水下机器人研究现状与探索

水下机器人研究现状与探索
水下机器人研究现状与探索

《大学计算机基础》

课程报告

论文名称:水下机器人研究现状与探索二零一七年一月

目录

摘要 (2)

关键词 (2)

1 引言( Introduction) (3)

2水下机器人分类( The categories of underwater robot ) (4)

2.1遥控式水下机器人(remotely operated vehicles, ROV) (4)

2.2自主水下机器人(Autonomous underwater vehicles, AUV) (5)

2.3新概念水下机器人 (6)

3水下仿生机器人(bionic underwater robot) (7)

3.1水下仿生机器人主要研究和发展趋势( The (7)

main research and development trends of (7)

bionic underwater robot) (7)

3.2 水下仿生机器人的问题(The Problems of bionic underwater robot) (8)

3.3 驱动以及推进方式 (9)

4 仿生创新思路 (11)

4.1以乌贼为代表的海洋动物结构及运动方式 (11)

4.2 复合式水下仿生机器人 (12)

4.3 群体水下仿生机器人 (13)

5 结论 (13)

参考文献: (14)

水下机器人研究现状与探索

朱钰璇

摘要:本文总结了水下机器人的研究历史,现状与目前的发展趋势,具体分析了现代水下机器人应用的技术,指出他们的优缺点,并且针对未来的深海探索机器人的材料,结构,移动方式,动力来源,仿造乌贼等海洋软体动物提出设想,实际应用前景广阔。随着科学技术的发展, 水下仿生机器人在智能材料制成的驱动装置、游动机理方面会不断地完善, 在个体的智能化和群体的协作方面也会有很大的发展。

关键词:水下机器人;深海探索;仿生;

PRESENT STATE AND FUTURE DEVELOPMENT OF UNMANNED UNDERWATER VEHICLE TECHNOLOGY RESEARCH

ZHU Yuxuan

Abstract: In this paper, the history, present situation and future of Unmanned underwater vehicle technology are summarized. We also further describe the mobile robot technologies concerning Unmanned underwater vehicle . In addition, point out

the advantages and disadvantages of these technologies . And the exploration of the robot which used to explore the deep sea in the future of material, structure, movement way, the power source, puts forward the idea imitating Vampire Squid. Broad practical application prospects can be expected.With the development of science and technology, bionic underwater robot will be improved in driving system made - up by smart materials and locomotion theories gradually, individual intelligence and team cooperation.

Keywords: Unmanned underwater vehicle;the exploration of deep sea; Bionic 1 引言( Introduction)

世界海洋机器人(unmanned marine vehicles, UMV)发展的历史大约60年,经历了从载人到无人,从遥控到自主的主要阶段。加拿大国际潜水器工程公司(ISE)总裁麦克·法兰将海洋机器人的发展历史分为4个阶段[1],并将前3个阶段称为革命(revolution):第一次革命在20世纪60年代,以3人潜水器为标志;第二次革命为70年代,以遥控水下机器人的迅速发展为特征;第三次革命大体为80 年代,以自主水下机器人的发展和水面机器人(USV)的出现为标志。现在则是混合型海洋机器人的时代。

水下机器人(Unmanned underwater vehicle, UUV)是一种可在水下移动、具有感知系统、通过遥控或自主操作方式、使用机械手或其他工具代替或辅助人去完成水下作业任务的机电一体化智能装置。水下机器人是人类认识海洋、开发海洋不可缺少的工具之一,亦是建设海洋强国、捍卫国家安全和实现可持续发展所必需的一种高技术手段。

水下机器人的移动方式十分多样。螺旋桨推进的水下机器人存在流体推进效率低、动作不灵活、噪音大、桨叶会伤害海洋动物等问题。针对这些问题,游动水下仿生机器人如机器鱼应运而生,但它们耐压能力较低。软体动物乌贼凭借喷射和鳍波动的高效、灵活的复合游动方式,成功地与鱼类竞技海洋;它们依靠肌肉性静水骨骼,活跃于从上千米的深海至海平面的广阔海域。[2]就当前水下仿生机器人的发展水平来看,现有水下仿生机器人的功能特性仍然与被模仿的生物存在

很大差距。生物体本身结构复杂,其运动规律又难以观测,学科交叉方面也存在问题。这都限制了仿机器人的发展。在未来的发展中,应利用多学科优势并从生物性能出发,使得水下仿生机器人向着结构与生物材料一体化的类生命系统发展,才能在生产生活中发挥更为重要的作用。[3]

2水下机器人分类( The categories of underwater robot )

水下机器人在机器人学领域属于服务机器人类,它包括有缆遥控水下机器人(remotely operated vehicles, ROV)和自主水下机器人(autonomous underwater vehicles, AUV)2大类。此外由于载人潜水器在技术和功能上与水下机器人有共性,我们将其纳入水下机器人类。其实这3类机器人的主要差异在于操作模式,ROV 是拴在宿主舰船上,由操作人员持续控制;AUV 则是可经过编程航行至一个或多个航点,自带电能,不用缆线。美军在2014 年搜寻马航客机残骸出动的“金枪鱼”就属于AUV。但是这两种类型的无人潜航器(UUV)同样都会涉及到包括仿生、智能控制、水下目标探测与识别、水下导航(定位)、通讯、能源系统等六大技术。目前,水下机器人主要于水产养殖、水下结构勘查、水底残骸估测、救援、环境生态监测、水下摄影等领域。比如,在2011 年的日本海啸后,就有使用大量的水下机器人帮助水产行业恢复;德国则是把“海獭”水下机器人用于近海石油调查、通信线路检查、军事应用以及深海探测打捞等。

2.1遥控式水下机器人(remotely operated vehicles, ROV)

ROV的能源和控制指令都由水面控制台提供,通过脐带缆传递给ROV。ROV 的有点在于动力充足可以支撑复杂或大型的探测设备,信息采集和数据传送工作快捷方便,数据采集量大,由于其操作控制和信号处理等工作全部由水面的计算机和工作站来完成,人机交互水平高于AUV,所以ROV的总体决策能力要高于AUV。ROV的致命缺陷就是自身的生命线脐带缆,在短程操作中问题不大,但

是在长距离水下作业中,脐带缆很容易与水下其他结构发生缠绕,当距离较长时,对ROV的动力也是一个很大的挑战。

图1列出了2002年和2008年遥控水下机器人数量按深度分布的情况。从图中可以看出:潜神小于1000m的机器人占总量的40%左右,这是由于绝大多数海洋资源在近海,近海水下生产活动多,需求量最大;中等潜深(2000~4000m)的大约占26%主要服务于深水油气生产及大洋中脊的科研活动潜深大于7000m

的占31%。

图1 ROV按深度的数量分布(%)

Fig. Quantitative distribution of ROV by depth(%)

注:图中深色为2002年数据,浅色为2008年数据,纵坐标为数量/总量的百分比,横坐标×1000m为深度。根据[4]数据绘制

2.2自主水下机器人(Autonomous underwater vehicles, AUV)

AUV涉及流体力学、水声学、光学、通信、导航、自动控制、计算机科学、传感器技术、仿生学等众多领域的高新技术,成为当代科技最新成果的结晶。AUV在水下通过各类传感器测量信号,经过机载CPU进行处理决策,独立完成各种操作,例如进行水下机动航行,动力定位,信息采集,水下探测等。通常这种机器人依靠水声通讯技术与岸基和船基进行联络,或者浮出水面,撑起无线电天线,与陆基和卫星进行通讯。AUV的能源完全依靠自身提供,往往自身携带可充电电池、燃料电池、闭式柴油机等。该类设备优点是活动范围可以不受空间

限制,并且没有脐带缆,不会发生脐带缆与水下结构物缠绕问题,但是水下的续航能力和负载能力受到自身能源的强烈制约,只能完成一些短程和轻载的工作,而自身的CPU处理能力又很大程度上限制了AUV所能从事工作的复杂程度。

AUV在实际的水下作业中无需人工干预,它们可以自主地航行在难于接近的、无法预知的或危险的海洋环境之中,完成自主导航、自主避障和自主作业等任务。因此,AUV成为完成各种水下任务的有力工具,例如,在海洋工程领域,可用于施工前调查、施工中监视、施工后巡检,水下作业支援,水下施工、维护、维修等;在海洋科学研究领域,可以海洋环境数据采集,海床地质地貌勘察,海洋考察,及冰下科学考察;在军事领域,则可用于敌情侦察,水雷战与反水雷战,援潜救生等。

图2 英国的“AUTOSUB”

3水下仿生机器人(bionic underwater robot)

图4:水下仿生机器人发展历程

3.1水下仿生机器人主要研究和发展趋势( The main research and development trends of

bionic underwater robot)

仿生机器鱼(bio-mimetic robot fish)又名机械鱼,人工鱼或鱼形机器人),顾名思义即参照鱼类游动的推进机理利用机械电子元器件或智能材料(smart material)来实现水下推进的一种运动装置。鱼类是最早的脊椎动物之一,经过长期的自然选择进化出非凡的水下运动能力,鱼类的运动具有高效、高机动、低噪声等特点。国外学者很早就致力于对鱼类推进模式及仿生机器鱼的研究。对鱼类的形态、结构、功能、工作原理及控制机制等进行模仿、再造,能提高水下机器人的推进效率和速度,使水下机器人更适合在狭窄、复杂和动态的水下环境中进行监测、搜索、勘探、救援等作业。1994年MIT研究组成功研制了世界上第一条真正意义上的仿生金枪鱼。(如上图)该阶段机器鱼主要采用BCF 推进模型,研究人员致力于如何提高推进效率以及提高机器鱼的运动灵活性。此后,结合仿生学、机械学、电子学、材料学和自动控制的新发展,仿生机器鱼的研制渐成热点。

大部分鱼类的推进方式分为身体尾鳍(body and/or caudal fin,BCF)推进模式和中间鳍对鳍(median and/or paired fin,MPF)推进模式两种。其中,采用

BCF模式游动的鱼类,主要通过身体的波动和尾鳍的摆动产生推进力,其瞬时

游动的加速性能好,周期游动的巡航能力强;采用MPF模式的鱼类,主要依靠胸鳍或腹鳍的摆动产生推进力,其机动性能好。如2010 年新加坡南洋理工大学研制的“R oMan-II”仿生蝠鲼试验样机(图5),身体两侧平均分布有 6 个柔性

鳍条,通过鳍条的拍动产生推进力,可实现各个方向的机动性,该样机可完成原地转弯和直线后退等高难度动作,稳定巡航时,速度可达到0.5 m/s [5] 。

图5 图6

近年来,随着仿生材料、柔性材料的出现,采用柔性驱动成为了水下仿生机器人的一个研究热点。如2011 年,美国弗吉尼亚大学研制的仿生蝠鲼(图6),质量为55.3 g。该仿生蝠鲼的鳍条采用人工肌肉产生驱动力,通过水池游动试验测定其速度可达0.4 cm/s 。此外,美国哈佛大学也进行了柔性驱动的相关研究,并研制了利用柔性胸鳍进行推动的水下机器鱼。

3.2 水下仿生机器人的问题(The Problems of bionic underwater robot)

水下仿生机器人发展至今,对其研究取得了一系列的成果,显示出了广阔的应用前景和极强的生命力。但由于其学科交叉性,发展至今依然存在“形似而神不似”、实际应用有限等诸多问题。其中有一些是仿生机器人的共性。首先,科学家们对海洋生物的生物机理了解不够透彻,学科交叉不够成功。其次,当前机器人多采用刚性结构,这固然有着运动精确的优点,但结构的刚性使其环境适应性较差,在狭窄空间内的运动受到限制,无法通过尺度小于机器人尺度或形状复杂的通道,并且,刚性结构也难以适应深海水压变化。(如表一)第三,现代仿生材料已经发展到了较高的阶段,具有最合理的宏观、微观结构,并具有自适应

性和自愈合能力。在比强度、比刚度与韧性等综合性能上都是最佳的然而对于水下机器人的研究工作并没有很好地应用这些成果。第四,现有的仿生驱动方式以机电驱动为主,相较于生物凭借微量化学物质就能转化出巨大能量来讲,能量转换效率上难以望其项背。

表一:各种机器人特性比较[6]

3.3 驱动以及推进方式

刚性机体结合简单形变柔性胸鳍,对仿生原型的机体结构,尤其是胸鳍的结构,进行了大量的简化。仅保留其摆动运动特征,而忽略其复杂的构型,实现功能仿生。样机采用刚性的中部机体,以膜状或板状柔性材料构成胸鳍鳍面,胸鳍一般采用刚性或柔性鳍条作为加强肋,并起到驱动作用。

典型样机为2004 年日本科研工作者IMAE所开发,这也是首台能够实现水下自由游动的采用胸鳍摆动推进模式的仿生鱼。样机如图7 所示,其胸鳍采用柔性乙烯树脂薄膜,鳍骨为淬火钢带,以刚性双四杆机构驱动胸鳍前缘带动胸鳍鳍面实现摆动运动。样机长0.65 m,展宽0.5 m,质量0.64 kg,利用尾部的方向舵控制样机的运动方向。下潜深度1.5 m 左右,一次充电可续航0.5 h,防水性能良好。全速游动速度比人的步行速度稍慢,约为0.6 m/s。[7]

图7 首台胸鳍摆动推进仿生鱼

全柔性机体指仿生样机制作采用柔性材料制样机机体。全柔性机体制作根据胸鳍摆动推进的变形需求和仿生原型的构型特点,对机体的柔性分布进行设计,样机设计接近功能仿生与形态仿生相结合。样机实现水下自由运动较为困难,但能够更加有效地探究仿生原型特有的结构特征对仿生推进性能的影响。

典型样机为由日本大阪大学SUZUMORI等[8][9] 浇筑制作的Manta Robot,如图9 所示。2005年开始,SUZUMORI 等对比研究了对称刚度胸鳍与非对称刚度胸鳍在推进力以及推进效率方面的区别。在对被动柔性胸鳍和主动柔性胸鳍深入研究的基础上,于2007 年成功设计了气动橡胶空腔致动器,原理应用于水下仿生机器人的制作。之后,以硅橡胶为基材浇筑制作了气动空腔驱动的Manta Robot。样机采用外置气源驱动,长0.15 m,翼展0.17 m,最大游动速度0.1 m/s,能够实现非常类似于蝠鲼的胸鳍摆动运动。该样机驱动源外置,且没有负载空间,不利于自主控制和远距离航行。

(1) 功能仿生为主。(2) 刚性机构。现有采用胸鳍摆动推进模式仿生鱼样机的驱动、传动机构多是刚性并且分离的,无法产生整体渐变的柔性变形,造成胸鳍运动过程的柔顺性不足。(3) 传统驱动器。除个别采用记忆合金或者气动人工肌肉驱动外,传统的电动机仍作为胸鳍摆动推进仿生鱼样机主要应用的驱动器(4) 控制方式。有缆控制和无线遥控作为主要的控制方式,限制了仿生样机的可控运动范围。并且,受限于水下的复杂环境,采用多传感器融合的水下自主游动尚不稳定。

图8 全柔性Manta Robot 样机

传统的电机驱动方式存在一些缺点:如重量大, 反应不敏捷等, 使水下仿生机器人的发展和应用受到了很大限制。于是, 许多国家开展了新型智能驱动材料的研究,如:利用形状记忆合金(Shape memory alloy ,SMA)、电流驱动聚合物(Electroactive polymer,EAP) 、压电陶瓷等智能材料进行驱动,并研究了身体波动推进、胸鳍波动推进等游动方式。由于EAP 技术尚不成熟,利用EAP 驱动的仿生胸鳍波动推进器输出力较小,而且尝试较多的离子交换膜金属复合材料(Ionic exchange polymer metal composites,IPMC)需要保持湿润,姿态保持较难,限制了其应用。电流驱动聚合物( Electro Active Polymers , 简称EAP )是人工肌肉的一种, 由导电高分子材料集束在一起制成的像肌肉一样的复合体, 通过电流激活高分子材料中的离子或电子, 使之完成伸缩、折曲的动作, 控制电流强弱可调整离子或电子的多少, 从而改变其伸缩性。低能耗、无噪声、高弹性、轻质量的优点使其成为制造新型仿生水机器人驱动装置的智能材料。

4 仿生创新思路

总的来说,当前的水下机器人主要是在仿生机理研究,仿生结构,仿生材料,控制感知方式的方面存在局限性。这些方面的问题也是我们开发深海探索机器人所面临的主要问题。从这四个角度出发,我来谈谈我自己的一点设想。

4.1以乌贼为代表的海洋动物结构及运动方式

除了喷水推进时的乌贼等动物外,大多数鱼类和鳍推进时的乌贼等游动的基本动作单元都是柔性弯曲。乌贼除了乌贼骨和喙之外,没有任何刚性骨骼,而是由一种称作肌肉性静水骨骼的三维肌肉阵列来支撑和驱动。这种柔性骨骼没有任

何充气结构,使乌贼能承受较大的压强,潜入较深的海域,例如在上千米的深海也生活着多种乌贼乌贼拥有高超游动能力,具有耐压结构,游动方式复合,对其进行深入研究,能够弥补机器鱼未采用弹性机制来提高能量利用效率和多使用刚性结构耐压能力低等的不足。分析乌贼喷射和鳍波动推进的游动机理,乌贼运用的复合游动方式的优点是能瞬时改变游动方向,噪声低,以及即使乌贼的喷射速度低于周围流体速度,也能产生推力。乌贼体内外套膜腔内外静压平衡,进一步提高了它们的耐压能力。乌贼动作时,弹性机制能够减少能量消耗,提高能量利用效率。若能将乌贼的游动方式、肌肉组织结构和弹性机制等特点应用到水下仿生机器人上,将使其更加高效、灵活和耐压。[10]

4.2 复合式水下仿生机器人

现在的软体机器人大部分以柔软的硅橡胶为材料,这使得仿生机器人能在障碍物之间穿行而不会造成严重的损害。然而在电池以及其他用于电子控制的电子部件上一直难以找到合适的替代材料,因此难以做到全柔性结构。此前,也有MIT的研究人员尝试放弃传统的机电驱动方式,通过在仿生鱼尾鳍部分注入二氧化碳,替换之前以关节加马达驱动的设计,也使得机器鱼变得更有爆发力,在喷射气流的同时使能在瞬间完成100度的转向。不过由于鱼身装载气体有限,目前该机器鱼在水下的持续运动时间仅为几分钟。

但是这还是给了我们一些启发,类比生物体消耗糖类产生能量,我们可以利用海水之中丰富的化学物质或者就和水反应,比如说在机器人内部放入钠和减缓反应激烈程度的催化剂,在机器人体内设置恰当的逻辑系统以及流体驱动系统,这样控制气体的流速以及反应的剧烈程度。使用喷气推进技术,主要用于转向以及加速。仿生材料使用人造肌肉结构,在软体材料内部制造真空,实现了人造肌肉的收缩而非膨胀。这种新型的人造肌肉更加接近天然肌肉的运动模式,并且由于收缩运动没有因充气过度而爆炸的危险,这种人造肌肉也更加安全。同时仿造乌贼的生理结构,达成内外水压平衡。这种复合式的运动方式无疑会大大加强仿生机器人的灵活性,促使其适应海洋的复杂环境,应对突发状况。

此外,该机器人还应当能效仿鱼类的逃避反应,它的结构类似海豚,但是使用的喷气推进技术类似于水母和鱿鱼;为了研发具有肌肉的鱼形机器人。需要研

发特殊的制动器。还有中枢模式发生器,这将使鱼形机器人对外界刺激做出反应从而在关键任务中做出重要决策。

章鱼运动皮层的特定区域并不对应身体的特定部位,每个区域在不同时间控制不同部位;而且许多运动不是受大脑控制而是受外围神经控制,章鱼大脑发出一条一般性的指令,触手计算出具体的信号,就好像分时操作系统。仿生机器人的神经系统也可以仿照这种结构研制。

4.3 群体水下仿生机器人

像蚂蚁这类群居昆虫,虽然没有视觉,却能找到由蚁巢到食物源的最短路径,原因是什么呢?虽然单个蚂蚁的行为极其简单,但由这样的单个简单的个体所组成的蚁群群体却表现出极其复杂的行为,能够完成复杂的任务,不仅如此,蚂蚁还能够适应环境的变化,如: 在蚁群运动路线上突然出现障碍物时,蚂蚁能够很快地重新找到最优路径,蚁群是如何完成这些复杂任务的呢? 所有这些问题,很早就激起了生物学家和仿生学家的强烈兴趣,仿生学家经过大量细致观察研究发现,蚂蚁个体之间是通过一种称之为外激素(pheromone)的物质进行信息传递,从而能相互协作,完成复杂的任务.蚁群之所以表现出复杂有序的行为,个体之间的信息交流与相互协作起着重要的作用。[11]

由此可见,对于深海那样复杂未知的环境,我们应当重点发展微型水下机器人,而不是巨型机器人。就好比单条鱼的力量很弱小, 游动动作很简单, 但作为一个群体, 鱼类在攫取食饵、逃避敌害、群体洄游等方面表现出较强的群体力量。同样地, 单个水下仿生机器人的活动范围和能力也是非常有限的。但是水下仿生机器人将在复杂环境下执行水下作业、海洋监测、海洋生物观察等艰巨的任务。因此, 具有高机动性、高灵活性、高效率、高协作性的群体水下仿生机器人系统将是未来发展的趋势。

5 结论(Conclusion )

综上所述,尽管对水下机器人的研究已经取得了一些成就,但是其实对它的研究还处在起步阶段。水下仿生机器人涉及到材料科学、化学、微机电、液压、

控制等多学科,从材料、设计、加工、传感到控制、使用均存在着一系列问题需要继续研究。如何制造纯柔性的水下机器人?如何更好地运用现有的新型仿生材料?如何提高能量利用率,找到更加合适的驱动方式?这些问题都亟待我们解决。水下机器人作为一种装备归于高端制造业, 属于国家支持的战略新兴产业范畴,具有战略制高点的作用。总的来说,海洋空间不适合人类的生存,大规模开发和利用海洋资源对机器人和机器人技术有很大的期待和依赖。以机器人代替人推动和实现海洋装备无人化具有深远的战略意义。

参考文献:

[1] McFarlane J R. Tethered and untethered vehicles: The future is in the past. Mar Technol Soc J, 2009, 43: 9–12

[2]WANG Zhenlong HANG Guanrong. Swimming Mechanism of Squid and Its Application to Biomimetic Underwater Robots[M] JOURNAL OF MECHANICAL ENGINEERING Vol.44 No.13Jul.2008

[3] WANG Guobiao CHEN Diansheng CHEN Kewei ZHANG Ziqiang etal.The Current Research Status and Development Strategy on Biomimetic Robot[M] JOURNAL OF MECHANICAL ENGINEERING Vol.51 No.13Jul.2015 D

[4]Allen .R. Remotely operated vehicles of the world,8th Edition[M].UK; Oilfield Publications,2008

[5] CHEN Z,UM T I,BART-SMITH H. Ionicpolymer-metal composite enabled robotic manta ray[C]//Proceedings of SPIE –The International Society for Optical Engineering,March 28,2011 ,Bellingham. USA:SPIE,2011:1-12.

[6] CAO Yujun SHANG Jianzhong LIANG Keshan FAN Dapeng MA Dongxi TANG Li ,Review of Soft-bodied Robots[M]JOURNAL OF MECHANICAL ENGINEERING Vol.48 No.3Feb. 2012

[7] ZHONG Yu,ZHANG Daibing,ZHOU Chunlin,et al.Better endurance and load capacity:An underwatervehicle inspired by Manta ray [C]//The 4th International Symposium on Aero Aqua Bio-Mechanisms ,Aug.29-Sep. 2,2009,HengshanPicardie Hotel,Shanghai,China. Japan:ABMECH,2009.

[8] SUZUMORI K,ENDO S,KANDA T,et al. A bendingpneumatic rubber actuator realizing soft-bodied mantaswimming robot[C]//2007 IEEE International Conference on Robotics and Automation,Apr. 10-14,AngelicumUniversity,Roma,Italy. New York:IEEE,2007:

4975-4980.

[9] ANDO Y,KATO N,SUZUKI H,SUZUMORI K. Elastic pectoral fin actuators for biomimetic underwatervehicles[C]//Proceedings of the Sixteenth International Offshore and Polar Engineering Conference ,May28-June 2,2006,San Francisco,California,USA.Cupertino,California:ISOPE,2006:260-270.

[10] WANG Zhenlong HANG Guanrong LI Jian WANG Yangwei. Shape Memory Alloy Wire Actuated Flexible Biomimetic Fin for Quiet Underwater Propulsion[M] JOURNAL OF MECHANICAL ENGINEERING Vol.45 No.2Feb. 2009

[11] Dian Yang, Mohit S. Verma, Ju-Hee So, Bobak Mosadegh, Christoph Keplinger, Benjamin Lee, Fatemeh Khashai, Elton Lossner, Zhigang Suo, George M. Whitesides. Buckling Pneumatic Linear Actuators Inspired by Muscle. Advanced Materials Technologies, 2016; DOI: 10.1002/admt.201600055

仿生机器人的研究现状及其发展方向

第36卷第6期 上海师范大学学报(自然科学版)Vol.36,No.6 2007年12月 Journal of Shanghai Nor mal University(Natural Sciences)2007,Dec. 仿生机器人的研究现状及其发展方向 王丽慧,周 华 (上海师范大学机械与电子工程学院,上海201418) 摘 要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注.主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望. 关键词:仿生机器人;研究现状;发展方向 中图分类号:TP24 文献标识码:A 文章编号:100025137(2007)0620058205 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作.1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实.随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求.在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员. 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人.仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类.仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动. 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大.在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑.以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压.由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展.鱼类在水下的行进速度很快,金枪鱼速度可达105k m/h,而人类最快的潜艇速度只有84km/h.所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象.仿鱼推进器效率可达到70%~ 收稿日期:2007209222 基金项目:上海师范大学理工科校级项目(SK200733). 作者简介:王丽慧(1972-),女,上海师范大学机械与电子工程学院副教授.

智能机器人的现状和发展趋势

智能移动机器人的现状和发展 姓名 学号 班级:

智能移动机器人的现状及其发展 摘要:本文扼要地介绍了智能移动机器人技术的发展现状,以及世界各国智能移动机器人的发展水平,然后介绍了智能移动机器人的分类,从几个典型的方面介绍了智能移动机器人在各行各业的广泛应用,讨论了智能移动机器人的发展趋势以及对未来技术的展望,最后提出了自己的建议和设想,分析我国在智能移动机器人方面发展并提出期望。 关键词:智能移动机器人;发展现状;应用;趋势 1引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能移动机器人则是一个在感知 - 思维 - 效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。一部智能移动机器人应该具备三方面的能力:感知环境的能力、执行某种任务而对环境施加影响的能力和把感知与行动联系起来的能 力。智能移动机器人与工业机器人的根本区别在于,智能移动机器人具有感知功 能与识别、判断及规划功能[1] 。 随着智能移动机器人的应用领域的扩大,人们期望智能移动机器人在更多领 域为人类服务,代替人类完成更复杂的工作。然而,智能移动机器人所处的环境 往往是未知的、很难预测。智能移动机器人所要完成的工作任务也越来越复杂; 对智能移动机器人行为进行人工分析、设计也变得越来越困难。目前,国内外对 智能移动机器人的研究不断深入。 本文对智能移动机器人的现状和发展趋势进行了综述,分析了国内外的智能 移动机器人的发展,讨论了智能移动机器人在发展中存在的问题,最后提出了对 智能移动机器人发展的一些设想。 1

国内外机器人发展现状及发展动向

国外机器人发展现状及发展动向 一、全球机器人行业现状 (一)全球机器人行业现状 1、行业发展:增长态势延续 (1)预计2017年全球工业机器人销售量25万台 从2008年第四季度起,全球金融风暴导致工业机器人的销量急剧下滑。2010年全球工业机器人市场逐渐由2009年的谷底恢复。 2011年是全球工业机器人市场自1961年以来的行业顶峰,全年销售达16.6万台。2012年全球工业机器人销量为15.9万台,略有回落,主要原因是电气电子工业领域的销量有所下滑,但汽车工业机器人销量延续增长态势。 随着全球制造业产能自动化水平提升,特别是中国制造业升级,我们估计到2017年全球工业机器人销量达到25万台,年复合增长率9.5%. (2)预计到2017年全球工业机器人市场容量2700亿 2012年全球机器人本体市场容量为530亿元,本体加集成市场容量按本体大约三倍算,估计1600亿元。 估计2013年至2017年,包含本体和集成在的全球工业机器人市场,年复合增长率约为11%。预计2017年全球工业机器人市场容量将达到2700亿元。 (3)预计到2017年全球服务机器人市场容量接近500亿 根据IFR数据,2012年全球个人(或家庭)用服务机器人市场容量为73亿元,公共服务机器人市场容量为208亿元。目前看公共服务机器人产业化走在前面,市场容量更大。 预计2013-2017年个人(或家庭)用服务机器人市场容量增长率为7%,公共服务机器人市场容量年均复合增长率为17%。到2017年,全球服务机器人市场容量将接近500亿元。如果智能家居算是广义的服务机器人,服务机器人市场容量会大很多。 2、全球机器人行业布局:日欧产业优势明显,中国市场潜力巨大 (1)工业机器人市场销量与存量 全球工业机器人本体市场以中欧美日为主。日、美、德、韩、中五国存量占全球比例达71.24%,销量达69.92%。 截至2012年底,全球机器人累计销量达到247万台。机器人平均使用寿命为12年,最长15年。估计现在全球机器人存量在120万台-150万台之间。 分区域看,亚洲/澳洲增幅达到9%。亚洲增幅主要由中国需求拉动,因为中国2012年工业机器人销量增幅达到30%。 分生产地和消费地看,日本是唯一的工业机器人净出口国,拥有全球最大的机器人产能,占据全球机器人产量的66%。机器人消费地最大的区域是除日本以外的亚洲地区,占比约34%,而且是以中国市场为主。 (2)全球工业机器人与机床行业销量的对比 工业机器人销量占机床销量比反映各国机器人使用情况。这个比例的上升在一定程度上代表着这个国家机器人普及水平的提升。我们给出美日德中四国的机器人销量占机床销量比,从这个数据和历年的变化趋势看各国机器人行业的发展状况。 美日德三国的机器人销量占机床销量比稳定在一定区间(15%-25%),表明这

水下机器人发展概述

水下机器人发展概述 1水下机器人发展背景 在浩瀚的宇宙中,有一个蔚蓝色的星球,那是人类赖以生存的地方——地球。地球的表面积为5.1亿平方公里,而海洋的面积为3.6亿平方公里。地球表面积的71%被海洋所覆盖。在烟波浩渺的海洋深处,蕴藏着什么样的宝藏?是否存在着智慧生命?海底生物是怎样生活的?海底的地形地貌又是什么样的?所有这一切都使海洋充满了神秘的色彩,也吸引了无数科学家、探险家为之探索。从远古时代起,人们就泛舟于海上。从19世纪起,人们开始利用各种手段对海洋进行探察。20世纪,水下机器人技术作为人类探索海洋的最重要的手段,受到了人们普遍的关注。进入21世纪,海洋作为人类尚未开发的处女地,已成为国际上战略竞争的焦点,因而也成为高技术研究的重要领域。毫不夸张地说,本世纪是人类进军海洋的世纪。人类关注海洋,是因为陆上的资源有限,海洋中却蕴藏着丰富的矿产资源、生物资源和能源。另一个重要原因是,占地球表面积49%的海洋是国际海底区域,该区域内的资源不属于任何国家,而属于全人类。但是如果哪一个国家有技术实力,就可以独享这部分资源。因此争夺国际海底资源也是一项造福子孙后代的伟大事业。水下机器人作为一种高技术手段,在海底这块人类未来最现实的可发展空间中起着至关重要的作用,发展水下机器人的意义是显而易见的。 2水下机器人的定义与分类 2.1水下机器人的定义与概述 水下机器人也称作无人水下潜水器(unmannedunderwatervehicles,UUV),它并不是一个人们通常想象的具有类人形状的机器,而是一种可以在水下代替人完成某种任务的装置。在外形上更像一艘微小型潜艇,水下机器人的自身形态是依据水下工作要求来设计的。生活在陆地上的人类经过自然进化,诸多的自身形态特点是为了满足陆地运动、感知和作业要求,所以大多数陆地机器人在外观上都有类人化趋势,这是符合仿生学原理的。水下环境是属于鱼类的“天下”,人类身体的形态特点与鱼类相比则完全处于劣势,所以水下运载体的仿生大多体现在对鱼类的仿生上。目前水下机器人大部分是框架式和类似于潜艇的回转细长体,随着仿生技术的不断发展,仿鱼类形态甚至是运动方式的水下机器人将会不断发展。水下机器人工作在充满未知和挑战的海洋环境中,风、浪、流、深水压力等各种复杂的海洋环境对水下机器人的运动和控制干扰严重,使得水下机器人的通信和导航定位十分困难,这是与陆地机器人最大的不同,也是目前阻碍水下机器人发展的主要因素。 2.2水下机器人的分类 水下潜水器根据是否载人分为载人潜水器和无人潜水器两类。载人潜水器由人工输入信号操控各种机动与动作,由潜水员和科学家通过观察窗直接观察外部环境,其优点是由人工亲自做出各种核心决策,便于处理各种复杂问题,但是人生命安全的危险性增大。由于载人需要足够的耐压空间、可靠的生命安全保障和生命维持系统,这将为潜水器带来体积庞大、系统复杂、造

【经营计划书】水下机器人创业策划书(终稿)

低成本水下机器人 策 划 书 申报项目: 低成本水下机器人 申报人: 孟永志 项目负责人: 孟永志 申报日期: 年4月17日

低成本水下机器人策划书 机器人项目创业计划执行概要 水下机器人从20世纪后半叶诞生,是工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称无人遥控潜水器,主要运用在海上救援。由于水下环境恶劣危险,人的潜水深度有限,所以水下机器人日益成为开发海洋的重要工具。在军事斗争中,无人化作战平台将在未来现代化战争中发挥重要的作用,无人舰艇将与无人地面战车、无人飞机一起在战场上进行高效卓越地作战。另外,无论战争期间还是和平时期,水下机器人还可以定期对航道、训练场、舰艇机动区实施定期或不定期检查,保障这些水域的作业安全。 载人潜水器由人工输入信号操控各种动作,由潜水员和科学家通过观察窗直接观察外部环境。其优点是由人工亲自做出各种核心决策,便于处理各种复杂问题,但是人生命安全的危险性增大,由于载人需要足够的耐压空间、可靠的生命安全保障和生命维持系统,这将为潜水器带来体积庞大、系统复杂、造价高昂、工作环境受限等不利因素。 有缆水下机器人(ROV)需要由电缆从母船接受动力,并且ROV不是完全自主的,它需要人为的干预。主要由水面设备(包括操纵控制台、电缆绞车、吊放设备、供电系统等)和水下设备(包括中继器和潜水器本体)组成。潜水器本体在水下靠推进器运动,本体上装有观测设备(摄像机、照相机、照明灯等)和作业设备(机械手、切割器、清洗器等)。潜水器的 水下运动和作业,是由操作员在水面母舰上控制和监视,电缆向本体提供动力和交换信息,中继器可减少电缆对本体运动的干扰。由于人们通过电缆对ROV进行遥控操作,电缆对ROV像“脐带”对于胎儿一样至关重要,但是由于细长的电缆悬在海中成为ROV最脆弱的部分,大大限制了机器人的活动范围和工作效率。 无缆水下机器人(AUV)又称自治水下机器人、智能水下机器人,是将人工智能、探测识别、信息融合、智能控制、系统集成等多方面的技术集中应用于同一水下载体上,在没有人工实时控制的情况下,自主决策、控制完成复杂海洋环境中的预定任务使命的机器人。是从简单的遥控式向监控式发展,即由母舰计算机和潜水器本体计算机实行递阶控制,它能对观测信息进行加工,建立环境和内部状态模型。操作人员通过人机交互系统以面向过程的抽象符号或语言下达命令,并接受经计算机加工处理的信息,对潜水器的运行和动作过程进行

机器人研究现状及发展趋势

机器人发展历史、现状、应用、及发展 趋势 院系:信息工程学院 专业:电子信息工程 姓名:王炳乾

机器人发展历史、现状、应用、及发展趋势 摘要:随着计算机技术不断向智能化方向发展,机器人应用领域的不断扩展和深化,机器人已成为一种高新技术产业,为工业自动化发挥了巨大作用,将对未来生产和社会发展起越来越重要的作用。文章介绍了机器人的国内国外的发展历史、状况、应用、并对机器人的发展趋势作了预测。 关键词:机器人;发展;现状;应用;发展趋势。 1.机器人的发展史 1662年,日本的竹田近江利用钟表技术发明了自动机器玩偶并公开表演。 1738年,法国技师杰克·戴·瓦克逊发明了机器鸭,它会嘎嘎叫、进食和游泳。 1773年,瑞士钟表匠杰克·道罗斯发明了能书写、演奏的玩偶,其体内全是齿轮和发条。它们手执画笔、颜料、墨水瓶,在欧洲很受青睐。 保存至今的、最早的机器人是瑞士的努萨蒂尔历史博物馆里少女形象的玩偶,有200年历史。她可以用风琴演奏。 1893年,在机械实物制造方面,发明家摩尔制造了“蒸汽人”,它靠蒸汽驱动行走。 20世纪以后,机器人的研究与开发情况更好,实用机器人问世。 1927年,美国西屋公司工程师温兹利制造了第一个机器人“电报箱”。它是电动机器人,装有无线电发报机。 1959年第一台可以编程、画坐标的工业机器人在美国诞生。 现代机器人 有关现代机器人的研究始于20世纪中期,计算机以及自动化技术的发展、原子能的开发利用是前提条件。1946年,第一台数字电子计算机问世。随后,计算机大批量生产的需要推动了自动化技术的发展。1952年,数控机床诞生,随后相关研究不断深入;同时,各国原子能实验室需要代替人类处理放射性物质的机械。

机器人发展概况

目录 (一)、机器人运动系统的组成、基本结构 (1) 1、驱动系统 (2) 2、感受系统 (2) 3、机器人——环境交互系统 (3) 4、人机交互系统 (3) 5、控制系统 (3) 6、机械传动结构 (3) (二)、国内外机器人厂家的对比 (4) 1、技术差距 (4) 2、品牌厂家 (5) 3、产品系列 (5) 4、产品价格及成本 (8) (三)机器人控制的智能化、网络化发展 (9) 1、国产机器人的发展状况 (9) 2、应用市场和产品类型的变化 (10) 3、高端智能化机器人将成重点 (11)

智能机器人运动控制系统的综述及发展摘要:本文简述了机器人控制系统,讨论了该系统的分类。综述了机器人控制系统最新的研究内容和成果,调研了机器人控制系统的市场应用。发现,机器人在工业、国防、科研、教育以及人们的日常生活等诸多领域都已广泛应用,并向着标准化、模块化、智能化不展。 关键词:机器人控制系统研究市场 (一)、机器人运动系统的组成、基本结构如图1和图2所示,机器人由机械部分、传感部分、控制部分三大部分组成。这三大部分可以分成驱动系统、机械结构系统、感受系统、机器人—环境交互系统六个子系统。

图1 机器人的基本结构示意图 图2 机器人基本组成示意图 1、驱动系统 要使机器人运作起来,各需各个关节即每个运动自由度安置传动装置。这就是驱动系统。驱动系统可以是液压传动、气压传动、电动传动、或者把它们结合起来应用综合系统,可以是直接驱动或者通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接传动。 2、感受系统 它由内部传感器模块和外部传感器模块组成,获取内部和外部环境状态中有意义的信息。智能化传感器的使用提高了机器人的机动性、适应性和智能化水准。人类的感受系统对感知外部世界信息是极其灵巧

水下机器人发展趋势(汇编)

水下机器人发展趋势 关键词:水下机器人、智能水下机器人、智能体系、运动控制、通讯导航、探测识别、高效能源 随着人类海洋开发的步伐不断加快,水下机器人技术作为人类探索海洋最重要的手段得到了空前的重视和发展。作者对水下机器人进行了定义与分类。介绍了近年来国内外水下机器人的发展现状与发展趋势,重点针对智能水下机器人的主要关键技术及未来发展方向进行了分析。地球的表面积为5.1亿km2,而海洋的面积为3.6亿km2。占地球表面积71%的海洋是人类赖以生存和发展的四大战略空间——陆、海、空、天中继陆地之后的第二大空间,是能源、生物资源和金属资源的战略性开发基地,不但是目前最现实的,而且是最具发展潜力的空间。作为蓝色国土的海洋密切关系到人类的生存和发展,进入21世纪后,人类更加强烈的感受到陆地资源日趋紧张的压力,这是人类面临的最现实的问题。海洋即将成为人类可持续发展的重要基地,是人类未来的希望。水下机器人从20世纪后半叶诞生起,就伴随着人类认识海洋、开发海洋和保护海洋的进程不断发展。专为在普通潜水技术较难到达的区域和深度执行各种任务而生的水下机器人,将使海洋开发进人一个全新的时代,在人类争相向海洋进军的21世纪,水下机器人技术作为人类探索海洋最重要的手段必将得到空前的重视和发展[1]。 1海洋对人类的重要性

海洋作为蓝色国土,首先是一个沿海国家的“门户”,是其与远方联系的便捷途径,并且“门户”的安全是国家安全的重要组成部分,早在2 500多年前古希腊海洋学家锹未斯托克就提出过“谁控制了海洋,谁就控制了一切”。很久以来人们就依赖于海洋航道进行大量的物品贸易,现在整个世界大部分的货物运输都依赖于海上运输,海洋运输是整个经济正常运转必要的一环。更重要的是,现在很多国家的石油、矿石等最基本的生产资料大部分都依赖于海洋运输,海洋运输的安全和对海洋的控制力成为一个国家生存的基本保障。 近年来再次掀起海洋热的浪潮是因为陆上的资源有限,很多资源已经开发殆尽,而海洋中蕴藏着丰富的能源、矿产资源、生物资源和金属资源等,人们急需开发这些资源以接替所剩不多的陆上资源来维持发展。更为重要的是,地球上半数以上面积的海洋是国际海域,这些区域内全部的资源属于全体人类,不属于任何国家。但目前的现状是只有少数国家有能力对这些资源进行初步开采,这些国家在其已探明的区域拥有优先开采权,相对于那些没有能力开采的国家这几乎就等于独享这部分资源。因此海洋已经成为国际战略竞争的焦点,争夺国际海洋资源是一项造福子孙后代的伟大事业。所以水下技术成为目前重点研究的高新技术之一,智能水下机器人作为高效率的水下工作平台在海洋开发与利用中起到至关重要的作用。 2水下机器人的定义与分类

工业机器人研究现状及发展趋势_曹文祥

2011/2 机械制造49卷第558期 纵观历史研究文献,国内外对工业机器人的研究热点问题主要分为3个方面:仿生机器人与新型机构、机器人的定位与地图创建、机器人-环境交互。本文将分别就以上3方面对研究现状进行简要分析,并对工业机器人的发展趋势作了预测。 1工业机器人的发展历程 自1954年美国戴沃尔最早提出了工业机器人的 概念以来,工业机器人就得以不断地发展。概括起来,工业机器人的发展历程为3代: 第1代:示教再现型机器人,但不具备反馈能力。如郭勇等人[1]研制的挖掘机手柄自动操作机构,该机构结构简单,能够实现动作示教再现。 第2代:有感觉的机器人,不仅具有内部传感器,而且具有外部传感器,能获得外部环境信息。如P.l Liljeb.ck 等人研制的蛇形机器人就装有内部测转速的 传感器,以及外部测力的传感器,该机器人能够在不规则环境中具有一定的运动能力。 第3代:智能机器人。定义为“可自动控制的装置,能理解指示命令,感知环境,识别对象,规划自身操作程序来完成任务”。如John Vannoy 等人采用实时可适应性的运动规划(RAMP )算法的PUMA560机械臂,它能在复杂动态环境中自动识别来自不同方向的移动或静止的障碍物,主动规划路径,进而完成预定任务。 2 国外工业机器人的研究现状 2.1 仿生机器人与新型机构 对人的研究,国外侧重于对人行走时的步态分析, 通过对人脚形状的分析,得出具有圆形截面的脚趾和脚后跟以及具有扁平截面的连接脚趾和脚后跟的中间 部分具有最佳的动力学性能。对人形机器人步态规划问题,Xia Zeyang 等人提出了一种基于样品的决定性的脚步规划方法,该方法综合考虑了自身独特的运动能力和稳定性。对于在不同类型障碍的复杂环境中脚步规划,Yasar Ayaz 采用与人走近障碍物时绕过的方法,通过脚步实时的生成成功避开障碍物。此外,对于双足步行机器人的复杂地面运动的研究也有新的进展,研究出一种新型的双足机构,能实现不平区域稳定地行走,该足由4个分别带光学传感器的鞋钉组成,总重1.5kg 。对动物的研究则表现为对诸如蛇、鱼的结构以及运动性能的研究。仿蛇机器人不仅可以作为管道检测装置,也可以作为地震或矿难探索装置,更可以当作极地探测器来进行科研活动。Shigeo 和Hiroya Yamada 就将仿蛇机器人的机械结构分为5种类型:活 动的弯曲关节式;活动的弯曲和拉伸关节式;活动的弯曲关节和活动的车轮式;被动弯曲关节和活动车轮式;活动的弯曲关节和履带式。Aksel Andreas Transeth 等采用摩擦力模型方法建立了一蛇形机器人模型,该机器人能与包括地面的障碍物以外的物体接触,对地震或矿区救援很有帮助。Kristin Y.Pettersen 等人对蛇形机器人在存在障碍物环境中运动进行了复合建模,仿真结构证明该模型能实现不规则环境中的一般运动。但蛇形机器人目前要真正达到在复杂环境中畅通无阻地运动,还有待进一步研究。对海洋的开发,相对于其它的水下自动化装置,仿生鱼具有更好的推进力和流体适应性。其研究主要体现在结构和运动特性上。Jun Gao 和K.H.Low 等人对胸鳍驱动和尾鳍驱动鱼形机器 人进行了分析,讨论了鱼结构和运动各参数的关系。 Yu Zhong 等人对由阀体与尾鳍构成的机器人鱼的运 动性能进行了研究,采用量纲分析方法,建立了一种能预测运动的机器鱼模型。Giuseppe Tortora 等人设计了 工业机器人研究现状及发展趋势 □ 曹文祥 □ 冯雪梅 武汉理工大学机电工程学院 武汉 430070 摘 要:作为最典型的机电一体化的高科技装备,工业机器人得到了非常广泛的应用。综述了国内外工业机器人的 研究热点现状,并预测了其发展趋势。 关键词:工业机器人现状 发展趋势 中图分类号:TP242.2 文献标识码:A 文章编号:1000-4998(2011)02-0041-03 Abstract:As the typical high-tech equipment of mechanoelectronic integration,industrial robots have been widely used.The current situation of research hot points of IR is presented and the developing trend forecasted. Key Words:Industrial Robot (IR)Current Situation Developing Trend 收稿日期:2010年9月 41

2016年水下机器人发展状况分析报告(完美版)

(此文档为word格式,可任意修改编辑!) 2016年3月

目录 1、水下机器人发展概况 3 11、水下机器人分类 3 12、水下机器人发展历程 5 13、国外水下机器人发展状况9 131、美国9 132、欧洲10 133、日本11 14、我国水下机器人发展状况12 15、水下机器人的关键技术14 151、仿真技术15 152、智能控制技术16 153、水下目标探测和识别技术17 154、水下导航(定位)技术17 155、通讯技术18 156、能源系统技术18 2、从军用到民用,从浅海到深海18 21、从军用到民用、应用广泛18 22、从浅海到深,无处不在20 23、未来十年是我国水下机器人发展最关键期22 3、水下机器人的发展目标24 31、向远程发展24

32、向深海发展24 33、向智能型发展24 1、水下机器人发展概况 水下机器人从20世纪后半叶诞生,是工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称无人遥控潜水器,主要运用在海上救援。由于水下环境恶劣危险,人的潜水深度有限,所以水下机器人日益成为开发海洋的重要工具。在军事斗争中,无人化作战平台将在未来现代化战争中发挥重要的作用,无人舰艇将与无人地面战车、无人飞机一起在战场上进行高效卓越地作战。另外,无论战争期间还是和平时期,水下机器人还可以定期对航道、训练场、舰艇机动区实施定期或不定期检查,保障这些水域的作业安全。 11、水下机器人分类

广义上水下机器人也可以称作潜水器(Underwater Vehicles),是一种可以在水下代替人在充满未知和挑战的海洋环境中完成某种任务的装臵,风、浪、流、深水压力等各种复杂的海洋环境对水下机器人的运动和控制干扰严重,使得水下机器人的通信和导航定位十分困难,这是也是它与陆地机器人最大的不同,也是目前阻碍水下机器人发展的主要因素。 就外形看,目前大部分水下机器人是框架式或类似于潜艇的回转细长体,随着仿生技术的不断发展,仿鱼类形态甚至是运动方式的水下机器人将会不断发展。 无缆水下机器人代表目前水下机器人的发展趋势。从种类上看,根据是否载人可以将潜水器分为载人潜水器和无人潜水器两类。无人潜水器按照与水面支持系统间联系方式的不同可以分为有缆遥控水下机器人(remotely operated vehicle,简称ROV)、无缆水下机器人(autonomous underwater vehicle,简称AUV))两种。有缆水下机器人都是遥控式的,根据运动方式不同可分为拖曳式、(海底)移动式和浮游(自航)式三种。无缆水下机器人一般是自治式机器人(又称智能机器人),它能够依靠本身的自主决策和控制能力高效率地完成预定任务,在一定程度上代表了目前水下机器人的发展趋势。

2020年水下机器人行业市场分析调研报告

2020年水下机器人行业市场分析调研报告 2020年1月

目录 1. 水下机器人行业概况及市场分析 (5) 1.1 中国水下机器人行业市场驱动因素分析 (5) 1.2 水下机器人行业特征分析 (5) 1.3 水下机器人行业结构分析 (6) 1.4 水下机器人行业PEST分析 (7) 1.5 水下机器人行业国内外对比分析 (9) 1.6 水下机器人市场规模分析 (11) 2. 水下机器人行业存在的问题分析 (11) 2.1 政策体系不健全 (11) 2.2 基础工作薄弱 (11) 2.3 地方认识不足,激励作用有限 (12) 2.4 产业结构调整进展缓慢 (12) 2.5 技术相对落后 (12) 2.6 隐私安全问题 (13) 2.7 与用户的互动需不断增强 (13) 2.8 管理效率低 (14) 2.9 盈利点单一 (15) 2.10 过于依赖政府,缺乏主观能动性 (15) 2.11 法律风险 (15) 2.12 供给不足,产业化程度较低 (16) 2.13 人才问题 (16)

3. 水下机器人行业政策环境 (18) 3.1 行业政策体系趋于完善 (18) 3.2 一级市场火热,国内专利不断攀升 (18) 3.3 “十三五”期间水下机器人建设取得显著业绩 (19) 4. 水下机器人产业发展前景 (21) 4.1 中国水下机器人行业市场规模前景预测 (21) 4.2 水下机器人进入大面积推广应用阶段 (21) 4.3 政策将会持续利好行业发展 (21) 4.4 细分化产品将会最具优势 (22) 4.5 水下机器人产业与互联网等产业融合发展机遇 (22) 4.6 水下机器人人才培养市场大、国际合作前景广阔 (23) 4.7 巨头合纵连横,行业集中趋势将更加显著 (24) 4.8 建设上升空间较大,需不断注入活力 (24) 4.9 行业发展需突破创新瓶颈 (25) 5. 水下机器人行业发展趋势 (27) 5.1 宏观机制升级 (27) 5.2 服务模式多元化 (27) 5.3 新的价格战将不可避免 (27) 5.4 社会化特征增强 (27) 5.5 信息化实施力度加大 (28) 5.6 生态化建设进一步开放 (28)

工业机器人发展现状与趋势

工业机器人发展现状与趋势 工业机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。自从1962年美国研制出世界上第一台工业机器人以来,机器人技术及其产品发展很快,已成为柔性制造系统(FMS)、自动化工厂(FA)、计算机集成制造系统(CIMS)的自动化工具。 广泛采用工业机器人,不仅可提高产品的质量与产量,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。和计算机、网络技术一样,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。 一、工业机器人技术现状及国内外发展的趋势 工业机器人是最典型的机电一体化数字化装备,技术附加值很高,应用范围很广,作为先进制造业的支撑技术和信息化社会的新兴产业,将对未来生产和社会发展起着越来越重要的作用。国外专家预测,机器人产业是继汽车、计算机之后出现的一种新的大型高技术产业。据联合国欧洲经济委员会(UNECE)和国际机器人联合会(IFR)的统计,世界机器人市场前景看好,从20世纪下半叶起,世界机器人产业一直保持着稳步增长的良好势头。进入20世纪90年代,机器人产品发展速度加快,年增长率平均在10%左右。2004年增长率达到创记录的20%。其中,亚洲机器人增长幅度最为突出,高达43%,如图1所示。

各区域用户工业机器人定购指数(以1996年作为100) 国外机器人领域发展近几年有如下几个趋势: 1.工业机器人性能不断提高(高速度、高精度、高可*性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。 2.机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。 3.工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构;大大提高了系统的可*性、易操作性和可维修性。 4.机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中已有成熟应用。

水下机器人发展现状ROV&AUV

多功能水下脐带缆夹检测车综述1 水下机器人是一种可以在水下运行并能够独立完成特定功能的机械设备,通常可以分为载人水下机器人(Human Occupied Vehicle,简称HOV),遥控机器人(Remotely Operated Vehicle,简称ROV)和自治无人水下机器人(Autonomous Underwater Vehicle,简称AUV)三类。 AUV在水下通过各类传感器测量信号,经过机载CPU进行处理决策,独立完成各种操作,例如进行水下机动航行,动力定位,信息采集,水下探测等。通常这种机器人依靠水声通讯技术与岸基和船基进行联络,或者浮出水面,撑起无线电天线,与陆基和卫星进行通讯。AUV 的能源完全依靠自身提供,往往自身携带可充电电池、燃料电池、闭式柴油机等。该类设备优点是活动范围可以不受空间限制,并且没有脐带缆,不会发生脐带缆与水下结构物缠绕问题,但是水下的续航能力和负载能力受到自身能源的强烈制约,只能完成一些短程和轻载的工作,而自身的CPU处理能力又很大程度上限制了AUV所能从事工作的复杂程度。典型的AUV有美国海军研究生院的Phoenix AUV和性能更优越的Aries AUV,这两个机器人的研发主要是为了研究智能控制、规划和导航功能。麻省理工大学Odyssey II是一种主要用于海冰检测和标图的机器人。美国新罕布什尔自主水下系统研究所与俄罗斯远东科学院水下技术研究所联合开发的太阳能自主水下AUV正在尝试克服AUV的远程续航缺陷。美国的C.S.Droper实验室则在仿生AUV方面有巨大的突破,代表产品是仿黄鳍金枪鱼机器人VCUUV。

加拿大在1994年冰层电缆铺设方面率先采用AUV技术,研制出Theseus AUV,该机器人配备了一块70kWh铝氧燃料电池,续航能力达到36小时。后来该机器人的能源装置不断升级,到1997年完成第二代电池试验,续航能力较第一代显著提高。日本东京生产技术研究所主要致力于水下电缆检测领域,研发出了包括Twin-Burger I型和II型、PTEROA150型和250型等多系列电缆铺设和检测维护AUV。在国内AUV的研制主要由两所机构完成,一是一中科院沈阳自动化研究所为核心,该所与中船重工业集团702所,哈尔滨工程大学等合作研发出“探索者1号”AUV等机器人,之后与俄罗斯合作研发了CR系列机器人。另一个是以哈尔滨工程大学为中心,主要研发军用智能机器人。北京航空航天大学致力于仿生机器鱼的研究,为新推进器技术和新型结构的研究奠定了良好的基础。 遥控机器人(ROV)能够克服AUV的能源动力不足的缺陷,他的能源和控制指令都由水面控制台提供,通过脐带缆传递给ROV。ROV 的有点在于动力充足可以支撑复杂或大型的探测设备,信息采集和数据传送工作快捷方便,数据采集量大,由于其操作控制和信号处理等工作全部由水面的计算机和工作站来完成,人机交互水平高于AUV,所以ROV的总体决策能力要高于AUV。ROV的致命缺陷就是自身的生命线脐带缆,在短程操作中问题不大,但是在长距离水下作业中,脐带缆很容易与水下其他结构发生缠绕,当距离较长时,对ROV的动力也是一个很大的挑战。

国内外机器人发展现状及发展动向

国内外机器人发展现状及发展动向 一、全球机器人行业现状 (一)全球机器人行业现状 1、行业发展:增长态势延续 (1)预计2017年全球工业机器人销售量25万台 从2008年第四季度起,全球金融风暴导致工业机器人的销量急剧下滑。2010年全球工业机器人市场逐渐由2009年的谷底恢复。 2011年是全球工业机器人市场自1961年以来的行业顶峰,全年销售达16.6万台。2012年全球工业机器人销量为15.9万台,略有回落,主要原因是电气电子工业领域的销量有所下滑,但汽车工业机器人销量延续增长态势。 随着全球制造业产能自动化水平提升,特别是中国制造业升级,我们估计到2017年全球工业机器人销量达到25万台,年复合增长率9.5%. (2)预计到2017年全球工业机器人市场容量2700亿 2012年全球机器人本体市场容量为530亿元,本体加集成市场容量按本体大约三倍算,估计1600亿元。 估计2013年至2017年,包含本体和集成在内的全球工业机器人市场,年复合增长率约为11%。预计2017年全球工业机器人市场容量将达到2700亿元。 (3)预计到2017年全球服务机器人市场容量接近500亿 根据IFR数据,2012年全球个人(或家庭)用服务机器人市场容量为73亿元,公共服务机器人市场容量为208亿元。目前看公共服务机器人产业化走在前面,市场容量更大。 预计2013-2017年个人(或家庭)用服务机器人市场容量增长率为7%,公共服务机器人市场容量年均复合增长率为17%。到2017年,全球服务机器人市场容量将接近500亿元。如果智能家居算是广义的服务机器人,服务机器人市场容量会大很多。 2、全球机器人行业布局:日欧产业优势明显,中国市场潜力巨大 (1)工业机器人市场销量与存量 全球工业机器人本体市场以中欧美日为主。日、美、德、韩、中五国存量占全球比例达71.24%,销量达69.92%。 截至2012年底,全球机器人累计销量达到247万台。机器人平均使用寿命为12年,最长15年。估计现在全球机器人存量在120万台-150万台之间。 分区域看,亚洲/澳洲增幅达到9%。亚洲增幅主要由中国需求拉动,因为中国2012年工业机器人销量增幅达到30%。 分生产地和消费地看,日本是唯一的工业机器人净出口国,拥有全球最大的机器人产能,占据全球机器人产量的66%。机器人消费地最大的区域是除日本以外的亚洲地区,占比约34%,而且是以中国市场为主。 (2)全球工业机器人与机床行业销量的对比 工业机器人销量占机床销量比反映各国机器人使用情况。这个比例的上升在一定程度上代表着这个国家机器人普及水平的提升。我们给出美日德中四国的机器人销量占机床销量比,从这个数据和历年的变化趋势看各国机器人行业的发展状况。 美日德三国的机器人销量占机床销量比稳定在一定区间内(15%-25%),表明

2020-2025年中国水下机器人行业发展趋势预测及投资规划研究报告

订购须知 1、此定制服务由华经产业研究院(https://www.360docs.net/doc/d312745079.html,)提供。 2、此报告为定制报告,在我们确认收到您的款项后3个工作日提供。 3、下载文档内容为定制报告大纲,最终报告不能通过下载方式获取,付款后请将订单编号及商品名称通过邮箱发送至kf@https://www.360docs.net/doc/d312745079.html,,我们会在规定时间内通过邮件发送。 4、最终提供文档格式为PDF版本,价格不含纸介版。

2020-2025年中国水下机器人行业发展趋势预测及投资规划研 究报告 【出版日期】2020年 【交付方式】Email电子版 【价格】电子版:8000元 水下机器人也称无人遥控潜水器,是一种工作于水下的极限作业机器人。水下环境恶劣危险,人的潜水深度有限,所以水下机器人已成为开发海洋的重要工具。 无人遥控潜水器主要有:有缆遥控潜水器和无缆遥控潜水器两种,其中有缆遥控潜水器又分为水中自航式、拖航式和能在海底结构物上爬行式三种。 本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。 报告目录: 第一部分产业环境透视 第一章水下机器人的定义与发展水平 第一节水下机器人市场概况 一、水下机器人的定义

二、全球水下机器人的发展现状调研 三、全球水下机器人价值链环境 四、全球水下机器人的发展情况分析 第二节中国水下机器人市场概况 一、中国水下机器人发展状况分析 二、中国水下机器人商业模式和特点 三、中国水下机器人实用性与优越性分析 四、发展水下机器人用户的关键因素 第二章我国水下机器人行业发展现状调研 第一节中国水下机器人行业的发展概况 一、水下机器人产业布局的演变分析 二、制约水下机器人业生态链的因素 三、水下机器人业的价值分析 第二节2019年我国水下机器人行业发展情况分析 一、行业发展回顾 二、行业发展情况分析 三、市场特点分析 四、市场发展分析 第三节2019年中国水下机器人行业供需分析 一、市场需求总量分析 二、市场需求结构分析 三、市场供需平衡分析

工业机器人发展现状及趋势

工业机器人发展现状及趋势 1国内工业机器人得发展现状 1、1发展概述 我国得工业机器人研究开始于20世纪80年代中期.在国家得支持下,通过“七五”、“八五”科技攻关.已经基本实现了实验、引进到自主开发得转变。促进了我国制造业、勘探等行业得发展。但随着我国门户得逐渐开放.国内得工业机器人产业面临着越来越大得竞争与冲击。虽然我国机器人得需求量逐年增加,但目前生产得机器人还很难达到所要求得质量.很多机器人得关键部件还需要进口。所以目前来说。我国还处在一个机器人消费型得同家。 现在,我国从事机器人研发得单位有200多家,专业从事机器人产业开发得企业有50家以上。在众多专家得建议与规划下,“七五”期间由机电部主持,中央各部委、中科院及地方科研院所与大学参加,国家投入相当资金,进行了工业机器人基础技术、基础元器件、工业机器人整机及应用工程得开发研究。“九五”期间,在国家“863”高技术计划项目得支持下,沈阳新松机器人自动化股份有限公司、哈尔滨博实自动化设备有限责任公司、上海机电一体化工程公司、北京机械工业自动化所、四川绵阳思维焊接自动化设备有限公司等确立为智能机器人主题产业基地。此外,还有上海富安工厂自动化公司、哈尔滨焊接研究所、国家机械局机械研究院及北京机电研究所、首钢莫托曼公司、安川北科公司、奇瑞汽车股份有限公司等都以其研发生产得特色机器人或应用工程项目而活跃在当今我国工业机器人市场上。 1、2机器人分类 随着科学技术得不断进步,我国工业机器人已经走上了自主研发阶段,这样标志着我国工业自动化走向了新得里程碑按照工业机器人得关键技术发展过程其可分为三代:第一代就是示教再现机器人,主要由机器人本体、运动控制器与示教盒组成,操作过程比较简单。第一代机器人使用示教盒在线示教编程,并保存示教信息。当机器人自动运行时,由运动控制器解析并执行存储得示教程序,使机器人实现预定动作。这类机器人通常采用点到点运动,连续轨迹再现得控制方法,可以完成直线与圆弧得连续轨迹运动,然而复杂曲线得运动则由多段圆弧与直线组合而成。由于操作得容易性、可视性强,所以在当前工业中应用最多。

国内外温室园艺机器人的研究和应用现状

温室园艺产业化生产在西方发达国家的水平很高、规模很大。由于受到农业用地狭小的条件限制,荷兰、以色列、日本等国家发展温室园艺产业具有明显的特征:重视种苗培育、建设现代化大型温室、大量采用智能化计算机控制、生产流程高度自动化。这种“植物工厂”的专业模式和分工方式能产生非常高的生产效率,大幅提高优质蔬菜、花卉的质量和产出率,能取得很好的经济效益。在信息化时代到来的今天,依托自动控制技术和信息技术的温室精准农业是备受关注的焦点,世界各国都在该领域开展研究,取得一系列很有特色的成果,极大地推动了温室精准农业生产技术的进步。其中,温室园艺生产机器人无疑是最具代表性的。 由于设施生产是在全封闭的设施内周年生产园艺作物的高度自动化控制的生产体系,可以最大限度地规避外界不良环境影响,具有技术密集型的特点,而温室园艺机器人能够满足这种精细管理和精准控制的需求,并且能够解决温室园艺生产的劳动密集和时令性较强的瓶颈问题,大幅提高劳动生产率,改善设施生产劳动环境,避免温室密闭环境施药施肥对人体的危害,保证作业的一致性和均一性等。王树才(2005)指出,目前全世界已经开发出了耕耘机器人、移栽机器人、施肥机器人、喷药机器人、蔬菜嫁接机器人、蔬菜水果采摘机器人、苗盘播种机器人、苗盘覆土消毒机器人等相对比较成熟的可用于设施园艺生产的农业机器人。机器人技术尤其以日本最为代表性,日本作为最早研究机器人的国家之一,由于其老龄化提前到来引发劳动力缺乏以及人力成本高等问题,从20世纪70年代开始,日本的工业机器人开始快速发展,在经过对汽车焊接、汽车喷漆等工业领域的成功应用之后,日本的农业机器人也开始不断取得进展。 佟玲(1 995)指出,日本在20世纪末已经在技术密集型的设施园艺领域开发了多种生产机器人,如嫁接机器人、扦插机器人和采摘机器人等。荷兰花卉生产非常发达,温室园艺产业具有高度工业化的特征,每年花卉产业可创造50亿欧元的价值。由于温室园艺产品生产摆脱了土地约束和天气影响,可以实现按工业方式进行生产和管理,其种植过程可以安排特定的生产节拍和生产周期,产后包装、销售也能够做到与工业生产如出一辙。因此,荷兰的机器人技术得到快速发展。很多温室使用机器人实现不分白昼的连续工作,极大地降低了劳动成本。周增产(2001)

相关文档
最新文档