四点共圆. 又AD CK ⊥于D ,AE KB ⊥于E ,AG CI ⊥于G ,A 是ICK △外接圆上任一点,由西姆松定理,知D ,E ,G 三点共线.同理,B ,I ,A ,L 四点共圆,AE BI ⊥于E ,AG IL ⊥于G ,AF BL ⊥于F ,由西姆松定理,知E ,G ,F 三点共线.故F ,G ,E ,D 四点共线. 4.设正ABC △外接圆弧?AB 上任一点P 到边BC ,CA ,AB 的距离分别为a h ,b h ,c h ,其垂足分别为 D , E , F ,正三角形边长为a .由面积等式可得a b c h h h +-= .此式两边平方,得 ()2222324 a b c a b b c a c h h h h h h h h h a +++--=. 由 sin sin b a h h PAC PBD PA PB =∠=∠=,有a b h PA h PB ?=?. 同理,a c h PA h PC ?=?,故a b h PA h PB k PC ?=?=?. 又P ,F ,E ,A 及P ,D ,B ,F 分别四点共圆,有PFD PBD PAC ∠=∠=∠,PDF PBF PCA ∠=∠=∠, 得PFD PAC △△≌,故c h PA a DF = ?,同理,a h PB a DE =?,b h PC a EF =?,即 a c b a c b h h h h h h k EF DE EF ???===由西姆松定理,知D ,E ,F 共线,即DF FE DE +=.于是 £()0a b a c b c hb h h h h h h DE DF EF k ? ---=--=?, 故222234 a b c h h h a ++=. 5.设以ABC △的三个顶点为圆心的三圆,皆经过同一点M ,而M 在ABC △的外接圆上,A e 与B e 另交于D ,A e 与C e 另交于E ,B e 与C e 另交于F . 注意到A e 与B e 中,公共弦MD ⊥连心线AB ;A e 与C e 中,公共弦ME ⊥连心线AC ;B e 与C e 中,公共弦MF ⊥连心线BC .对ABC △及其外接圆周上一点M ,应用西姆松定理,知D ,E ,F 三点共线. 习题B 1.(Ⅰ)设从点P 向BC ,CA ,AB 作垂线,垂足分别为X ,Y ,Z .由对称性,知XY 为PUV △的中位线,故UV XY ∥同理,VW YZ ∥,WU XZ ∥.由西姆松定理,知X ,Y ,Z 三点共线,故U ,V ,W 三点共线.

数学奥赛-2(西姆松定理-欧拉线-九点圆)

西姆松(Simson)定理 西姆松定理说明 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线) 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。 相关的结果有: (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。 (4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 证明 证明一:△ABC外接圆上有点P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC 于D,分别连DE、DF. 易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于是∠FDP=∠A CP ①,(∵都是∠ABP的补角)且∠PDE=∠PCE ②而∠ACP+∠PCE=180° ③∴∠FDP+∠PDE=180° ④即F、D、E共线. 反之,当F、D、E共线时,由④→②→③→①可见A、B、P、C共圆. 证明二:如图,若L、M、N三点共线,连结BP,CP, 则因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、 L、N和M、P、L、C分别四点共圆,有 ∠PBN = ∠PLN = ∠PLM = ∠PCM. 故A、B、P、C四点共圆。 若A、B、P、C四点共圆,则∠PBN = ∠PCM。因PL 垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N 和M、P、L、C四点共圆,有 ∠PBN =∠PLN =∠PCM=∠PLM. 故L、M、N三点共线。

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。(PA 长) 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB 切⊙O 于P ,PC 、PD 为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理 图形 已知 结论 证法 相交弦定理 ⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB . 相交弦定理的推论 ⊙O 中,AB 为直径,CD⊥AB 于P. PC 2 =PA·PB . (特殊情况) 用相交弦定理.

切割线定理 ⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于A PT 2 =PA·PB 连结TA 、TB ,证:△PTB∽△PAT 切割线定理推论 PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理 (记忆的方法方法) 圆幂定理 ⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C·P'D =r 2 -OP'2 PA·PB=OP 2-r 2 r 为⊙O 的半径 延长P'O 交⊙O 于M ,延 长OP'交⊙O 于N ,用相交 弦定理证;过P 作切线用切割线定理勾股定理证 8.圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD 的边长为1,以BC 为直径。在正方形内作半圆O ,过A 作半圆切线,切点为F ,交CD 于E ,求DE :AE 的值。 图1 解:由切线长定理知:AF =AB =1,EF =CE 设CE 为x ,在Rt△ADE 中,由勾股定理 ∴, ,

平面几何-五大定理及其证明

平面几何定理及其证明 梅涅劳斯定理 1 .梅涅劳斯定理及其证明 定理:一条直线与 ABC 的三边AB BC CA 所在直线分别交于点 D E 、F ,且D E 、F 均 证明:如图,过点C 作AB 的平行线,交EF 于点G. 因为 CG // AB ,所以 CG CF --------------------- ( 1) AD FA 因为 CG // AB ,所以 EC ( 2) DB BE C F ,即得 A D C F EC FA DB EC FA 2.梅涅劳斯定理的逆定理及其证明 定理:在 ABC 的边AB BC 上各有一点 D E ,在边 AC 的延长线上有一点 F ,若 二、 塞瓦定理 3 .塞瓦定理及其证明 定理:在ABC 内一点P,该点与ABC 的三个顶点相连所在的 三条直线分别交 ABCE 边AB BC CA 于点D E 、F ,且D E 、F 三点均不是 ABC 不是ABC 的顶点,则有 AD BE CF 1 DB EC 由(1)宁(2) DB 可得兀 AD BE CF DB EC FA 1 ,那么,D E 、F 三点共线. 证明:设直线EF 交AB 于点D ,则据梅涅劳斯定理有 AD / BE CF 丽 EC FA 因为AD Bl CF DB EC FA 1,所以有誥 段AB 上,所以点D 与D 重合.即得D 鴿.由于点D D 都在线 E 、F 三点共线. 证明: 运用面积比可得 AD DB S ADP S BDP S ADC S BDC 根据 等 比定理有 S ADP S ADC S ADC S ADP S APC S S BDP BDC S BDC S BDP S

第6章 西姆松定理及应用(含答案)

第六章西姆松定理及应用 【基础知识】 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足点共线(此线常称为西姆松线). 证明如图6-1,设P 为ABC △的外接圆上任一点,从P 向三边BC ,CA ,AB 所在直线作垂线,垂足分别为L ,M ,N .连PA ,PC ,由P ,N ,A ,M 四点共圆,有 β α γ βL M A P B N C 图6-1 PMN PAN PAB PCB PCL ∠=∠=∠=∠=∠. 又P ,M ,C ,L 四点共圆,有PML PCL ∠=∠. 故PMN PML ∠=∠,即L ,N ,M 三点共线. 注 此定理有许多证法.例如,如下证法: 如图6-1,连PB ,令PBC α∠=,PCB β∠=, PCM γ∠=,则 PAM α∠=,PAN β∠=,PBN γ∠=,且cos BL PB α=?,cos LC PC β=?,cos CM PC γ=?, cos MA PA α=?,cos AN PA β=?,cos NB PB γ=?.对ABC △,有 cos cos cos 1cos cos cos BL CM AN PB PC PA LC MA NB PC PA PB αγββαγ ?????=??=???.故由梅涅劳斯定理之逆定理,知L ,N ,M 三点共线. 西姆松定理还可运用托勒密定理、张角定理、斯特瓦尔特定理来证(略). 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上. 证明如图6-1,设点P 在ABC △的三边BC ,CA ,AB 所在直线上的射影分别为L ,M ,N ,且此三点共线.由PN AB ⊥于N ,PM AC ⊥于M ,PL BC ⊥于L ,知P ,B ,L ,N 及P ,N ,A ,M 分别四点共圆,而AB 与LM 相交于N ,则PBC PBL PNM PAM ∠=∠=∠=∠,从而P ,B ,C ,A 四点共圆,即点P 在ABC △的外接圆上. 【典型例题与基本方法】 1.找到或作出三角形外接圆上一点在三边上的射影,是应用西姆松定理的关键 例1如图6-2,过正ABC △外接圆的AC 上点P 作PD ⊥直线AB 于D ,作P E A C ⊥于E ,作P F B C ⊥于F .求证: 111 PF PD PE += .

弦切角定理练习-初三数学

一、填空 1.已知:如图7-143,直线BC切⊙O于B点,AB=AC,AD=BD,那么∠A=____. 2.已知:如图7-144,直线DC与⊙O相切于点C,AB为直径,AD⊥DC于D,∠DAC=28°,则∠CAB=____ . 3.已知:如图7-145,PA切⊙O于点A,∠P=15°,∠ABC=47°,则∠C= ____. 4.已知:如图7-146,三角形ABC的∠C=90°,内切圆O与△ABC的三边分别切于D,E,F三点,∠DFE=56°,那么∠B=____. 二、选择 5.已知:△ABC内接于⊙O,∠ABC=25°,∠ACB= 75°,过A点作⊙O的切线交BC的延长线于P,则∠APB等于() A.62.5°B.55° C.50°D.40° 6.已知:如图 7-149,PA,PB切⊙O于A,B两点,AC为直径, 则图中与∠PAB相等的角的个数为() A.1 个B.2个C.4个D.5个 7.已知如图7-150,四边形ABCD为圆内接四边形,AB是直径, MN切⊙O于C点,∠BCM=38°,那么∠ABC的度数是 A.38°B.52°C.68°D.42° 三、解答 8.已知:如图7-152,PT与⊙O切于C,AB为直径,∠BAC=60°, AD为⊙O一弦.求∠ADC与∠PCA的度数. 9.已知:如图7-154,⊙O的半径OA⊥OB,过A点的直线交OB于 P,交⊙O于Q,过Q引⊙O的切线交OB延长线于C,且PQ=QC.求 ∠A的度数.

10.已知:如图7-160,AC是⊙O直径,PA⊥AC于A,PB切⊙O于B,BE⊥AC于E.若AE=6cm,EC=2cm,求BD的长. 2 11.已知:如图7-185,∠1=∠2,⊙O过A,D两点且交AB,AC于E,F,BC切⊙O于D.求证:EF∥BC. 12.已知:如图7-176,圆内接四边形ABCD的AB边经过圆心,AD,BC的延长线相交于E,过C点的切线CF⊥AE于F.求证: (1)△ABE为等腰三角形; (2)若 BC=1cm,AB=3cm,求EF的长.

中考专题切线长定理及弦切角定理

中考复习专题——切线长定理与弦切角定理 【知识要点】 1.切线长定理:过圆外一点P做该圆的两条切线,切点为A、B。AB交PO于点C,则有如下结论: (1)PA=PB (2)PO⊥AB,且PO平分AB (3)APO BPO OAC OBC ∠=∠=∠=∠;AOP BOP CAP CBP ∠=∠=∠=∠ 2.弦切角定理:弦切角(切线与圆的夹角)等于它所夹的弧所对的圆周角 推论:若两弦切角所夹的弧相等,则这两个弦切角也相等 【典型例题】 【例1】如图1,AB,AC是⊙O的两条切线,切点分别为B、C、D是优弧BC上的点,已知∠BAC=800,那么∠BDC =______. 图1 图2 图3 举一反三: 1.如图2,AB是⊙O的弦,AD是⊙O的切线,C为AB上任一点,∠ACB=1080,那么∠BAD =______. 2.如图3,PA,PB切⊙O于A,B两点,AC⊥PB,且与⊙O相交于D,若∠DBC=220,则∠APB=________.【例2】如图,已知圆上的弧AC BD =,过C点的圆的切线与BA的延长线交于E点,证明: (1)∠ACE=∠BCD; (2)BC2=BE×CD. 举一反三: 1.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB C B O A D C B A D P O

P B A O 的延长线于点C ,若DA =DC ,求证:AB =2BC . 【例3】已知:如图 7-149,PA ,PB 切⊙O 于A ,B 两点,AC 为直径,则图中与∠PAB 相等的角的个数为 A .1 个; B .2个; C .4个; D . 5个. 【例4】如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ABC 的周长. 举一反三: 1. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°. (1)求∠APB 的度数; (2)当OA =3时,求AP 的长. 2.已知:如图,⊙O 内切于△ABC ,∠BOC =105°,∠ACB =90°,AB =20cm .求BC 、AC 的长.

四个重要定理(梅涅劳斯-塞瓦-托勒密-西姆松)

平面几何中的四个重要定理 梅涅劳斯(Menelaus ) 定理(梅氏线) △ ABC 的三边BC 、CA 、AB 或其延长线上有点 P 、Q 、R ,贝U P 、Q 、R 共线的充 塞瓦(Ceva )定理(塞瓦点) △ ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,贝U AP 、BQ 、CR 共点的充要条件 西姆松(Simson )定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接 要条件是 BP CQ AR 1 PC QA RB 是BP 殂塑1。 PC QA RB P 圆 。

-可编辑- 圆上。 例题: 1、设AD 是厶ABC 的边BC 上的中线,直线CF 交AD 于F 。求 、 AE 2AF 证:—— ED FB AE DC BF 【分析】CEF 截厶ABD T -------------------------- 1 (梅氏定理) ED CB FA 【评注】也可以添加辅助线证明:过 A 、B 、D 之一作CF 的平 行线。 【分析】连结并延长 AG 交BC 于M ,贝U M 为BC 的中点。 BE CF GM (DB DC) = GM 2MD EA FA = AG MD 2GM MD AB 、AC 于 E 、F ,交 CB 于 D 。 求证: BE CF 1。 EA FA DEG 截厶 ABM T DGF 截厶 ACM T BE AG MD EA GM DB CF AG MD FA GM DC 1 (梅氏定理) 1 (梅氏定理) A 2、过△ ABC 的重心G 的直线分别交

5、已知△ ABC 中,/ B=2 / C 。求证: 【评注】梅氏定理 【评注】梅氏定理 CG 相交于一点。 【分析】 【评注】塞瓦定理 3、D 、E 、F 分别在△ ABC 的 BC 、 匹圧些,AD 、BE 、 DC FB EA 【分析】 4、以△ ABC 各边为底边向外作相似的等腰厶 BCE 、△ CAF 、△ ABG 。求证: AE 、BF 、

弦切角定理证明

弦切角定理证明 弦切角定理证明弦切角定理 编辑本段弦切角定义 顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角) 如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB,∠TCA,∠PCA,∠PCB都为弦切角。 编辑本段弦切角定理 弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.弦切角定理证明: 证明一:设圆心为O,连接OC,OB,。 ∵∠TCB=90-∠OCB ∵∠BOC=180-2∠OCB ∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半) ∵∠BOC=2∠CAB(圆心角等于圆周角的两倍) ∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧. 求证:(弦切角定理) 证明:分三种情况:

(1)圆心O在∠BAC的一边AC上 ∵AC为直径,AB切⊙O于A, ∴弧CmA=弧CA ∵为半圆, ∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部. 过A作直径AD交⊙O于D, 若在优弧m所对的劣弧上有一点E 那么,连接EC、ED、EA 则有:∠CED=∠CAD、∠DEA=∠DAB ∴∠CEA=∠CAB ∴(弦切角定理) (3)圆心O在∠BAC的外部, 过A作直径AD交⊙O于D 那么∠CDA+∠CAD=∠CAB+∠CAD=90 ∴∠CDA=∠CAB ∴(弦切角定理) 编辑本段弦切角推论 推论内容 若两弦切角所夹的弧相等,则这两个弦切角也相等 应用举例 例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60°, AB=a 求BC长.

平面几何4--张角定理及西姆松定理

平面几何(4)----张角定理及西姆松定理 张角定理:设A ,C ,B 顺次分别是平面内一点P 所 引三条射线PA ,PC ,PB 上的点,线段AC ,CB 对 点P 的张角分别为,,αβ且180o αβ+<,则A ,C ,B 三点共线的充要条件是: sin()sin sin PC PB PA αβαβ+=+. 例1. 如图,已知ABCD 为四边形,两组对边延长后得到交点E ,F ,对角线BD//EF ,AC 的延长线交EF 于G ,求证:EG=GF. 例2. 已知ABC 的顶点A ,B ,C 对应的三边长分别为a ,b ,c ,E 为其内切 圆圆心,AE 交BC 于D ,求证:AE b c ED a +=

例3. 如图,在四边形ABCD 中,对角线AC 平分,BAD ∠在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G ,求证:GAC EAC ∠=∠ 例4. 如图,已知AM 是ABC 的边BC 上的中点,任作一直线顺次交AB ,AC ,AM 于P ,Q ,N ,求证: ,,AB AM AC AP AN AQ 成等差数列.

西姆松定理:过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线(此线常称为西姆松线). 西姆松定理的逆定理: 若一点在三角形三边所在直线上的射影共线,则改点在此三角形的外接圆上. 例1. 如图,过正ABC 外接圆的 AC 上点P 作PD ⊥直线AB 于D ,作PE ⊥AC 于E ,作PF BC ⊥于F ,求证: 111PF PD PE +=

例2. 如图,设AD ,BE ,CF 为ABC 的三条高线,自D 点作DP AB ⊥于P ,DQ BE ⊥于Q ,DR CF ⊥于R ,DS AC ⊥于S ,连PS. 求证:Q ,R 在直线PS 上. 例3. 如图,设P 为ABC 外接圆上一点,作'PA BC ⊥交圆周于'A ,作'PB ⊥直线AC 交圆周于'B ,作'PC AB ⊥交圆周于'C ,求证:'''////AA BB CC

怎样证明弦切角

怎样证明弦切角 怎样证明弦切角设圆心为o,连接oc,ob,oa。过点a作tp的平行线交bc于d, 则∠tcb=∠cda ∵∠tcb=90-∠ocd ∵∠boc=180-2∠ocd ∴,∠boc=2∠tcb ∵∠boc=2∠cab ∴∠tcb=∠cab 2 接oboc过o做oe⊥bc 所以∠a=1/2 又因为∠oct=90° ∠oec=90° 所以∠eoc=∠tcb

所以∠tcb=∠a 3 温馨提示 设切点为a切线ab弦ac圆心为o 过a作直径ad连oc 角cab等于90度减角dac 因为oa等于oc所以角aoc等于180度减去二倍的角dac 即可证明角aoc等于二倍的角cab 参考资料:弦切角是这弦所对的圆心角的一半 4 线段ad与线段ef互相垂直平分。 证明:设ad交ef于点g. 因为ap为切线,所以弦切角等于所对的圆周角,即∠pac=∠b, 又因为ad平分∠bac,所以∠dac=∠bad, 从而∠pac+∠dac=∠b+∠bad, 而∠pac+∠dac=∠pad, ∠b+∠bad=∠pda,所以 ∠pad=∠pda,则△pad为等腰三角

形, 因pm平分∠apd,所以pm垂直平分ad,则ef垂直平分ad, 从而ad垂直ef, 则∠age=∠agf=90°, 再由∠gaf=∠gae,得到 △eag≌△fag, 从而eg=fg,从而ad也垂直平分ef。 5 圆心o在∠bac的一边ac上 ∵ac为直径,ab切⊙o于a, ∴弧cma=弧ca ∵为半圆, ∴∠cab=90=弦ca所对的圆周角圆心o在∠bac的内部. 过a作直径ad交⊙o于d, 若在优弧m所对的劣弧上有一点e 那么,连接ec、ed、ea 则有:∠ced=∠cad、∠dea=∠dab ∴∠cea=∠cab ∴ 圆心o在∠bac的外部,

定理2

古尔亭定理 以平面图形绕同一平面上的任何一条与该图形不相交的直线旋转一周所产生的体积,等于图形的面积乘以其重心相应半径所画的圆周长 定理 拉格朗日中值定理又称拉氏定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。 如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈(a,b),使得 f'(ξ)*(b-a)=f(b)-f(a) 拉格朗日中值定理的几何意义 。 在(a,b)上可导,[a,b]上连续是拉格朗日中值定理成立的充分条件。 理解——这个定理说的是什么 1.在满足定理条件的前提下,函数f(x)上必有【一点的切线】与【f(x)在x=a,b处对应的两点((a,f(a))和(b,f(b))点的连线平行)。f'(ξ)=[f(b)-f(a)]/(b-a),等号后为x=a,b对应两点的连线斜率,等号前为f(x)上一点的导数的值,也就是f(x)上一点的斜率,两斜率相等,两线平行。这是几何上的理解方式。 2.我们将f(x)函数求导,得到f'(x),众所周知f'(x)函数记录的其实就是【f(x)函数在每一个瞬间的变化状态】。即,在x=x1这一瞬间f(x)进行了程度为f'(x1)的变化,在x=x2这一瞬间f(x)进行了程度为f'(x2)的变化……。函数由f(a)变化到f(b)的过程,其实就是f'(x)函数在(a,b)区间中记录的变化状态的依次累加,就是对f'(x)函数在(a,b)区间的值进行积分的过程。那么,将这一过程中所有的变化状态的值一起取一个平均,这个平均值的数值一定在f'(x)的某一点上出现过(即f'(ξ)),因为f(x)连续,则其导数也连续。这个平均值乘上变化的区间(a到b)的长度就等于这个变化的变化量【 】。即所谓的必有一 ,使f'(ξ)*(b-a)=f(b)-f(a)。即,【a,b区间上f(x)函数的变化量】=【a,b区间内f(x)函数变化状态的平均值乘以区间长度】。这是代数理解方式。[1]

托勒密定理塞瓦定理梅涅劳斯定理西姆松定理

托勒密定理 内容:指圆内接凸四边形两对对边乘积的和等于两条对角线的乘积。 证明: 在任意凸四边形ABCD中(如右图),作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD,连接DE. 则△ABE∽△ACD ∴BE/CD=AB/AC,即B E·AC=AB·CD (1) 由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD, ∴△ABC∽△AED. BC/ED=AC/AD,即ED·AC=BC·AD (2) (1)+(2),得 AC(BE+ED)=AB·CD+AD·BC 又∵BE+ED≥BD ∴AB×CD+AD×BC≥AC×BD 塞瓦定理 在△ABC内任取一点O, 直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 因为(AD:DB)*(BE:EC)*(CF:FA)=1所以CD、AE、BF交于一点

用同一法证 点D,E,F分别为三角形ABC三边BC,AC,AB上的点,若AF/BF*BD/DC*CE/AE=1,则AD,BE,CF 三点共线 逆命题证明 证明:设BE,CF交与点O,AO交BC于点P。 则由赛瓦定理可知,AF/BF*BP/PC*CE/AE=1。 由已知AF/BF*BD/DC*CE/AE=1知,AF/BF*BP/PC*CE/AE=1=AF/BF*BD/DC*CE/AE。 推出BP/PC=BD/DC,所以BD/BC=BP/BC,故BD=BP。 所以D点与P点重合。则AD,BE,CF三点共线,命题得证。 梅涅劳斯定理 如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/Y A)=1 。 西姆松定理 (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。

(完整版)弦切角定理+圆幂定理之割线相交弦切割线定理

弦切角定理及其应用 顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角) 弦切角定义 图1 如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB、∠TCA、∠PCA、∠PCB都为弦切角。 弦切角定理 弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 如上图,∠PCA=1/2∠COA=∠CBA 弦切角定理证明: 证明一:设圆心为O,连接OC,OB,。 ∵∠TCB=90°-∠OCB ∵∠BOC=180°-2∠OCB ∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍) ∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)

证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧. 求证:(弦切角定理) 证明:分三种情况: (1)圆心O在∠BAC的一边AC上 ∵AC为直径,AB切⊙O于A, ∴弧CmA=弧CA ∵为半圆, ∴∠CAB=90=弦CA所对的圆周角 (2)圆心O在∠BAC的内部. (B点应在A点左侧) 过A作直径AD交⊙O于D, E 若在优弧m所对的劣弧上有一点 那么,连接EC、ED、EA 则有:∠CED=∠CAD、∠DEA=∠DAB ∴∠CEA=∠CAB ∴(弦切角定理) (3)圆心O在∠BAC的外部, 过A作直径AD交⊙O于D 那么∠CDA+∠CAD=∠CAB+∠CAD=90° ∴∠CDA=∠CAB

∴(弦切角定理) 3弦切角推论 推论内容 若两弦切角所夹的弧相等,则这两个弦切角也相等 应用举例 例1:如图,在⊙O中,⊙O的切线AC、BC交与 点C,求证:∠CAB=∠CBA。 解:⊙O的切线AC、BC交与点C,∴AC=BC(切线长定理)。∴∠CAB=∠CBA。(等腰三角形“等边对等角”)。 例2:如图,AD是ΔABC中∠BAC的平分线,经过点A 的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求 证:EF//BC. 证明:连接DF AD是∠BAC的平分线 ∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC ⊙O切BC于D ,∠FDC=∠DAC ∠EFD=∠FDC EF∥BC 例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB 于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD. 证明:∵AB是⊙O直径∴∠ACB=90 ∵CD⊥AB ∴∠ACD=∠B,

(试卷)奥赛经典-奥林匹克数学中的几何问题---第九章完全四边形的性质及应用1

第九章完全四边形的性质及应用 【基础知识】 我们把两两相交又没有三线共点的四条直线及它们的六个交点所构成的图形,叫做完全四边形.六个点可分成三对相对的顶点,它们的连线是三条对角线. 如图91-,直线ABC 、BDE 、CDF 、AFE 两两相交于A 、B 、C 、D 、E 、F 六点,即为完全四边形ABCDEF .线段AD 、BF 、CE 为其三条对角线. 完全四边形中既有凸四边形、凹四边形,还有折四边形以及四个三角形.如图91-中有凸四形ABDF ,凹四边形ACDE ,折四边形BCFE ,四个三角形ACF △、BCD △、DEF △、ABE △. 在完全四边形ABCDEF 中,对四个三角可以写出梅涅劳斯定理的4个式子(见图11-后说明);若直线 AD 交BF 于H ,交CE 于G ,则可以写出塞瓦定理的7个式子(见图23-) ;利用空全四边形及其对角线的相交可以讨论梅涅劳斯定理与塞瓦定理的互推(图22-);完全四边形的四个三角形的外接圆共点(即完全四边形的密克尔点及西姆松线(见图67-))等.这是我们已介绍的完全四边形的性质,完全四边形还有一系列有趣的性质,下面我们介绍其中的几条: 性质1设M 为完全四边形ABCDEF 的密克尔点. (1)若B 、C 、E 、F 四点共圆于O e ,则M 点在对角线AD 所在直线上,且OM AD ⊥; (2)若A 、B 、D 、F 四点共圆于O e ,则M 点在对角线CE 上,且OM CE ⊥. 注此性质还可参见例10(9),例11(3)、(5). 证明(1)如图92- (a ).设过B 、C 、D 三点的圆交直线于点M ',则AD AM AB AC AE AF '?=?=?,即知点M '在DEF △的外接圆上,亦即知点M '就是完全四边形ABCDEF 的密克尔点M . 设K 为AM 延长线上一点,由2CME CMK KME CBE CFE CFE COE ∠=∠+∠=∠+∠=∠=∠,知C 、E 、O 、M 四点共圆.于是1 902 OMK OME EMK OCE COE ∠=∠+∠=∠+∠=?,即证. B A E F 图9-1 D C O B K C (a) M D F E 图9-2 (b)

相关文档
最新文档